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Abstract. In this paper we have studied the motion of charged particles in a di-
pole magnetic field on the Schwarzschild background geometry. A detailed ar.alysis
has been made in the equatorial plane through the study of the effective potential
curves. In the case of positive canonical angular momentum the effective potential
has two maxima and two minima giving rice to a well-defined potential well r.ear
the evert horizon. This feature of the effective potertial categorises the particle
orbits into four classes, depending on their energies. (i) Particles, coming from
infinity with energy less than the absolute maximum of V¢, would scatteraway
after being turned away by the magnetic field. (ii) Whereas those with energies
higher than this would go into the central star seeing no barrier. (iii) Particles
initially located within the potential well are naturally trapped, and they execute
Larmor motion in bound gyratir g orbits. (iv) and those with initial positions corres-
ponding to the extrema of V¢ follow circular orbits which are stable for non-relati-
vistic particles and unstable for relativistic ones. We have also considered the case
of negative canonical angular momentum and found that no trapping in bound
orbits occur for this case.

In the case when particles are not confined to the equatorial plare we have found
that the particles execute oscillatory motion beiween two mirror points if the mag-
netic field is sufficiently high, but would continuously fall towards the event horizon
otherwise.

Keywords. Charged particle orbits; black holes; pulsars; general relativity,

1. Introduction

Recent advances in x-ray and radio astronomy have revealed some very intercst-
ing structure of various x-ray and radio sources. Whereas the identification of
pulsars as rotating neutron stars (ter Haar 1972) is by and large considered estab-
lished, the suggestion that the cygnus X-1 may be an accreting black hole with
a companion giant star is still on the side of speculation and needs a more detailed
and careful analysis (IAU Symposium 1974).

The mechanism of radiation which constitutes the pulses observed from pulsars
is not well understood, while much less is known about the dynamics of accretion
of matter onto the black hole, which is suggested t0 be the mechanism of x-ray
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emission. One suggestion which seems most reasonable is that these radiation
emissions are due to plasma prccesses near such astrophysical objects like neutron
stars and black holes (Thorne and Novikov 1972, Zeldovich and Novikov 1973).
Most of these astronomical objects are believed to have strong magnetic fields
associated with them. Since these objects are quite massive (3> 1 M,) the gravi-
tational field associated with them should necessarily be treated general relativisti-
cally in the sense of considering the space-time curvature associated with them.
Hence it is most desirable to consider the dynamics of relativistic plasmasin the
presence of a strong magnetic field on the curved space-time of the central body.

With this study in mind we first consider the dynamics of a charged particle
in a dipole magnetic field on the curved background, of a non-rotating central
body without any charge. So far, no exact solution of Einstein-Maxwell equa-
tions has been found which is asymptotically flat, has non-zero magnetic dipole
moment, but zero total charge, zero total magnetic monopole moment and zero
total angular momentum.* However, rather than look for exact solutions, we
follow Ginzburg and Ozernoi (1964) and assume that the magnetic field energy is
small so that its effect on the curvature may be neglected in comparison with that
of the mass of the central body. As shown by the above authors, the background
Schwarzschild geometry modifies the components of the dipole magnetic field.
With this background, we study in this paper the motion of a charged particle
in the presence of the modified magnetic dipole field on the Schwarzschild space-
time, through the usual geodesic equations including the Lorentz force terms.

In section 2, we obtain the components of the modified electromagnetic field
tensor F;; on Schwarzschild background and in section 3 the equations of motion
are presented through a Lagrangian approach. Section 4 gives a detailed analysis
of the nature of the orbits in the equatorial plane through the study of the
effective potential curves and this is followed in section 5 by the actual evaluation
of few orbits in the equatorial plane as well as motion along the field lines. Finally
we have drawn few conclusions, which naturally suggest that in subsequent work
we shall consider the motion of the guiding centre (centre of the Larmor circle
for a particle gyrating in a magnetic field) on a curved background geometry which
is an essential step for considering plasma-processes.

