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Abstract. In this paper, we provide an overview of the use of formal
methods in the development of safety critical systems and the notion
of safety in the context. Our attempt would be to draw lessons from
the various research efforts that have gone in towards the development
of robust/reliable software for safety-critical systems. In the context of
India leaping into hi-tech areas, we argue for the need of a thrust in the
development of quality software and also discuss the steps to be initiated
towards such a goal.
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“If only we could learn the right lessons from the successes of the pasl,
we would not need to learn from our failures”

C.A.R. Hoare

1. Introduction

Historically and traditionally (Simon 1969) it has been the task of the science dis-
ciplines to teach about natural things: how they are and how they work. It has
heen the task of engineering schools to teach about artificial things: how to make
artifacts that have desired properties and how to design. Webster’s dictionary de-
fines engineering as “the application of scientific principles to practical ends as the
design, construction, and operation of efficient and economic structures, equipment
and systems”. By this definition, Computer Science can be viewed as engineering
with the “design of programs” as one of the principle activities. Like many other
professions, design happens to be the core of the engineering profession. It is sur-
prising that one does find a discipline that could be called “philosophy of design” as
a counterpart to “philosophy of science” —a well established discipline traditionally.
As Herbert Simon argues, that the emergence of the activity of “Design of Pro-
grams” in computer science (usually termed Software Engineering) has also paved
the way for “The Sciences of Design”. The major aim of software engineering is to

* An earlier version was presented as an Invited paper at the ISRO Conference on Software
Engineering, VS8C, Trivandrum, 29-30 July 1994.
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direct the enormous resources of computational power on the silicon chip to the use
and convenience of mankind.

Metaphor and analogy can be helpful, or they can be misleading. All depends
on whether the similarities the metaphor captures are significant or superficial and
ignore the underlying reality. As it stands, significant amount of research criteria
for Computer Science has been borrowed from adjacent disciplines of Science, par-
ticularly Mathematics. For instance, in mathematics novelty and consistency are
the main criteria for measurement of relevance or success rather than applicability®.
The analogy between programming and traditional engineering disciplines has been
very fruitful, and has provided the much needed basis and advantages. However,
there are fundamental differences between software and other technologies. Some
of the major differences arise due to distinct notions of complexity measures, anal-
ysis of reliability, usage of tools, standards etc. in software and other technologies
(Hoare & Jones 1989; Parnas et al 1990). In that sense, analogy between software
and other engineering disciplines breakdown on the following fronts (Hoare & Jones
1989; Parnas et al 1990).

e

1. Complexity measure: Software and hardware differ in the measures of com-
plexity, be it design, development or usage.

9 Methods of achieving reliability: It appears that we should not have any
difficulty in achieving reliability while designing software. The reasons are
that basic raw materials for programs (registers, bytes, disks, tapes etc.) are
almost unbounded and programs work in a controlled environment; there 1s
no need to worry about defective components, friction, unskilled labourers,
natural catastrophes like storms, carthquakes etc. This is not the case for the
following two main reasons:

(a) The most important way of achieving reliability in a product is testing
under extreme conditions (perhaps taking into account a factor of safety)
such as temperatures, pressure, voltage (essentially continuous variables)
ete. However, in the case of software testing there is no analogous pro-
cedure of testing; establishing that the program works for the boundary
values is no guarantee that it works for values in between. In some sense, : § :
the methods of extrapolation and interpolation that come to rescue in the “
traditional testing does not help at all as far as program designs are con- \l
cerned. Lack of continuily of behaviour with respect to input in the sense ‘

of the traditional engineering products adds an additional dimension to
the problems. -

(b) The discipline of software design is still immature and anyone who can |
type on a keyboard appears to have the impression that he/she can pro- 1‘
gram. This has led to an attitude that there is no need to pay due atten- |

10ne may recall a quotation from Christopher Strachey in connection with the setting of school Lo
at Oxford in 1974: “It has long been my personal view that the separaiion of practical and the- g
oretical work is artificial and injurious. Much of the practical work done in computing, both in T
software and in hardware design, is unsound and clumsy because the people who do it do not have
any clear understanding of the fundamental principles underlying their work. Most of the abstract
mathematics and theoretical work is sterile because il has no point of contact with real compuling.
One of the central aims of the Programming Research Group, as a teaching and research group,
has been to set up an atmosphere in which this separation cannol happen ..." .



- M‘T

L3

E

Software for safety critical systems 943

tion to the underlying mathematical abstractions. Design is developed
on the fly, without much careful analysis and review.

3. Modular structure: The notion of modules in engineering is more often used
in the sense of independent units spatially separated; that is, modules are not
likely to interfere in the functioning of other modules. However, the situation
differs when it comes to programming as there are no such spatial separations.
In fact, even assuming the best modular approach, such a separation may not
be possible due to efficiency considerations leading to practices such as code
sharing techniques.

4. Tools: A programmer has to use the tools such as compilers (for programming
languages), editors, environments etc. on which he does not even have a clear
understanding (perhaps, they may even have bugs!). Above all he has to deal
with software manuals which are more often than not highly unsatisfactory.

5. Evaluation: In spite of the fact that a large number of design methods have
been proposed and a large number of systems has been built and used, one
hardly finds evaluations that carefully demonstrate the success/failure of a
system or of a method used in designing a system.

This paper is an attempt to draw lessons from the various research efforts that
have gone into the development of reliable software for safety-critical systems.

The paper is organized as follows: Sections 2 and 3 provides overviews of formal
methods and reactive/real-time systems respectively; this is followed by a system-
atic method of designing reactive systems in §4. Section 5 discusses case studies in
the development of safety critical systems using formal methods followed by a dis-
cussion on the lessons drawn from the above experience in §6. Section 7 discusses
one of the successful paradigms for reactive programming, namely the synchronous
paradigm. In §8 we discuss the notion of safety in the design of safety-critical sys-
tems. In the concluding section, we discuss the steps needed to be taken in India
for the development of reliable reactive systems in particular and reliable software
in general.

2. Formal methods of software development

A method is said to be formal if it has a sound mathematical basis provided by its
specification languages. Its main function is to check the consistency/completeness
of the designers intentions and check whether it is realizable/implementable. It also
provides a means of verifying whether the implementation meets its requirements
and establish properties of the system without actually running the system. Oof
course, it is important that the method addresses the pragmatics of the designers;
in fact, the success of any method also depends on how successfully the method
addresses the various pragmatic considerations. Quite often, it is argued that the
use of formal (mathematical!) methods is mandatory for improving the quality of
software. The starting point for any formal method is the need for specification.
Some of the important reasons for the need of specification are:

1. Tt serves as a contract (Lamport 1983) between the user and the implementor
of the module. This serves to clearly articulate separate the following concerns:
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(a) Implementor: The implementor’s responsibility is to meet the require-
ments imposed by the specification. Thus, there is no need for the im-
plementor to know how the rest of the system works.

~(b) User: The user can use the module as a black box either in the use or
the development of programs using this module.

(c) Test: It precisely brings out testing criteria of the implerhentation.
2. As a communication afnong the implementors of the system.
3. Support the development of multi-version software. -

Most of the problems that arise either during the development stage or during the
use of a program can be attributed to inaccuracies, ambiguities and incompleteness
of the problem/solution. The use of mathematical (formal) methods of specification
guards against ambiguities and inaccuracies and a properly chosen method also
enables to overcome inconsistencies and incompleteness issues.

