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Abstract: By numerical integration of the equation of single
particle motion, the basic features of the actual nonadiabatic
escape of particles are studied. The results are compared with
the predictions of two existing theoretical models: 'diffusion"
model derived by B. V. Chirikov and "tunneling'" model introduced
by R. K. Varma.

In a strong magnetic field, a charged particle gyrates around
a line of magnetic field, and simultaneously drifts across and
over the magnetic surface. We restrict ourselves to the case of
axially-symmetric and constant magnetic field, then the drift
motion occurs around the axis of symmetry and can be removed.
When a magnetic field slowly (adiabatically) varies during the
gyration motion of a particle, the magnetic moment, defined by u =
vi/ZQ, is approximately constant, where v, is the velocity com-
ponent perpendicular to the magnetic field B , O = |§| is the
gyration frequency of the particle and we set the mass and the
charge as unity for simplicity. Because the magnetic moment vec-
tor is directed opposite to B and its strength p is an adiabatic
invariant, a particle in a non-uniform magnetic field is pushed
along a magnetic line into the area of weak field. A magnetic
mirror whose field strength has minimum in the mirror is a plasma
confinement scheme which utilizes the nature of this adiabatic
invariance of particle magnetic moment.

Let us consider a single charged-particle motion in an axi-
symmetric magnetic mirror without electric field. The Hamiltonian

is written in the cylindrical coordinates (r, 6, z) as follows:

P
H(p,, Py» 2, T) = %- {p,® +p,* + [_r_g - Ag(z, T)1%}, (1)

where Pg is the angular momentum which is constant, and Aé is the
vector potential which produces a magnetic mirror whose field

at z = 0 and maximum, at z =

strength has minimum, Qmin’ max’

+L/2 along the field line.
If the adiabatic approximation is valid, the particle that
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has initially a magnetic moment My larger than the critical value
Me
W s in the mirror, where E is the particle energy which is a con-

= E/Qmax can be trapped and bounces with the bounce frequency,

stant of motion. This feature can be seen from the expression:
H=v?/2 + u2 = E. The condition of y_ > u_ is equivalent to that
of wo < V. where w_}s the pitch angle in the velocity space being
defined by ¢ = sin (v,/v), and wo and wc are the initial and the
critical values, respectively.

In actual situations, however, the magnetic moment u is not a
strictly constant during the particle motion, because the ratio of
the gyration period to the bouncing period is finite, that is, the
magnetic field strength varies during the gyration period. Then
the particle that adiabatically trapped in the mirror, i.e. uy >
M. can escape from the mirror when the moment u becomes less than
the critical value M due to its nonadiabatic change.

There exist two theoretical models which describe the non-
adiabatic escape. One is a diffusion model in u-space derived by
B. V. Chirikov.l) This theory makes use of the fact that the
magnetic moment rapidly changes by an amount Ay = £sin¢ everytime
the particle crosses the median plane of the mirror, where ¢ is the
gyrophase of the particle at the median plane and & is a function
of u . From this fact Chirikov uses a standard mapping in (u, ¢)
at median plane of the mirror. This mapping is linearized with
respect to u and is characterized by only one parameter, the so-
called stability parameter, S. When S is less than unity, there
is only bounded oscillation of u around each resonance value which
is evaluated by the resonance between the gyration oscillation and
the bouncing oscillation of the particle. If S is much larger
than unity, there occur resonance overlaps and stochastic changes
of u . The diffusion in u-space can be observed by use of the
standard mapping in the case of S >> 1. When p decreases to a
value less than the critical value Mes the particle escapes from
the mirror.

The other theoretical model is based on the ensemble view

)

probability density, F(x, t), at the coordinate x parallel to the

point introduced by R. K. Varma.’ According to this theory, the
magnetic field and at the time t is expressed as a sum of the con-
tribution of a set of wave functions ?n(x, t) which are distin-

guished by the ensemble mode number n, F(x, t) = ) lwn(x, )%,
n=1
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Each of the wavefunctions obeys a one-dimensional (along x)
Schrodinger-like equation where the role of B is replaced by uo/n
with initial magnetic moment My This model describes the non-
adiabatic escape as the escape due to 'tunneling-like effect",
and predicts that the lifetime of adiabatically trapped particles
in a magnetic mirror with given energy and given magnetic moment
Mo is approximately determined by the inverse of the product of
the number of hit on the both walls per unit time, wb/ﬂ, and the
transmission rate. If the WKB approximation can be used for the
calculation of the transmission rate, the lifetime of the n-th
ensemble mode becomes

b —
_m 2
T, < Gg exp{n ﬂ; £ /Z[uOQ(x)-E]dx} , (2)
where the integral takes place over the region of the potential

barrier, uOQ(x) > E, from one zero of the integrand(at x = a) to
the other (at x = b). The argument of the exponential is pro-
portional to n/e where e'l = LQO/V, Qo is the typical gyrofre-
quency, so there exist multiple lifetimes.

Numerical Calculation The purpose of the present work is to

examine the basic features of the actual nonadiabatic escape of

the particles by a numerical calculation, and to compare the

results with the predictions of these two existing theories.
The basic equations are the single particle equation of

motion,

o3, Lo @-h. (3)

We numerically integrated these equations by the 6-th order Runge-
Kutta method. Two cases are studied.