2. Evaluation of field components

The background curved space-time is given by the Schwarzschild metric

-1
dst = —(1— 2{_") drt — st — resine 6 it + (1 —27) crae

(2.1

where m = MG/c?, M being the total mass of the sourcc. We assume a dipole
magnetic field which expressed in local Lorentz frame, has the components

2ucos
Fop = B, = 25— 1(),

*We wish to thank K S Thorne and W Kinnersley for a correspondence regarding this
question,
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. psin
Fion = By = —3 g (r),

F(r0) = B¢ =0, (22)

wherein p is the magnetic moment and f(r) and g(r) are two arbitrary functions
which shall eventually represent the curvature effects in the magnetic field. The

components of the orthonormal tetrad AS“) of the local Lorentz frame for Schwarz-
schild geometry are given by

o= (-1 e

!
W= rsing, A= (1 -—2~—m) (2.3

o

Hence the components of the electromagnetic field tensor Fy, defined in the
Schwarzschild frame through,

Fy =2 WP Fagy ' 2.4)
arc given by

2usint cos 0

F0¢ = ¥ f(l'),
2m\~? sin® (
For = p (1 — 7) —— &),
F,g = ~0. (2.5)

1n order to determine f and g, we now solve the Maxwell’s equations, which in
the absence of currents and charges are given by

Fi=0, Fyu+ Fu i+ Fy =0 (2.6)
Using the components of F,; as given by (2.5) and the metric components (2.1),
we get the equations

d g
~— 3 —————e | I 0’
L :

' (1-~g;$‘)
[0

dr r2

+¥_0 2.7

I

Ginzburg and Ozernoi (1964) have solved the same set of equations while consi-
dering the external field of a magnetic star and we take their solution as given

by
- a[n (- 2)+2( )]
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_ 2myt | ( _,3_”.". 1] 2.8
=4 (=) +am(1=F)+1]- @9

With these we have the non-zero components of F,; as given by

3, sin? 6 2Nl r 2m ( ___gﬁ)Vz
Fg = £ [(1_7 4+ —1In 1"7)+1]1 p

4m? m

3usinfcost 2m 2m m :
F¢H = —-—————-———‘“ A r- [111 (l —_— 7) + —}':" (1 _{_ r ] . (2'9)

Using the definition F;; = (4,;,— 4,,) for the vector potential 4, we can now
solve it from the components of F; and we get

A; = (0,0, 44, 0)
with

3psin®

2
Ay == T [/'3 In (l — 'in) -+ 2mr 21)12] . (2.10)

r

The above expression for the vector potential is obtained with the assumption
that the magnetic moment p is that of a point dipole situated at the origin
r= 0 rather than being distributed over the region of the central body. Petterson
(1974) has considered the magnetic field surrounding a Schwarzschild black hole
arising out of current loops around the black hole and he finds that the magnetic
dipole moment tends to zero as the radius of the loop shrinks to r = 2m. How-
ever, for the purpose of our consideration, viz., finding the orbits of the charged
particles, we shall keep away from the event horizon and shall determine the
trajectorics in the region r >2m. Our consideration may thus be better appli-
cable to a central body with radius > 2m rather than to a black hLole.

3. Equations of motion

The Lagrangian for the motion of a charged particle of charge e and mass M,
is given by

=1 {02 (L —2mfr) 12— (1 — 2mjr)-' F* — p2g2 — p2 sjn2 ¢ P2

Jep sin? @ | .
+ ELLAT:E%?* (r*In (1 —2mfr) + 2mr 4 2m?] ¢ } (3.1)

where an overhead dot denctes differentiation

: with respect to the proper time s.
Since the dipole magnetic field is axis

. . . ymmetric and the background geometry
1s spherically symmetric, we see that the Lagrangian is independert of the azi-

muthal i;oor.dinate 4> Furthermore, as both the fields considered are static, the
Lagrangian is also independent of . These two symmetries give rise to two

integral.s of motion, the canonical angular momentum % and the total energy K
respectively. We thus have corresponding to the coordinates ¢ and 1,