There have been a plethora of methods for the development of software. Principal

criteria used for the classification of software development methods have been (Place
- et all990):

1. Representation: The foremost task is to represent the designer’s intent. Vari-
ous representations are feasible based on:
(a) State-based/event-based specifications.
(b) Style of specification such as declarative or model-based.
(c) Abstraction features such as concurrency, nondeterminism.
(d) Handling properties such as safety or liveness properties.
2. Transformation: Having represented the intentions at some level, the next
task is: how do we transform the specification into another one that is more

detailed than the one we have already, preserving the correctness? This is a

very crucial step which also reflects largely on safety or the reliability of the
method. The questions one asks are: ’

(a) Does it support compositionality?
(b) Does it support rigorous® derivation?
(¢) Is the refinement (or reification) completely mechanical?
(d) Is there a pragmatic interface of the tools with the users?
3. Validation: This part corresponds to raising the level of confidence of the
system relative to an environment using various testing, simulation and ver-

ification techniques/tools. With reference to verification, questions such as
consistency, completeness, equivalence, safety and liveness become pertinent.

The methods can broadly be categorized based on the class of the underlying spec-
ification languages. Specification languages can be broadly classified as:

~ 2This is used to mean that it is not necessary to perform proof; however, if needed it could be
performed.
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1. Model oriented (Concrete types),
2. Property oriented (Abstract types), and

3. Type oriented (dependent types).

VDM, Z, Raise are typical examples of model-oriented languages; LARCH, ASL,
CLEAR, OBJ EML etc. are typical examples of the class of property-oriented
systems and Calculus of Constructions is a typical variety in the type-oriented cat-
egory. Further categorization is possible based on the support of programming lan-
guages/styles and paradigms such as object-oriented, concurrency, functional etc.
We will not go into details on 'he specification languages further in this paper.

VDM and Z have been in ingdustrial use for quite some time. VDM originated from
design methods to develop conicrete data structures from abstract specifications and
hence, supports directly development. On the other hand, Z supports development,
of requirement specifications: (discussed in the sequel) and thus, has properties such
as conjunction, disjunction and also negation for describing constraints. Schemas
in Z provide a pragmatic support for refining specifications. These formalisms have
been used for specifying large software systems. However, these formalisms do not
directly support features such as concurrency, communication features and also the
specification of liveness properties and time. Temporal logic based systems are
property-oriented systems and have the power to specify the hehaviour of systems
in a declarative way; consistency check can be achieved by building models which
corresponds to building finite state machines. 1t is here, many of the restrictions
appear. Even here, concurrency does not appear directly and “real-time” could be
added to arrive at various classes of real-time temporal logics. One of the difficulties
with these formalisms is the state explosion problem that one encounters when
dealing with finite-state formalisms. These formalisms have been widely used for
specifying requirement specifications. The lack of concurrency and the constraints
one needs to specify in the context of reactive systems has also lead to look for
formalisms, particularly algebraic so that one can do simulation and also arrive at
verification tools based on various notions of bisimulation. We discuss the latter
approach for the development of reactive systems in the sequel.

3. An overview: Real-time reactive systems

Computers are being increasingly used in a variety of applications ranging from
home appliances or laboratory instruments to process control systems, flexible man-
ufacturing, flight control and tactical control in military applications. In fact, their
use has become essential due to stringent service requirements and availability of
inexpensive hardware. For example, flexible manufacturing is a special kind of real-
time application where the behaviour of each manufacturing machine can be ad apted
instantancously to continuously changing working conditions while still satisfying a
global optimality eriterion. In flight control systems, real-time automatic mancuver-
ing is used for significant reduction of fuel consumption and also for tactical control
over the target. Needless to say that safety and reliability are extremely important
for such systems since a failure may result in economic, human and ecological catas-
trophes. The term Embedded sysiems (has been almost synonymous with real-time
systems) have become popular through Ada3. The term Embedded in Embedded

®Ada is a trademark of the US Department of Defense (AJPO).
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systems refers to the fact that these systems are embedded in larger systems whose
primary purposes are not general computations; the main purpose is to provide the
needed support to achieve the overall objective of the system. One of the com-
mon concepts that counter a majority of the process control embedded systems is
that of providing continual feedback to an unintelligent environment. The contin-
ual demands of an unintelligent environment cause these systems to have relatively
rigid and urgent performance requirements, such as real-time response requirements
and fail-safe reliability requirements. It seems that this emphasis on performance
requirements is what really characterizes embedded systems, and causes us to be
more aware of their roles in their environments than we are for other types of sys-
tems. Table 1 provides an informal classification of systems, based on properties
that show up at the requirements level.

Table 1. An informal classification of systems.

Type Characteristics Examples
Embedded systems e Special purpose ¢ Industrial process
(application) control systems
e Absolute performance e Flight guidance
requirements systems
Data-processing systems e Special purpose e Batch business
‘ (application) programs .
o Relative performance o Online data base
requirements systems
Support systems e General-purpose o Operating systems
o Relative performance o Software development
requirements tools

Systems such as airline-reservation systems should probably be viewed as a com-
bination of these types. In addition to the performance requirements, which-have
been already established as a major distinguishing factor, embedded systems -are
especially likely to have stringent resource requirements. These are requirements on
the resources (mainly physical in this case) from which the system is constructed,
This is because embedded systems are often installed in places (such as satelhtes)
where weight, volume, or power consumption must be limited, or where tempera—
ture, humidity, pressure and other factors cannot be as ca,refully controlled as in the
traditional machine room. ) ,

The interface between an embedded system and its environment tends to be com-
plex, asynchronous, highly parallel and distributed. This is another direct result of
the process control concept, because the environment is likely to consist of a num-
ber of objects which interact with the system and each other asynchronously n
a parallel fashion. Furthermore, it is probably the complexity of the environment
that necessitates computer support in the first place (consider an air-traffic-control
systemf) ‘This characteristic makes the requirements difficult to specify in a way
that is both precise and comprehensible.

Finally, embedded systems can be extraordinarily hard to test. The complexity of
the system/environment interface is one obstacle, and the fact that these programs
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often cannot be tested in their operational environments is another. It is not feasible
to test flight-guidance software by flying with it, nor to test ballistic-missile-defense
software under battle conditions.

Embedded systems are often used in critical applications where real-time /reactive
response is essential. The main characteristics of the embedded systems are sum-
marized below:

1. The primary purpose is to provide the needed support to achieve the overall
objective of the system rather than general computations.

2. The system tends to be large, complex and can be extraordinarily hard to test.

3. The environment that the system interacts with is nondeterministic. That is,
most of the times, there is no way to anticipate in advance the precise order
of external events.

4. High speed external events (perhaps in parallel), must be able to affect the
flow of control in the system easily-

5. The real-time behaviour must be controllable, e.g. the requests must be han-
dled within certain time limits.

6. The system is a coordinated set of asynchronous distributed units.

7. The mission time is long. The system not only must deal with ordinary situ-
ations but also must be able to recover from some extraordinary ones.

4. Design and development of reactive systems

The process of design may be viewed as an iterated transformation of a conceptual

‘abstract functional description through refined levels of description till the emer-

gence of an implementation. Between the concept and implementation (realization
of the concept in hardware or software given the physical resources), there can be
various stages such as-Service requirements, Functional requirements, Architectural
requirements, Performance requirements, Detailed Design etc. In fact, there is no
agreement about the precise meaning of a stage and also it is not really clear as to
where one stage ends and the next begins. However, informally one understands
the various ranges from concept to implementation, and we refer to each stage as a
specification. Assuming, one has a good view of customer’s/designer’s intents, the
following two stages (Pnueli 1986) generally play a vital role in the development of
systems:

1. Requirement specifications: This is perhaps the closest to the conceptual un-
derstanding of the problem (and thus, the earliest stage). In a sense, this
could be viewed as the basis for a contract between a customer who orders
the system, and a representative of an implementation team who is supposed
to construct the system. The important parts of a requirement specifications
are the static part, which identifies the interface between the system and its
environment, and the dynamic part, which specifies the behaviour that the
customer expects to observe on the identified interface. It may be noted that
the identification of the interface depends on various architectural issues. In
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short, the requirement specification concentrates on the observable behaviour
between the customer and the various components of the system without the
knowledge of the implementation (and hence, the internal structure) of the
components of the system.