Case (A) In this case, we consider particles at various values of
stability parameter S by using a simple magnetic field configura-
tion which is divergence free but not rotation free. It is
expressed as follows:

= - T_T__I_. 1 =
Qr = Qo @ sin(2mz/L), Qe o,

QZ Qo[l-a cos(2mz/L)].

(4)

We take the parameter a as 0.2, the corresponding mirror ratio
being R = (1+a)/(1-a) = 1.5. We chose the initial conditions such
that cos wo = 0.550 < cos y_ = 0.577 (uo > uc) and 500 particles
with the same energy and the same magnetic moment u (or the same
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pitch angle wo) are uniformly distributed on a circle around the
guiding center at Too = 0.05L. These are distinguished each
other by their initial gyrophases ¢o' Initial z-coordinates are
the same, i.e. z, = 0. The energy is varied as e ! = LQO/V = 4
through 20, the corresponding stability parameter being varied as
S = 1 through 14. The stability parameter has the form

5 = % /e (5)

52

where, in the present case, o = 2.84 and « = 0.332. The particle
that reaches at z = #L is considered as escaped. In Fig. 1 the
stability parameter is ploted by the solid curve. The crosses and
the dashed curve denote the survival particles in the mirror after
200 times the gyration period. The crosses are the numerical
values and the dashed curve is the theoretical one which is derived
by the consideration of diffusion in u-space with a constant

diffusion coefficient D = wb£2(1—1/8)2/4ﬂ and with the absorbing

boundary at u = u.- The number of survival particles is calcula-
ted by this diffusion model with absorbing boundary asa)
N (W -u)?
N(e) = 2 Y3 —35e—) » (6)
™

where y(v, x) (= fxtv_le_tdt) is the incomplete gamma function.
We can cleariy see a threshold of the stability parameter
in order to have a substantial particle loss.
When € = is equal to 4, the Stdrmer radius is greater than
the radial coordinate of the guiding center, therefore no particles

“)

escape.

Case (B) We found multiple lifetimes in the case of particles
having stability parameter below threshold. The magnetic field,
which is taken to be both divergence free and rotation free, is of

the following form

- i ) = 0
Qr Qoa sin(2wz/L)I,(27nr/L), Qe , 7
Q, = Qo[l - a COS(ZﬂZ/L)IO(Zﬂr/L)] ,
where Io and I, are the modified Bessel functions and we take the
parameter a as 0.2. Cosine of initial pitch angle is larger than
0.570 which is still smaller than the

0.577. The initial guiding center coordinate

before and is cosd)o

critical one, coswC
divided by the mirror length is rgO/L = 0.177. In this case, all
the particles have nearly the same guiding center and nearly the
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same magnetic moment Mo which is measured at their guiding center.
The parameter e ' is taken from 14 to 16.3. The corresponding
stability parameter is from 0.4 to 0.8. Figure 2 shows the number
of survival particles N(t) on logarithmic scale versus time. We
can identify two lifetimes which are defined by the inverse of the
slope. In Fig. 3, the escaping time on the initial gyrophases are
ploted. Figure 3 shows that in some regions of the gyrophase the
dispersion of the escaping time is large, while in other regions
it is small. Figure 4 shows the logarithm of two lifetimes for
each value of ¢ '. One can find that the two slopes are nearly
proportional to e”! in qualitative agreement with the WKB approxi-
mation for the tunneling model of R. K. Varma. The stability
parameter, in this case, 1is depicted by the solid line in Fig. 4,
so that Chirikov's model predicts only bounded oscillations of the
magnetic moment.

Summary of the Results

1) For particle of pitch angles not very close to the critical
value, substantial nonadiabatic loss occurs when stability para-
meter exceeds a critical value neafly equal to 3.

2) Dependence of the number of remaining particles at given time
on stability parameter is in good agreement with the diffusion
model with absorbing boundary.

3) Even if Chirikov's stability parameter is below unity, particles
of pitch angle very close to the critical value can escape from the
magnetic mirror by nonadiabatic effects.

4) In this case, multiple lifetimes (at least two) are observed in
accord with Varma's ensemble theory.
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Figure Captions
Fig. 1 Stability parameter (solid curve) and the number of survival

particles N(t = 200 Zﬂ/ﬂo) in the mirror (crosses: numerical
results, dashed curve: diffusion model with absorbing boundary)

-1
versus €

NI | -El ectronic Library Service



Nat i ona

Institute for Fusion Science

Fig.

logarithmic scale versus time for e

Fig.

2

3

The number of survival particles in the mirror in

1

14.4.

Dependence of the escaping time of each particle on the

initial gyrophase ¢0.

Fig.

150

-

Sant/ 27T

4

Lifetimes T for each e .

, 100

20

sof . ¢

i

1

NI | -El ectronic Library Service

500 . T i
N
100 T -
1o -
5o %0 100 150
Q.t/zqc
Fig. 2
T T L] s
50F 110
'E -\\\\ 1 I Ii
N
N [ 1
G 401 I I :
£ |1 [Nt L
= S 1
I 1
301 .1
14.0 150 160
€=, /v
Fig. 4