—ﬂ

Motion of charged particle in a magnetic field 233
3L qS =
.o dd  3eur?sin® 0 2m m
2 epr _ o7 vt —_— — —
risint o 4 — [m (1-2 ) +om(1+7 )] i
| (3.2)
and
b£=c(1_2_n_1 dz—K 3.3)
% )&=k (-3

The equations of motion corresponding to r and 8 coordinates are given by

d’r  m 2m\~tfdry: 2m\ ((dBN® | ., (dp\?
w i (=) (&) — (=) + smee ()
mcz(1 2m\ (dt\® e sin® ¢ [(1 m
T (ds) T 2M e m_r)

(=) 0-2) @) o0

46 2drdb d$\* _ 3eusinf cos
2% Tz —sinfcosd (7) = T T a
2 2
DG e

As the orbit equations involve transcendental functions, it is almost analytically
impossible to make any general analysis. Hence we resort to numerical integration
and get certain qualitative picture of the nature of the orbits for different values
of the physical parameters appearingin the equations. For convenience of calcula-
tions we shall consider the equations in dimensionless form by intreducing the
dimensionless quantities.

s )
p= "’:E’H:Flfz”\ AT (3.6

,
m T Mctm?

With these definitions the equations of motion read as:

d2p ] _____%_1 @2_2 L doy 2 - d¢2
w0 (@) — o ]-o=a[(@) +sme(®)]

- (-]

(3.7

a0  2dodd . dp\2 _ 3Asinfcos @

[n(=3)+ 20+ D)%) o
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% o2 sﬁﬁo [ (1_“)+ ( +1)] G-9)

and

—_— g -1 2 __ dp 2 dd ? 12 d¢ 2
1“(1_p) [K d)]—-p[%> + sin H(HE)] (3.10)
wherein we have used eq. (3.3) to eliminate dt/ds 1n (3.4) to get (3.7) and in
the metric (2.1) to get (3.10).

4, Motion in the equatorial plane
We first specialize to the case of the motion in the equatorial plane defined by

0 = m[2, d?[do = 0. From (3.8) we get (d%0/do?) = 0, showing that the particle
will be confined to the equatorial plane. Rest of the equations take the form

B30 () -] e a(2)
=3[+ G(-DIE). @

48 3[(1-2)+20+)

B+ 0=+ @] 9

It can be easily verified (with some algebra) that the energy expression in (4.3)
is an exact integral of (4.1), and thus we can confine our attention to eqs (4.2)
and (4.3). Substituting for d¢/do from (4.2) in (4.3) we get,

(2 (DD ()
+3+9)) oo

This equation wherein the angular momentum term d¢/ds has been eliminated
in favour of the canonical angular momentum, H, expresses the effective energy
conservation along the p-direction and may be written as

do\?
K2 dﬁ' i Veft (4 - 5)
with

= (=D r B R (-2 + 20+ DY)

(4.6)
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as the ‘effective potential’ in which the effective motion in the p coordinate
occurs, The “turning points > of the motion are given by dp/de = 0. At these
turning points dp/do will be real only if

£ (1— %) (4.7)

Since we are concerned with the motion for p > 2, this inequality is trivially
satisfied for particles with K> 1. For K < 1 on the other hand we should have

2 _
p< m (4.8)

i.e., for non-relativistic particles we should consider only those turning points
which lie in the region

2 < _2.___
p< (I — K¥)’ (4.9)
The character of the motion in the p-coordinate is determined completely by the

effective potential V. To begin with we can consider the following limiting
behaviour of V.. For very large p, we can expand the logarithmic term and we

get
2 B
Ve =(1*—>(1 T T )
p p

> (1-2) (4.10)

P

Hence .t Vi = 1.

p-»o0

On the other hand the behaviour of Vi, in the close neighbourhood ofe ~ 2
is governed essentially by the behaviour of the term (1 — 2/p) [ln (1 —2/p)]2 and

this tends to zero as p-»2. Thus we have L V=0, It is indeed very
p->2

interesting to see that even though the magnetic field components tend to infinity
logarithmically as p —2, the effective potential tends to zero as p~>2. In order
to consider the behaviour of V¥, in general we first consider the extrema of the
function V., which we have tabulated intables (1) to (4) for H > 0 and tables
(5) and (6) for H< 0, for different values of 2.