2. System specifications: This has to achieve the “how” part from the “what”
part and the architectural considerations. It has basically the following con-
cerns: )

o Architecture of the system: The major concern here is to decompose the
system into a set of (hierarchical!) subtasks.

e Mapping the logical architecture into the physical architecture.
¢ Interactions among the sub-tasks.

In a broad sense, system specifications are almost executable. However, it may be
noted that a system specification need not represent an actual implementation.

If both a requirement (service) specification and an implementation specification
" have been constructed for a system, it is possible to validate the implementation
specification by confirming that it satisfies the service specification. This ability is
very valuable as the implementation specification is often quite complex and prone
to error, while the service specification is much shorter and simpler.

4.1 What’s the concern of requirement specification?

By specifying the minimum tequired externally visible behaviour, and leaving all
other aspects to lower levels of description, one can obtain a more general specifica-
tion that reflects the necessary requirements of the system. A specification that is
oriented towards one implementation may discourage or even preclude other equally
valid implementations. Thus, this stage can be viewed as capturing either the be-
haviour of the customer and the system as seen by an observer who can see the
components (customer included) as a black boz or the properties the system should
satisfy. '

In a real-world, it must be evident that when a system is being developed it is gen-
~ erally the case that the requirements would have to be augmented either because an
incompleteness was detected in the informal description of the customer/designer or
the mistake/unsatisfactory performance was detected after the system was designed.
Thus, the two most important concerns in this stage are

1. Consistency: A spectrum of examples can be seen where requirements contra-
dict each other (it could be in the safety requirements or between the safety
and eventual requirements). The consistency ensures that there is some exe-
cution model satisfying the requirements.

2. Completeness: The main concern here is: Does the stipulated requirements
ensure what the customer wants or the requirements have to be strengthened
to avoid undesirable behaviour?

Thus, logic-based formalisms would be appropriate for this stage. There have been
a spectrum of formalisms such as variants of temporal logics (Pnueli 1992) suitable
for this style. These logic-based formalisms provide a good mechanical support for
checking the above two properties (though the general problem is undecidable).




S

m."k

Software for safety critical systems 949

4.2 What’s the concern of system specification?

As mentioned already, the major concern of this stage is to arrive at a model sat-

isfying the requirements. That is, this stage provides an abstract model relative to

an environment satisfying the requirements. As it provides a model, it is necessary
for this stage to be concerned with abstract implementation operators such as non-
determinism, concurrent and hierarchical that are concerned with the architecture
the user has in mind for building the system. In other words, it is desirable that the
specification is executable and simulatable from which further custom-made imple-
mentations can be derived. By definition consistency does not play a role except
that one would have to ensure that there are non-vacuous domains of answers for
the system. It must be noted that it is not necessary that there should be one-to-one
correspondence between the requirements and the logical units of the system. The
property of completeness also does not play a role except at successive refinements
of the system specifications where some units may be omitted.

Traditionally, system specifications have been expressed as interacting state ma-

" chines; such an approach inevitably suffers from over specification as the state ma-

chines represent an implementation. If the application is such that only one imple-
mentation is envisaged, an implementation oriented specification may be acceptable;
but other applications, for example communication protocol specifications, envisage
many distinct implementations. Formalisms such as CCS, CSP (Hoare & Jones
1978), (Berry 1992) are some of the formalisms that have been used as successful
formalisms for system specifications.

4.3  What does verifying specifications mean?

The notion of verification of specifications largely depends on the language frame-
works used for writing specifications. It is usual to write specifications either in the
axiomatic or the algebraic frameworks. Frameworks used for writing specifications
can be broadly categorized into (Pnueli 1986):

1. Two language framework: This corresponds to the usual axiomatic specifica-
tion wherein one language is used for specifying the properties of the program
and another language is used for specifying the abstract model/the program
itself.

2. Single language framework: Here, the same language is used for specifying the -
properties as well as the model or the implementation.

Verification in two language framework: One of the widely used methods of captur-
ing the properties of the program are through state changes (Lamport 1983). As
usual hierarchical specifications forms the basis of mastering complexity. Thus, the
main question is to ensure that the lower level specification is a refinement of the
immediate higher level in an iterative manner. To make it more precise, consider a
specification at the lower level, say S; described as

S; : there exist state functions g1, -, g, such that By, ., B,
and a higher »lével specification S;_; given by,

Si-1 : there exist state functions fq,- -+, f, such that A;,---, A,
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To show that the lower level specification is a refinement of the higher level, we must
find expressions Fi(g1,---,¢s) such that each A} obtained from A; by performing
substitutions

fi — Fi(g1,- - 9s)

follows logically from the axioms By, - - -, B,. Now consider a still lower level speci-
fication

S;.1 : there exist state functions hy,:--, hy such that Cy,---,Cp
This can be shown to be a correct refinement of S; by finding suBstitutions
g; — Gj(h1,--, h)

which yield formulae B; that can be proved from Ci, -+, Cp. It follows that the
formulae A7 obtained from Ay by the substitutions

fi *—Fi(Gl(hla"')ht);"'1G3(h1:"')ht)) )

can be proved from Bi,---, B;,, which in turn can be proved from Ci, - - -, Cp. Thus,
by transitivity, it follows that S;+ is also a refinement of S;_1. Hence, if each layer
is correct, one can show that the lowest level of specification implements the highest
level of specification.

The crux of saying that the refinement is correct becomes simple (with little
leaps of intuition) when both the levels are assertions about the same model as
state refinements in that case can be structured appropriately to preserve the in-
lended intuitions. In case, the model on which assertions are made in the sequence
of refinements are not close to machine languages, then one has to establish that
there is a correct implementation of the language. It is here that a sound and a com-
plete semantics of the language plays a vital role. It is possible to use variants of
temporal logic (Lamport 1983) as the vehicle for specification (translation) at every
stage of refinement and to go down to the levels of concrete high level programming
languages or even lower level programming languages. For this purpose, one could
use the mechanical theorem provers to advantage. Thus, establishment of the cor-
rectness of refinement corresponds to proving that the lowest level of specification
implements every level in the hierarchy. ‘

Verification in single language framework: The basis of verification in this frame-
work is equivalence of programs or specifications. That is, one usually specifies a
simpler program and shows that the two programs are behaviourally equivalent.
The equivalence establishes that the implemented program behaves like the other
program; that is, it is as good or as bad as the simpler program. Thus, a refinement
relation J can be captured for a hierarchical sequence Py J Py,--- O P, moving
from the simplest naive specification to a concrete implementation P,,.

4.4 What style to choose?

It is evident from the above discussion that the two styles are complementary to
each other and both stages play a vital role in the design cycle. In fact, the two
stages play an important role irrespective of the language frameworks. In the context




- Software for safety critical systems 951

of two-language frameworks the distinction is apparent. In the context of single-
language frameworks the use can be seen if one visualizes the coarse level specifica-
tions/programs with which the fine-grain solution will be checked for equivalence.
For the success of the method of two stages it is important to choose an appropriate .
specification language for each stage. Let us now take a brief look at the choice of
specification languages.

The requirement specification essentially states what system is to be developed at
what costs, and under what constraints. In other words, it is used

1. as a vehicle of communication,
as a scope for modifiability,

to constrain target systems, and

Ll

for accepting or rejecting final products.

Thus, it is necessary that any candidate specification language for this purpose
should satisfy these requirements in general. From the point of view of (1)-(2), it is
clear that the language must be understandable and modifiable; the latter property
asks for the conjunctive property. From the point of view of (3), it follows that the
language must be precise, unambiguous, internally consistent, and complete. Fur-
thermore, the requirements specification should be minimal, i.e.; define the smallest
set of properties that will satisfy the users and originators. Otherwise, the spec-
ification may over-constrain the target system, so that some of the best solutions
to design problems are unnecessarily excluded. For instance, at this level there is
no need for the specification of nondeterminism and parallelism. Property (4) en-
forces the requirement of formal manipulatability (if verification is to be used) or
testability (if testing is to be used) on the specification language.

Linear temporal-logic based formalisms (Pnueli 1986) are conjunctive and satisfy
the needs for specifying the needed safety and eventuality properties to a large
extent. However, as temporal logic suffers from its orientation towards eventuality
rather than immediacy or quantization, one would have to use real-time temporal

_logic formalisms. Another important consideration in the selection of the particular

variant has been the availability of model checkers for the language on hand so that
one can attempt at automatic verification of properties of finite state systems.

For system specification purposes, abstract notations such as CCS, temporal logic
of actions, refinements of temporal logic and concrete languages such as CSP, Esterel
etc. are applicable. The choice will also depend upon how close the specification is
to be with respect to the implementation and also the type of verification and the
tools one would be interested for verification purposes.

4.5 Software maintenance and formal methods

The need for modifications to old programs cannot be under estimated. Some of the
changes are necessitated by the need to adapt the program onto another system,
the need to arrive at a new system with some changes (perhaps incremental) in the
specification of some of the components or discovery of errors. Often it is not possible
to write an entirely new program due to considerations of time and cost. It is here
the choice of the formalism, documentation and the ingenuity of the programmer
plays a crucial role. If the formalism chosen is comp/ositz'onal (or modular) then the

~
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task would be proportional to the changes required. At least if the programmer had
properly articulated (and documented!) those aspects of the program that could
perhaps be subjected to future modifications, then the task becomes manageable.
In fact, modifications indeed could be effected economically and reliably if one had
chosen proper mathematical (formal) method of development (Hoare & Jones 1986).
If the structure of the program P is the same as the structure of the specification
S, then it is sufficient to ensure that the modified component meets the modified
specification. But it is not always possible to preserve the structure of specification
in the design of the program. This is so because a specification is often most clearly
structured with the aid of such logical operators such as negation and conjunction,
which are not available in an implemented programming language. Nevertheless,
mathematics can come to rescue. If the program P has an approzimate inverse
P~ defined in the same way as for the quotient, then it is possible to calculate the

new proof obligation of the program. For details the reader is referred to (Hoare
1989).

4.6 Validaiion

Correctness is the process of establishing either the equivalence of two objects or
refinability of one object from the other. Thus, we can say that a system or an
implementation is correct if it meets the designers’ inlentions. Thus, unless the
the designers’ intentions are formalized, the notion of correctness becomes vacuous.
The notions of verification in the single- and two-language frameworks have been
already discussed in the previous sections. One of the important processes in the
development of a system is to show that the system indeed satisfies the Designer’s
intentions. This process is often referred to as validation. It must be noted that
Destgners’ intentions is not completely formal. Thus, validation is not a complete
formal process. Thus, for validating a system, one uses test scenarios and uses simu-
lation etc. For the latter, if the specification is executable (like system specifications)
then one can validate the system easily. It is important to note that the process

of validation is an informal process; the purpose is to ensure that the specification
conforms to the intents..

5. Case studies of formal methods in the development of
safety critical systems

In the following, we take a brief look at some representative industrial scale software
systems for which formal methods have been applied for design, validation, review
of the system. We briefly discuss the experience in the use of formal methods in
the design, development or review of large software systems in the context of the
following areas:

1. Railway Signaling Systems.

2. Nuclear Power Plants.

3. Aviation Control.

4; Medical Systems.
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The first example illustrates the study of the development of Paris Metro Signaling
system where formal methods were deployed right from the beginning and resulted
in substantial economic benefits. The second example illustrates the deployment of
formal methods for gaining the level of confidence in an already developed system.
The third example illustrates how a simple formal model aids in the understanding of
the design by engineers and users as well and thus, enables to remove inconsistencies.
The last example illustrates the need for a formal analysis of systems particularly
medical life-critical systems for gaining the confidence of regulatory agencies and.
users alike. Many other case studies have been reported by Gerhart et al (1994).

9.1  Paris Metro signaling systems

In the Paris Metro signaling system, formal analysis was used to determine that the
separation time between two trains on the Paris Metro system could be reduced from
2 minutes 30 seconds to 2 minutes while maintaining safety requirements. More
importantly, the successful deployment of the signaling system removed the need
for building a new third railway line, thus saving billions of dollars in costs. There
was a serious concern about the predictability and reliability of large amount of
software and the associated cost in testing the system exhaustively because of safety
considerations. This case study is a positive example of the major benefits to be
gained by the deployment of formal methods throughout the design and development
of the system. ' _

The developers started with Hoare’s method of proving correctness of programs
(note that the development of the system started in early 80’s!). Using this technique
three sets of proven software were developed. The question that arose was: Are these
seis consistent? Consistency of validated sets of software were approached as follows:

1. Top-to-bottom re-specification and refinement.
2. Bottom-to-top re-specification and verification.
3. Match the two at some level close to the code.

Such a revalidation by proof re-engineering validated both their method and design.
The tools used in the design and validation (revalidation) of the system were broadly
the verification-condition generators and the tools around the B Method (Abrial et
al 1991). '

The success of the project was not due to a particular methodology for formal
methods used or the advanced nature of tools deployed. Such methods and ap-
proaches are supported in most verification systems, and more advanced and pow-
erful theorem provers with sophisticated interfaces are already available. The impor-
tant message learnt was the value of combining formal methods with prototyping,
simulation and testing. From the point of view of the use of formal methods in the
development of software, the experience shows:

1. Formal specifications help developers understand the requirements clearly.
2. Formal methods play a major role in developing confidence in the system.

The experience of the case study has b‘een reused by the GEC Alsthom Transport
Corporation to sell similar related technology and expertise in other projects such
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as SNCF, France and Controlled Deceleration Control, Calcutta, India. In these
projects, the application of formal methods is viewed as a success, and the resulting
software is considered to be efficient and of good quality. Formal methods have now
become a part of the GEC Alsthom’s software strategy.

5.2 Darlington Nuclear Generating Station

In contrast to the Paris Metro signaling system in which formal methods were used in
all stages of the design and development, the Darlington case study is an example to
show how the formal methods helped in enhancing confidence in the functionality of
a system that was developed without using any formal methods. This suggests that
formal methods can be useful in analyzing an existing design and implementation,
a kind of reverse engineering.

The Darlington station is a four-reactor nuclear plant in Toronto, Canada. The
reactor had two fully computerized shutdown systems; the first one drops neutron-
absorbing rods into the core; the second injects liquid poison into the moderator.
The systems are safety-critical and require high levels of confidence. The shutdown
system had been designed and developed using conventional software engineering
practices. It had gone through unit testing, integration testing, validation testing,
in-site trajectory-based random testing, software assessment, and software hazard
analysis. However, the review of the software before licensing uncovered discrep-
ancies and raised doubts as to whether the software implemented the requirements
correctly. There were also some ambiguities and doubts about the requirements
themselves. Since this was the first such system using computerized shutdown sys-
tem, the Atomic Energy Control Board of Canada was not willing to grant the
license to operate the plant because of these doubts about the reliability of the
shutdown systems.

Each month’s delay in getting a license was costing Ontario Hydro $20 million in
interest payments for the whole nuclear generating station. The Ontario Hydro was
not keen on redesigning the software, and in order to reduce the licensing impasse,
a compromise was reached. The shutdown software was to be formally inspected:

1. Formalize informal requirements by generating specification tables.
2. Use the existing code to develop program-function tables for it.
3. Demonstrate that the code is consistent with the specifications.

In other words, the approach was primarily a reverse-engineering exercise, in the
sense that code already existed when the formal specifications were written. The
method called Software Cost Reduction(SCR) originally developed at the US Naval
Research Labs was adopted for the inspection.