Case 1: H>0

We have found that in general there are two maxima and two minima the inner
maximum (Kj;) minimum (K,,;) staying close to p = 2, whereas the outer mini-
mum (flat) lies very far away roughly at p ~ H® We have presented in tables
1 to 4 the values of these extrema and their corresponding p values. It is impor.
tant to notice that the two maxima move up and down as the values of H and
A vary. Figure A presents a typical plot of Ky, Kyand K, against H fora
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‘Table 1. H > 0. A = 27-5.

H K My Prry K. my Pmy KM2 oM, Km,

17-6954 6-13 2-056 0-60 3-11 1-77 6-11 0-9984

21-2344 5-85 2-050 0-55 288 2:-22 5-52 0-9989 444
24-7735 559 2-045 0-51 2-71 272 5-11 0-9592 607
31-5458 5-12 2-037 0-45 2-50 3-76 4-62 0.-9995 989
34-4136 4-93 2:034 0-42 2-43 4-22 4-47 0-9996 1179
41-1247 4-52 2-028 0-37 2-32 5-35 4-21 0-9997 1686
70-7816 3:10 2:012 0-23 2-11 10-63 3-68 0-9999 5005
81-2964 2:72 2-009 0-20 2-08 12-57 3-58 0-9999 6605
99-5468 2-17 2-005 0-15 2-05 15-97 3-47 0-5999 9905

K2 = Vy. M = Maximum; m = minimum.

Table 2. H >0. A = 50.

H KM1 P, Km,_ Py KMa PM, ng PrM,
17- 6954 12-38 2:072 0-74 4-33 1-39 8-86 0-9984 302
21-2344 12-06 2:068 0-70 3-89 1-70 7-72 0-9989 441
24-7735 11-76 2:064 0-66 3-57 2-07 6-97 0-9992 604
31-5458 11-19 2:057 0-60 3-16 2-89 6-04 0-9995 987
34-4136 10-97 2-054 0-58 3-03 3:27 5-77 0-9996 1177
41-1247 10-45 2-048 0-54 2-81 4-22 5-28 0-9997 1684
70-7816 8-46 2-030 0-39 2-36 8-98 4-28 0-9999 5005
81-2964 7-86 2-025 0-35 2-28 10-75 4-10 0-9999 6604
99- 5468 6-91 2-019 0-30 2-19 14-02 3-89 0-9999 9905
Table 3. H > 0. A = 100.

H I<M1 Prr; Km; Pm,y KM, PM, sz Py
17- 6954 26-40 2-084 0'85 7:04 1-13 15-37. 0-9984 307
21-2344 26-06 2-081 0-82 6-17 1-28 12-83 0-9989 445
24-7735 25-72 2-079 0-80 5-53 1-47 11-21 0-9992 607
31-5458 25-10 2-074 0-76 4-70 2-00 9-27 0-9995 981
34-4136 24-34 2-073 0-74 4-44 2:24 8-71 0-9996 1179
41-1247 24-24 2-068 0-71 3-98 2-92 7-72 0-9997 1686
70-7816 21-77 2-053 0-58 3-00 6:66 5-65 0-9999 5003
81-2964 - 20-96 2-048 0-54 2-83 8-18 5-29 0:99G99 6602
99-5468 19-64 2-041 0-49 2:62 10-98 4-85 0-9999 9903
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Table 4. H > 0. A= 250.

H KM1 Pu, Km, Pm, KM2 Pu, ng Pm,
17-6954 63+ 60 2092 0-93 1502 1-012  38-81 0-9985 330
21-2344 63:25 2-091 0:92 12:96 1-046  29-69 0-9939 463
247735 67-89 2+090 0:91 11-42 1-101  24:72 0:9992 624
31-5458 67-22 2:088 0:89 9-37 1-278 1930 0:9995 1000
34:4136 66-94 2:087 0-88 8-73 1-381 17-78 0-9996 1192
41-1247 66°29 2-085 0-36 757 1-683 15-18 0-9997 1606
70'7816} 6348 2+-076 0-79 5-07 3-802 9-88 0-9999 5009
81-2964 62-52 2:073 0-75 4-62 4-773 8:96 0-9999 6608
99+5468 60-88 2-070 0-73 4-05 6-698 7:80 0-9999 9908