The above three steps were done by three independent teams. Deriving specifi-

cations from informal requirements consisted of arriving at mathematical formulas -

which would show the effect anticipated; deriving program—function tables corre-
sponded to arriving the effect of code procedures. Most of this analysis was done
by hand; proofs were done by hand with little use of automated tools. Microsoft
Excel was used to produce these tables. Finally, the proof of consistency consisted of
manually comparing the specification and program-function tables, and transform-
ing the tables. The last team also reported the discrepancies to the other two teams.
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The experience of gaining confidence through such anl approach was felt worthy by
the developers. The main lessons learnt can be summarized as follows:

1. The analysis of requirements clarified the specifications and removed some
safety-related ambiguities. In partieular, it became easier to understand the
operational behavior.

2. Without the formal methods, there would have been no proofs of correspon-
dence between specification and program-function tables. The formalisms be-
came handy in the review extensively and raised the level of the confidence of
the system. It also helped identify some problems with timings.

The result of thmscser cise was that the Atomic Energy Control Board of Canada
felt more confident in granting opwsational license for the plant.
5.3 Aviation control systems

The third case study concerns the Traffic Alert and Collision Avoidance (TCAS)
system being developed by the US Federal Aviation Administration (FAA). All
aircrafts having more than 30 seats are mandated to have such a system installed
to avoid midair collisions. The goal has been to develop requirements and design
of TCAS Logic and TCAS Surveillance, which is to provide traffic advisories and
recommend vertical maneuvers in the event of an impending collision.

~ There existed a natural language specification of TCAS which included a pseudo-
code description of CAS Logic. In 1990, FAA and others had become concerned:
about the informal requirements specifications especially because errors had been
uncovered through the simulation of the pseudo-code; the specification had to be
revised quite a few times. FAA wanted to further clarify the TCAS requirements
and obtained improved confidence in the system.

The TCAS methodology is directed at process-control systems designed to main-
tain an acceptable relationship between a system’s inputs and outputs in the pres-
ence of disturbances to the process. Leveson (1986) and her students at University
of California, Irvine, have developed a notation based on Harel’s Statecharts for
specifying such systems. At the beginning, they wrote most of the specifications
of TCAS, and domain experts reviewed them, but later the domain experts took
over. The experience shows the the Statechart-like specification has made it easy
to specify the transition logic/of the TCAS subsystems and has provided a good
satisfaction and a comprehension of the specifications for the designers. Engineers
and others not trained in formal methods can review and modify the specification.
In particular, the use of formal methods eliminated the development of an informal
natural language specification.

9.4 Medical therapy systems

The increasing use of medical instruments for life-support and life-critical systems
has made it necessary to ensure a high degree of dependability /reliability. In fact
the regulatory requirements from agencies like US Food and Drug Administration
has made it mandatory for software developers to establish the safety not only of
the software being designed but also establish the safety of the software that has
already been developed.

T R s D
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In (Mojdehbakhsh et al 1994), a retrofitting software safety analysis is developed
for implantable cardiac-rhythm-management systems. The developers and the cus-
torners were convinced that the formal analysis successfully identified and mitigated
numerous software-safety faults and eliminated several hazards. Some of the safety
faults that had been undetected by the reliability analysis (essentially, done through
the system fault-tree approach) has been captured through such an analysis.

The use of formal specifications (Ladeau & Freeman 1991) in the development of
a bedside instrument used to monitor vital signs in patients in intensive care units
and operating rooms has shown the uncovering of several problems and ambiguities
in the informal product specification. Several other successful applications have
been summarized by Bowen & Stavridou (1993).

6. What have we learned from the use of formal methods?

In this section, we briefly discuss the feedback from the experiences in using for-
mal methods in the development of safety critical systems (Kapur & Shyamasundar
1994). The use of formal methods is pivotal in the design, development, and main-
tenance of complex systems. They also form a good medium for review and reverse
engineering. However formal methods cannot and should not be viewed as a sub-
stitute for identification and use of good abstractions relevant for the application
domain. It is the proper use of appropriate abstractions that leads to good de-
sign, structure and implementation of complex systems. Selection and deployment
of relevant abstractions can also reduce the cost and increase the effectiveness of
formal methods. In fact, formal methods can be used to assess the selection of
appropriate abstractions; a simple case of specifying transitions in the TCAS using
predicate calculus has made the specifications more comprehensible to engineers and
lon-engineers. .

Formal methods are likely to be most cost-effective and have a bigger payoff
when used in the earlier stages of the system life-cycle. In the later stages of the
life-cycle, the use of formal methods is expensive and time-consuming. It is thus
more economical to apply formal methods to specifications and designs than to
programs. There are at least two reasons. Firstly, sooner the mistakes and errors
are found in a specification, better it is in terms of cost effectiveness and avoiding
delays in completing a software project. According to Fairly (1985), it is 5 times
niore costly to correct a requirement fault at the design stage than during the initial
requirements, 20 to 50 times more costly to correct it at acceptance testing, and 100
to 200 times more costly to correct the problem once the system is in operation.

Studies show that almost all accidents involving computerized process-control
systems are due to inadequate design foresight and requirement specifications, in-
cluding incomplete or wrong assumptions about the behaviour or operation of the
controlled systems, and unanticipated states of the controlled system and its envi-
ronment (Leveson 1991). In 203 formal inspections of six projects at JPL, Kelly,
Sherif and Hops found that requirement documents averaged one major defect every
three pages (a page is 38 lines of text) compared with one every 20 pages for code.
‘Two-thirds of defects in requirements were omissions (Rushby 1993). Similar expe-
rience is reported from the space-shuttle, Voyager and Galileo-projects at NASA.
The need for reliable, correct specification cannot be overemphasized.

Secondly, specifications and designs are high-level and can be described function-
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ally where formal methods can be applied nicely and efficiently. There is a need for
testing specifications to enhance designer’s confidence in them and ensuring that
specifications have the desired structural properties. Concentrating on consistency
and completeness at higher levels of specification goes a long way in the realization
of quality software. It is to be noted that several automated tools of deduction are
indeed available for this purpose presently.

It was increasingly felt in most case studies that formal requirement and design
specifications are essential. They not only assist in early discovery of incomplete
and ambiguous specifications, they lead to clarification, crystallize incompatibilities
in understanding of the clients and designers thus resulting in better comprehension
of client’s informal requirements and gains in assurance. The recent work in the
context of TCAS and Paris Metro Signaling System is an indication of that.

A new programming paradigm called synchronous paradigm (Berry & Gonthier
1992) has provided a good basis for programming reactive systems: some of the lan-
guages based on this paradigm are Esterel, Lustre, Signal, aud Statecharts. Esterel,
one of the earliest languages of this family, has a highly sophisticated environment
for design and verification. A striking feature of this system is that the the verified
program and executed program are almost the same. Such a property makes it
possible to have high levels of confidence in the verification done through the tools
based on bisimulation. This paradigm will be further explored in the next section.

Formal methods are somewhat more difficult and cumbersome to apply to pro-
grams because of having to deal with state and state change. At this stage, one can
rely on testing, validation tools and function /procedure tables. Program verification
is most advantageous for (i) safety-critical kernels whose ultra-reliability is crucial
for the behavior of the rest of the system, and (ii) for hardware chips whose behav-
lor can be described functionally. For an overview of the use of theorem proving in
software design and related issues, see (Kapur ef al (1992) and Kapur (1993).

It should be possible to integrate formal methods to existing software engineering
practices in a smooth manner thus enhancing the confidence in software engineering
methodologies. Formal methods are most productive and effective when they are
combined with other techniques such as prototyping, simulation, verification and
testing,

Although having access to automated tools for using formal methods such as the-
orem provers, simplifiers, etc., would be handy, most studies seem to suggest that
formal methods can be used without much automated support. In‘fact, in most
industrial case studies, automated support was available mostly for type checking
and syntactic correctness. Given that theorem proving technology has substantially
developed over the past two decades, integration of powerful theorem provers and
proof checkers could go a long way in mitigating some of the work involved in doing
proofs. In the Darlington case study discussed earlier, all tasks {(except for doc-
umentation) were performed manually, because of which the process of formally
inspecting the already developed software became very labor intensive; it was esti-
mated that 35 person-years of effort was expended on the walk-throughs! If there
were tools available to perform automated reasoning for walk-throughs as well as to
record dependencies among programs through their function tables, the time taken
to perform walk-throughs would have been considerably reduced thus saving consid-
erable money. For a discussion of how theorem proving technology should be further
advanced for making it better suitable for software design, see Kapur (1993).
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Regulatory agencies also appear to be satisfied with the use of formal methods for
gaining assurance in product development even if it is not developed using formal
methods. This is a kind of reverse engineering where formal methods are used to
assure the regulators that software did what it was supposed to do.

1993, 1994) and ‘

Re-usability is critical for cost-effectiveness and acceptance of formal methods. In
the case of the Paris Metro project, the reuse of models and theories was helpful
in two subsequent projects at GEC Alsthom. GEC Alsthom not only used formal
methods to establish that there was no need for an extra railway line, but the
developed expertise is being used to market its services in other projects. Object-
oriented methodology can be helpful in designing reusable code, designs, theories,
proofs, as well as specifications.

7. Synchronous paradigm for reactive systems

In this section, we highlight one of the new paradigms referred to as the synchronous
paradigm which is being used successfully in the design of reactive systems and\
hardware systems. The synchronous paradigm is founded on the perfect synchrony
hypothesis. The hypothesis states that the considered reactive programs respond’
in no time (i.e., the elapsed time is not observable) and produce their outputs
synchronously with their inputs. In fact, this hypothesis takes roots in classical
mechanics, being akin to the Newtonian’s instantaneous body interaction principle
~ which is still useful in practice even though it has limitations at speeds beyond some
ranges?. Further, perfect synchrony hypothesis can be seen through the assumption
of an ideal perfect real-time machine in the works on control theory. Esterel is the
first programming language to have been based on this principle.

First, let us take a quick look at the immediate gains for the specification of real-
time systems with such an approach. One of the immediate gains of the perfect
synchrony hypothesis can be seen by looking at the following paradoxical question
in asynchronous languages, such as Ada, supporting specification of real-time:

Is delay 8 ; delay 6= delay 14 7.

There is no clear cut answer to this question in an asynchronous framework. In the
semantic theories of CSP-R, (Koymans et al 1988), and Timed-CSP (PRG 1992), the
paradox has been overcome through the notion of executional models like mazimal
parallelism and mazimal progress respectively. Obviously, such a paradox clearly
does not exist under the perfect synchrony hypothesis.

The next most important gain is that the notion of physical time can be replaced
by a simple notion of order among events; the only relevant notions are the si-
multaneity and precedences -among events. Thus, physical time does not play any
special role; it will be handled as an external event, exactly as any other event com-
ing from the programming environment. This is referred to as the multiform time.
As an example, let us consider the two following requirements: '

It may be recalled that Einsteinian physics does not void the utility of Newtonian physics.
Both are useful approximations that may be beneficially used for modeling and analysis of systems
that fall into well defined ranges, where the main distinguishing parameter is how close are the
typical speeds in the system to the speed of light. The same observation holds for the discipline
of application of formal methods for the specification, design and verification of reliable reactive
systems.

Ty




Software for safet y critical systems 959

The train must stop within 10 seconds

The train must stop within 100 metres
Conceptually, these two requirements are the same; one could argue as to which is
specific or which is more general. In systems having an internal clock and handled by
special statements, conceptually similar requirements wil] be expressed in different,
ways. However, in languages following the above hypothesis, there is no notion of
internal clock and hence, will be expressed by similar precedence constraints. In
other words, a reactive system is completely event driven and we can consider the
life (history) of a system to be divided into instants that are the moments where it
reacts; or the history of a system is a totally ordered sequence of logical instants.
Thus, one can speak of the ith instant of a program. Event occurrences which
happen at the same logical instant are considered simultaneous, those which happen
at different instants are ordered as their instants of occurrences, Apart from these
logical instants, nothing happens either in the system or in its environment. Finally,
all the processes of the system have the same knowledge of the events oceurring at
a given instant. |

First, let us see mformally how we can specify a vending machine. The behaviour
of a typical Biscuit Machine can be described as follows:

L. Tt waits for insertion of § cents, ejecting a packet of biscuits or attempting to’
eject when there are no packets left,

2. The serviceman may open the machine by inserting the service key. After being
re-stocked and the removal of the service key, the vending machine resumes
where execution wag interrupted. :

3. The above process is repeated except if the power goes down, in which case it
is possible to be cheated of 5 cents. ‘

First, let us describe the basic behaviour considering only requirement (1) assum-
ing that there is enough stock of biscuits and there is 1o power tripping. In this
case, the observable events are waiting for 5 cents and ejecting the pack ot biscuits
after receiving 5 cents.

loop S
await ?5_CENTS; (* wait for 5_cents *)
if  AVAILABLE then "EJECT"
forever
The synchrony hypothesis avoids questions such as: What happens if one puts
several 5 cents since for an input there is a deterministic instantaneous reaction.
Considering requirement (2), we can describe the behaviour by ‘

loop
await ?5_CENTS;
if  AVAILABLE then "EJECT";

else
await INSERT-SERVICEKEY;
"EJECT";
endif
forever

It is easy to observe that if the local actions are assumed to be instantaneous then
the above description gives the intended behaviour; note that instantaneous does




960 R K Shyamasundar

not mean that order of events in the same instant can be ignored; in fact, the order
of events should necessarily be preserved- the only thing is that time separation
between events is not observable. For taking into account the third requirement, we
need some sort of a preemption. This can be done by introducing a guard to watch
the execution. The behaviour can now be described by,

loop
do (* Begin of a guarded statement *)
await 75_CENTS;
if  AVAILABLE then "EJECT";
else
await INSERT_SERVICEXEY;
"EJECT";
endif
watching ?powerdown (* GUARD *)
end
forever '

In the above code, do stal watching S corresponds to preemption of the execu-
tion of the it body on receiving S. It can be observed that in the above example, we
hiave been able to develop the program by taking requirements one at a time (that
is, conjunctive). In fact, it appears that this feature holds in general. Informally,
one can see that there is an in built priority in the specification or interrupts in
the implementation. Later, one can see that Istercl framework provides for a nice
integration of interrupts and exceptions.

Ior a language to support reactive specification, we can see that 1t should support
broadly the following features: '

¢ Sound mathematical semantics: The very need of safety requirements of the

applications are enough to convince oneself that the behaviour of a program -

must have a sound and a unique meaning. Such a requirement calls for a
sound mathematical semantics.

e Determinism: In any reactive system, one should be able to predict the be-
haviour relative to the sequence of sets of events. Obviously, this is a must.
One should carefully distinguish between the need of nondeterminism in spec-
ification and the requirement of deterministic behaviour with respect to pos-
sible set/sequence of input stimuli.

¢ Concurrency: Most applications involve naturally concurrent and communi-
cating components and thus, the language should support its specification at a
logical level. It must however be pointed out that one should carefully distin-
guish between compile-time concurrency and physical run-time concurrency.
It is of interest to note that logical concurrency makes it easier to write pro-
grams but does not necessarily correspond to the architecture of the executing
machine. For an interesting discussion on parallelism as a structuring tech-
nique, the reader is referred to [MuSe 92]. However, the physical concurrency
reflects the underlying machine’s architecture. In the context of distributed
programs, physical parallelism is often associated with code distribution that
correspond to execute some sub- plograms on distinct machines communicat-
ing through a network.
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o Verification: From the reliability point of view, it is absolutely essential that it
should be possible to verify the properties of the programs. Since the task of
verification is quite complex, it is necessary to have automatic tools to assist
the verification of, the program.