Tabhle 5.
A=275 A =50
)

H Ky Py K Pm Ky 17 Km Pm
—17-6954 9:80 217 0-9984 315 16-03 213 0-9984 318
—21-2344 10:27 2-19 0:9988 452 1645 2:14 0:9989 455
—24-7735 10-76 221 0-9992 614 16-88 2-15 0-9992 617
—~31-5458 11:74 2:25 0-9995 995 17-74 217 0:9995 997
—~34-4136 12-17 227 0-9996 1184 18-11 2:18 0-9996 1185
—41-1247 13-23 2-32 0-9997 1690 19:01 2:20 0-9997 1692
—70:7816 18-31 2-50 09999 5008 2341 2:30 0:9999 5009
—81-2964 20-21 2:55  0-9999 6607 2510 2:34  (-9999 6607
—99-5468 23:56 2+61 0-9999 9907 28-12 2:41 0:9999 9908

Table 6.
X =100 A =250

H Ky Py K, Pm . K Py K P
—-17-6354 30-04 2-115 0-9984 326 72-25 2-104 0:9985 349
—21:2344 30-44 2:118 0+9989 462 72:62 2:106 0:9989 481
~24:7735 30-83 2122 0-9992 623 73-00 2:107 0-9992 640
—31:5458 31-61 2-129 0-9995 1001 7373 2+109 0:9995 1015
—34-4136 31-94 2+133 0-9996 1190 74:04 2:110 0-9996 1203
—41.1247 32-74 2-141 0-9997 1695 7477 2:113 0-9997 1706
-70-7816 36-48 2-182 0-9999 5011 78-10 2:126 0-99599 5017
—81-2964 37-90 2-199 0:9999 6610 79-31 2-131 09999 6615

—99-5468 40-46  2:229  0-9999 9909 81-46 2139 0-9999 9914
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Figure A. Piots of V, maxima and
Vi minimum against the canonical
angular momenwum X, for the value of
A = 50. This is a typical plot and tables
1 to 4 for H > 0 and tables 5 and 6 for
H < 0 show the actual behaviour of Veer
extrema which for a fixed A would show
the same trend as above.

given A. As may be seen Ky, is a monotonic decreasing function of H whereas
Ky, is monotonically increasing with H. There is always a value of H for which
the two maxima are equal.

From the appearance of the extrema we can see that there are five sections
for the curve Vi vs p. Since we have seen that ¥, — 0 as p — 2, the function
starts (i) increasing to the inner maxima very close to p = 2, (ii) falls sharply
to the minimum; (iii) then increases towards the outer maximum and then (iv)
starts decreasing towards V,, = 1. (v) Very far from the source, V. dips below
the value 1 to reach the outer minimum and finally tends to 1 asymptotically,
as (1 -——2/p)

We give here in figures 1, 2 and 3 a few plots of V,,, vs p for a few typical
sets of values of H and A. In view of the scaling difficulties the inner maximum
and the, . outer minimum are not represented. As can be seen from the curves
sections (u) and (iii) represent the potential well. From figure A we have seen
that for a given A as H varies the two maxima vary and they are equal for a
certain value of H. This H obviously corresponds to the value when the poten-
tial well has a maximum depth. From the structure of the potential curves it
may be seen that there are four different classes of orbits for the particle.

() Highly relativistic particles with K2 greater than the absolute maximum
of Vyr(e.g., K= 17, H==17-6954, \ = 27 5) coming from infinity finds no barrier
and plunges straight into the central star.

() When K, is absolute (e.g., A = 30, H = 24-7735) particles with energy
such tha:t Kys < K<< Ky, have only unbound orbits as they would have only
one turning point (A = 30, H = 247735, K = 5). On the other hand, particles
with 1 < K < K, will have four turning points, of which the outermost corres-
ponds to the unbound,orbit, whereas the next two correspond to the envelopes.
of a gyrating orbit. Thus a particle coming from infinity with such an energy
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Figures 1, 2, 3. Plots of V.
vs p for three different values
of H >0, for three different A.
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would turn back whereas those initially positioned at a value of p corresponding
to the interior of the potential well, will gyrate in tightly bound orbits, i.e., execute
Larmor motion (figures 5 to 8).

(iii) When Kp, is absolute (e.g., A = 30, H = 70" 7816) particles with Ky, <
K < Ky, will have only unbound orbits whereas those with K such that 1 < K
< Ky shall have unbound orbit if it is coming from a far distance and bound
orbit (Larmor motion) if it is inside the potential well (figure 9).

In both the above cases we thus have particles trapped around the central star
if they have right type of energy and initial position.

(iv) Finally we have circular orbits corresponding to the extrema of the potential
curve, the ones corresponding to maxima being unstable and the ones corresponding
to minima being stable.

For a given value of H, as A increases the potential curve flattens out, as the
inner maximum rises and the outer maximum diminishes reducing the possibility

of the particle trapping. In fact this feature may be qualitatively understood
from the expression for de/do,

£330+ )

which has to go through zero for gyrating orbits. Since the contributions from the
H and A terms are of opposite sigas, fixing H and increasing A arbitrarily, natu-
rally reduces the passibilities of dp/do becoming zero for lower values of p.

As mentioned in the beginning one finds from figure A that there is a certain
combination of H and A when the depth of the potential well is maximum for
waich combination the particle trapping is maximum.

Case 2: H< 0

Tables (5) and (6) show that thereis only one maximum which is close top = 2
and a flat minimum very far from the source. In this case, however, we have
no trapping of particles in gyrating orbits as is clear from the expression for
dp/do which can never be zero (dgp/do is always negative). Figure 4 gives the
plot of Vyr vs p which of course does show neither the maximum nor the
minimum due to the scaling difficulty, Thus particles with very high energies-
would go into the central star and those with energies K< K, would scatter after
being turned away by the field. As in the case of H > 0, there are circular orbits
waich are stable for nonrelativistic particles with K = K, < 1, and unstable for
relativistic ones with K= K, > 1.

In general, the behaviour of the effective potential seems to be some kind of
a combination of that in a pure magnetic ficld and in a pure gravitational field.
In particular, the behaviour at large distances (for not too high magnetic field)

s:ems not surprisingly, similar to that of particle motion in a pure Schwarzschild
space-time Ve A 1 —2/p 4 H%p? as the outer minimum occurs at p ~ HZ.
On the other hand, the first potential minimum close to the event horizan is
characteristic of the gyrating orbits of particles in a pure magnetic field.
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Figure 4. Plot of V. vs p for three different values of H <« 0. There is no potential well
and thus no trapping of particles. The behaviour is just the same for other values of A too.

5. Numerical integration of orbit equations

We next consider the numerical integration of the equations of motion to deter-
mine the precise forms of trajectories. The initial conditions for such an inte-

gration have to be appropriately chosen. We thus consider briefly the manner
in which these initial conditions are picked.

Case (a): Equatorial plane

The equation to be integrated are those given by (4.1) to (4.3). For this we
need initially, apart from the values of the physical parameters, K and A, the
velodities (dp/do), (d¢/do), and the initial position p, and ¢,. In the case of bound
orbits, since the particle executes Larmor motion, we should have dé/do = 0 at
some p = p,. We thus choose initially (dé/do), = 0 at p = p,. This gives us from

.2) |

- {u(=2) 2+ 1) o
and

(gfé)o = VEE=TF % (5.2)

from (4.3). Thus now specifying A, K, p, and ¢, we have all the necessary initial
values. We choose always ¢, = 0.