7.1 Languages, validation and verification

There are various languages that support synchronous paradigm. The principal lan-
guages are Esterel (imperative), Lustre (data flow), Signal (equational), Statecharts
(graphical) etc. Esterel and Lustre are synchronous, and deterministic where as
Statecharts is not necessarily deterministic; Signal is not completely reactive (due
to the oversampling operator). Esterel is one of the earliest languages of this family
and supports a powerful programming environment. The main tools can be classified
into: o

1. Simulation and development tools: These tools execute compiled automata
of Esterel programs instants by instants. It can be linked with a C stan-
dard library that allows interactive simulation through the keyboard. It also
supports a graphic simulation through the X-window library. Recently, it sup-
ports an integrated environment called AGEL. The advantage of these tools
is that one can validate the system and visualize the working of the program
(and the reactive modules) clearly.

2. Verification tools: The Esterel program is compiled into an automata. Now,
one can use various techniques for verifying the finite-state automata and also
the tools that are used for verification using process calculi. The tools such
as AUTO/AUTOGRAPH used for verification of process calculi have been
integrated in the environment and thus, enables one to verify using notions
such as bisimulation and observable criteria.

One of the main advantages of the system is that the verified code is close to im-
plementation and hence, the proof becomes very reliable. In fact, it is because of
this reason, the designer of Esterel, G. Berry claims What You Prove Is What You
Ezecute. The language is being widely used for the development of reactive systems
and the synthesis of hardware.

7.2 Illustrative specifications

In this secﬂion, we illustrate the development of an Esterel program from a typical
specification; we only give fragments of code for lack of space and use loose syntax.

Slotted ALOHA

"This example illustrates how the features such as broadcast and logical CONCUTTENCY
are helpful in arriving at concrete implementations.

In this protocol, the satellite acts as a repeater, rebroadcasting messages received
from independent ground stations. The principal features of the protocol (Tanen-
baum 1981) are captured below:

1. The satellite broadcasts a clock signal dividing time into discrete intervals, or
slots; it is this feature that tries to avoid collisions.




062

R K Shyamasundar

. A ground station which is ready to transmit must wait for the next slot hefore

broadcasting.

. If only one station transmits during a particular slot, then the satellite will

receive the message in tact, and will rebroadcast it to all ground stations. If
two users broadcast simultaneously, the satellite will rebroadcast the sum of
two incoming signals, resulting in garbage. 1t is assumed that each packet con-
tains a checksum strong enough to permit the receiver to detect all collisions,
so damaged packets can be discarded.

- The transmission is in terms of packets of the same length (the throughput
- Increases with such restrictions).

. Another important property of satellite packet broadcasting is that the sender

can listen for his own packet, one round-trip time after sending 1. Since
the sender can tell from the bounced message whether or not a collision has
occurred, there is no need for explicit destination to source acknowled gements.
If the packet was garbled, the sender learns of the problem simultaneously with
the receiver and can take appropriate action without having to be told.

In the following, we describe an Esterel development of the specification; for pur-
poses of brevity we describe the main aspect of the specification leaving the formal
declarations of events and signals. '

The satellite can be modelled as the parallel combination of two processes CLOCK
and REFLECT, '

SATELLITE :: CLOCK || REFLECT
"The CLOCK process emits a PIP signal every TM time units (or ticks).

CLOCK :: 1loop

avait TM ticks;
emit PIP;
forever

The REFLECT process is able to receive packets on CHAN.UP and broadcast the mes-
sages on CHAN.DOWN. Collisions can happen on the packets being received on CHAN_UP.
It is ready to receive packets in every slot (after a PIP is emitted by the cLOCK
process). In the specification given helow, we have used APP to denote the append

operation which appends an element to a list and HD denotes the operator HEAD of a
list. Let m be the size of the packet.

REFLECT :: loop

await PIP;

PKT :=EMPTY;

repeat m times

do
awvait CHAN.UP;
APP (PKT, 7CHANLUP)

end repeat;

repeat m times

do
await tick;
VAL:= HD(PACKET);
emit CHAN_DOWN;

m% -a ,-j!(
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end repeat;
forever
The GROUND_STATION is able to send a packet of fixed size during every slot on CHANUP.
After sending the packet it awaits for the reception of the same on CHAN_DOWN. If the
message received is garbled due to collisions ( which can be detected by the strong
checksum property), then the GROUND_STATION retransmits; this is repeated till a
successful transmission takes place. Note that the input signal START also aids in
avoiding collisions.

GROUND STATION :: RETRANSMIT:=FALSE;

loop
await PIP; (* await for the clock signal from the clock *)
await START;
(* await for the input signal at the ground.station

to instantiate transmission of a packet *)

if not (RETRANSMIT) then

CNT_. PKT:= NEW. PKT
else CNT. PKT:= OLD. PKT
RETRANSMIT :=FALSE;

ii=1;
repeat m times (¥ m is the size of the packet *)

do
[emit CHAN.UP(CNT. PKT[I]) || await tick];
T:=I+1;
end;
trap T in
do
[await CHANDOWN || await tick];
if NOT.VALID(?CHANDOWN) then

begin RETRANSMIT:=TRUE;

exit T; ‘
end; : ‘

watching m ticks (* Receiving continues till the complete packet
is received or it knows that the message is garbled *)
end
end trap
forever

7.3 Application hybrid and timed systems

‘Programming languages based on the perfect synchrony paradigm have proven useful
for programming reactive systems. One of the main reasons for its success is that
it permits the programmer to focus on the logic of reactions and makes it possible
Yo use several automata-based verification systems for correctness proofs. Further,
the correctness proofs of programs follow their implementation very closely and
hence, are more robust and reliable. However, the application is limited to clocked
systems. If we look at complex reactive system specifications such as process control
systems and robotic applications, the need for features such as (i) asynchronous
events (events that can happen arbitrarily close to each other), (ii) integration of
discrete and continuous components (continuous components may cause continuous
change in the values of some state variables according to some physical law), and
(iii) explicit clock'times, become apparent.
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Further, the use of hybrid systems (Kesten & Pnueli 1992) is becoming very ex-
tensive. Hybrid systems are systems that combine discrete and, continuous compu-
tations. Hybrid system model contains activities that modify their variables con- - -
tinuously over intervals of positive duration in addition to the familiar transitions
‘that change the values of variables instantaneously, representing the discrete com-
ponents. Many systems that interact with a physical environment such as & digital
module controlling a process or a manufacturing plant, a digital-analog guidance
of transport systems, control of a robot, flexible manufacturing systems etc., can
benefit from the study of hybrid models.

In (Berry et al1993), a paradigm referred to as Communicating reactive processes
(CRP) that provides a unification of perfect synchrony and asynchrony has been
presented. In (Shyamasundar 1993), an extension of CRP, referred to as Timed
CRP has been envisaged that

e models continuous computations and thus, provides a convenient formalism
for specifying hybrid systems, and

e models asynchronous systems operating in dense real-time domains.

Let us now consider the basic idea for specifying hybrid systems that combine dis-
crete and continuous components possibly with the need to reference clocks explic-
itly. For consistency, it is necessary to have a consistent assumption about the
progress of the computation as the system evolves. In the timed CRP, it has been
possible to provide such a consistent assumption through the clocked semantics of
CRP and the interpretation of the clocks in terms of the exec primitive. One of
the interesting features is that hybrid systems without explicit references to clocks
can be specified by a subset of timed CRP consisting of just the statements of Es-
TEREL and the exec primitive. The full version of timed CRP can specify dense
asynchronous systems with explicit references to clocks (cf. (Shyamasundar 1994)).

8. Role of safety in the design of safety-critical systems

With the advances in technology, computers are being increasingly used to monitor
and/or control complex time-critical physical processes or mechanical devices where
a run-time error or failure could result in loss of property, injury or even death.
Such systems are usually termed safety-critical systems.

Safety is associated with the notion of risks such as loss of property, injury, death
or damage to the environment. In other words, safety requirements are concerned
with making the system mishap-free whereas reliability is concerned with making
the system failure-free (Leveson 1986, 1991). Software safety is part of system-safety
(Leveson 1991). Ensuring system-safety involves:

1. Identifying hazards and assessing the risks involved.
2. Designing ways to avoid or control them.
Thus, it is essential to arrive at system-fault tree from which one has to arrive at

safe-system keeping in mind that all the hazards cannot be completely eliminated.

!
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8.1 How much s safety worth?

An increasing number of computerized safety-critical systems are currently being
deployed in such areas as transportation and nuclear power production, or will
be largely deployed tomorrow in medical computing, automotive electronics, etc.
Critical applications such as nuclear control systems, flight control systems, life-
support systems have extreme safety requirements. For instance, FAA and NASA
have established a requirement of less than 10719 safety-critical failures per hour
throughout a 10-hour flight, a level roughly equivalent to one failure per million
years of operation. ‘

For hardware component faults, it is possible to achieve these low failure rates
by use of highly reliable microelectronics, together with replication and adaptive
majority voting. The primary factors contributing to unreliable operation are design
faults, possibly in the hardware but more probably in the software. Software faults
present the greater risk of system failure, because only relatively simple functions are
mechanized in hardware while the most complex parts of a systems are implemented
in hardware. The statistical evidence that software is the current bottleneck in
achieving dependability of Information and Communication Technologies, together
with the recognition that probabilistic assessment of software reliability to levels
commensurate with safety requirements (e.g. 10°/h or 10° per demand) is currently
out of reach, has led to highly labor intensive approaches for the development and
validation of operational safety-critical software. Be they undertaken via traditional
software engineering approaches or via mathematically formal approaches, orders of
magnitudes of effort dedicated to the development and validation of such software
are in the range of 10 man-years per 1000 lines of code, for software ranging from a
few thousands to a few tens of thousands lines of code.

As the pervasiveness of software induces a clear tendency to complexifying the
functions it is expected to fulfill, producing dependable software for critical applica-
tions of sustainable cost requires the identification and formulation of abstractions
which are at the same time rigorous and representative of both the informatics
constructs and the environment where the corresponding computing systems are in-
tended to operate. At the same time, recent unfortunate examples have shown that
computerized systems which were not initially felt to be safety-critical, and thus not
built according to high costly standards, have endangered human lives upon failures,
- be they a relatively modestly complex apparatus such as the Therac 25 radiation

therapy system, or distributed systems such as the communication system of the
London Ambulance Service. Moreover, nation-wide failures of large computing and
communication systems which cannot be built at the above cost, such as the outage
of the inter-city phone system or the Internet collapse in the USA, can have indirect
safety-related consequences, be they caused by accidental or malicious events.

In the case of embedded systems, most of the times it is quite difficult to provide-
a behavioural decomposition even if one ignores the need for the decompositions
to be the basis for system design. In other words the separation of concerns turns
out to be extremely difficult. For example, even small real-time systems such as
a tactical embedded system for an aircraft might be simultaneously maintaining a
radar display, calculating weapon trajectories, performing navigation functions etc.
In these kinds of systems, one sees that

e the code implementing the various tasks is mixed together such that it is
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difficult to determine which task(s) a given part of the code performs, and

- the timing dependencies between code sections are such that changing the
timing characteristics of one section may affect whether or not many otherwise
unrelated tasks meet their deadlines.

The question is how do we go about? As discussed already, a general strategy
is to base the design on a formal method. Of course, at this stage, it is neces-
sary to do the hazard analysis by various techniques such as (1) design reviews and
walkthroughs, (2) fault tree analysis, (3) failure modes and effect analysis etc. Syn-
chronous paradigm has shown a good promise and has various components such as
dependable compilers, simulators, verifiers etc, it is natural that one should base
the development around this paradigm. In fact, the tools available on such systems
also aid the hazard analysis techniques mentioned above. One of the important
factors to be kept in mind is that in the design of reactive systems one should first

go about specializing. for the class of systems one is concerned with rather than -

going about for the generalized system design. In the next section, we discuss some
of the measures that should be taken in India that would aid in the development of
reliable reactive systems and reliable software in general.

9. An approach towards development of quality software

- In recent years, India has been leaping into hi-tech areas areas such as communica-
tion, transport, nuclear industry, military tactical systems. Directly and indirectly,
there is a large involvement in the development of software for embedded systems.
Some of the failures in such projects can be attributed to software faults. Some of
the hi-tech projects/systems being planned in India are facing a series of problems
due to the fear in the community that a failure in the system will endanger the so-
ciety or will lead to environmental catastrophes. We would make a major headway
in overcoming such bottlenecks if we can

‘e develop safety standards and regulations in the use of embedded safety-critical
- software, '

- o place mandate for the use of formal methods and languages with sound rigor-
ous mathematical basis, and

¢ agree to apply reverse-engineering techniques for safety-critical systems and
evaluate them; this would gain the confidence of the so ciety and also the design
errors can be corrected and further, catastrophes can be avoided.

In fact, several countries such as UK have promulgated such standards as a must.
Arriving at such standards and regulations will go a long way in the development
of science, and technology in India.

One of the foremost things of concern in the Indian context in the need to convince
the industry of the use of formal methods. The use of formal methods need to be
made cost-effective, which is possible. Related to this point is providing training
to professionals in the use of the formal methods. It is here that a major effort is
required by academics and software professionals in India. ‘

It can argued that a thrust towards the development of quality software will also
have an enormous impact on the economy in the context of software export.

.
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1. Given that manpower in India is much cheaper, it is our contention that strong
economic arguments can be made for the use of formal methods for generat-
ing safety /quality software. Generation of safety /quality software using formal
methods is smart-labor-intensive and not equipment or commercial software
intensive. We believe that programmers and software engineers in India (es-
pecially from top technical institutions) typically have a stronger background
in mathematics and analytic methods than their counterparts in the west, es-
pecially the US. They can be trained quickly and with lesser economic cost in
the use of formal method and the associated tools.

2. For sophisticated machinery and equipment to be sold to other third world
countries, India would be competing with Western countries. It may become
essential to develop methods for reliable software. India may develop a slight
edge over Western countries on this front because of cheaper cost in producing
software due to cheaper labor costs. Also it is estimated that there would be
a large demand based on the synchronous paradigm for the development of
reactive systems and hardware systems. Hence, investment on the synchronous
programming technology will not only aid in the development of systems but
also will put India on an advantageous position in the software development
(for consumption or export).

3. India can take a lead in developing tools and methodologies for generating
ultra-reliable software. It is technically feasible to generate a next-generation
environment for designing systems based on formal methods.

What should be key characteristics and features of a next-generation inte-
grated environment for providing support for formal methods in the life-cycle
of system design and development? Many technical issues related to integrat-
ing automated reasoning tools, simplifiers, specification analyzers are discussed
by Kapur (1993). We would like to emphasize that formal methods should be
integrated into the existing methods in a

(a) Localized way: that is, it should not be the case that formal methods
have to be applied to the whole system. It should be possible to test
them and experiment with them on parts of a system.

(b) Reversible way: If for some reason, the use of formal methods has to be
abandoned that should be possible in graceful without causing significant
delays in the development of the system.

In other words, the use of formal methods should not interfere with the ex-
isting development process, that is, the additional features required for de-
ploying formal methods, if ignored, should not cause major disruption in the
life-cycle. It is the careful integration of formal methods with existing meth-
ods that include prototyping, testing, structured walk-throughs, validation,
hazard analysis, fault-tree analysis, and simulation, etc., which has led to
reasonable success in the development of critical software and hardware in
practice (Weber-Wulff 1993).
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