We have considered a number of cases but presented a few typical cases here
(figures 5 to 9). We find that fora given A, as the initial position tends closer
to the event horizon the Larmor circle gets smaller and flatter inside. This
feature is probably due to the effects of curvature on the magnetic field.
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A

K*3, A=30, R=21, ‘H=81-2064

K=2, A=100, [53, H=70-7816

Figures 5, 6, 7, 8, 9. Equatorial plane view
of the orbits of a positively charged particle
in a dipole magnetic field on the. Schwarzschild
background, the magnetic field itself being
modified by the curvature of space-time. ‘The
various physical parameters are indicated in the
figures. The turning points which correspond

to the envelopes of the gyrating orbits are as
follows:

(5) Patn = 2°562 ppax = 4:560, (6) pmin =
2:300 ppgx = 2- 829 (7) pain = 3-526 ppax =
4-987, (8) pmin == 2834 ppax = 3¢ 220 ) Pmin

= 20023 ppex = 2-195.
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Motion of charged particle in a magnetic field -
Case (b): Motion along-the field lines -

In order to consider the motion along the field lines we need to consider the 0
motion as well. We have to integrate the system of eqs (3.7) to (3.9). For
initial conditions we again choose - .

(%%)0 =Oat'P=.}.°o;90=7T/2.A” SR | e (5.3)
so that we have B 3 |
_ .3/\p3 2 ; 3 (1 . J ] L 54
H=—=3 [ln : p,o)_{”po ' +P)o : ¢4
and : :
dp 2___. 2 . ._,,2__ 1 2(€Z_8__ 2} . 5.5
(% 0 _--K (1 Po) { T e do‘o) ) (3:3)

We need to specify (dd/do), or (dp/do),. From (5.5) we get for (dp/ds), to be
real, the condition on (df/dc), to be
di\?2 K? 2\ 1
(d&)u < [P02 (1 Po. Po:z : (5~6)
Thus specifying A, K, p, and (dd/ds), say, we can integrate the system of
€gs (3.7) to (3.9) and obtain the orbits. Figure 10 presents a typical casc of the
motion along the ficld lines, As may be seen from the figure, the features are
essentially same as in the cass of a pure magnetic field in that the particle gyratcs
in a given tube of lines reflecting between two mirror points, if the magnetic
field is sufficiently large, and the initial veclocity in the direction small. When
the magnetic field is lowsr, the particle oscillates up and down the 6 = «/2 plane
for a while till the p value reaches a certain minimum at which the particle moves
continuously towards the central star. However a more general analysis has not

K=2,12100. Py=3, (42),=.3,uer0.7%

Figure 10. Projecticn of the (p, 8) motion of positively charged particle indicating the e
tlon at mirror pointsy the particle executes an oscillatory motion characteristic of the moticn
in a magnetic field,
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been possible in this case as we did for the case of motion in the equatorial
plane.

6. Conclusions

We have found that the presence of a magnetic field on the Schwarzschild geo-
matry alters the character of the motion considerably. The orbits which are
spiralling in the purely gravitational case are now turned around by the magnetic
field (as in the nonrelativistic case) and are thus stopped from spiralling in or out,
and are trapped in a region of the r-space determined by the radius of gyration.
In this sense the magnetic field seems to stabilize the originally unstable orbits.

The character of the motion in the combined gravitational and magnetic field
is determined essentially by the behaviour of the effective potential ¥, as a func-
tion of r as discussed in section 4: As shown there the presence of the magnetic
field results in an additional potential minimum bounded by two maxima. The
trapping of the particle in this potential munimum corresponds to the gyration
of the particle in the magnetic field. The positions of the maxima correspond to
unstable circular orbits, while that of the minimum, to stable circular orbits.
At large distances from the central body the effective potential approaches that
due to the pure gravitational field because the magnetic field decreases faster than
what the gravitational field does. Even though the effective potential tends to zero
as r—>2m the fact that the components of the electromagnetic field tensor go
to infinity invalidates the weak field formalism at the event horizon.

As already pointed out, the determination of the orbits in the combined mag-
nstic and gravitational field is a first step towards the study of plasmas under
these conditions. Discs of plasmas have been considered around condensed objects
to provide a model for radio objects for x-ray sources and for pulsar radiaticn

mechanism. A more systematic study of the plasmas in these situations need
to be carried out than has hitherto been done.
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