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Abstract 
 

Confining a colloidal crystal within a long narrow channel produced by two parallel 

walls can be used to impose a meso-scale superstructure of a predominantly 

mechanical elastic character [Chui et al., EPL 2008, 83, 58004]. When the crystal is 

compressed in the direction perpendicular to the walls, we obtain a structural 

transition when the number of rows of particles parallel to the walls decreases by one. 

All the particles of this vanishing row are distributed throughout the crystal. If the 

confining walls are structured (say with a corrugation along the length of the walls), 

then these extra particles are distributed neither uniformly nor randomly; rather, 

defect structures are created along the boundaries resembling "soliton staircases", 

inducing a non-uniform strain pattern within the crystal. Here we study the conditions 

of stability, formation and annihilation of these solitons using a coarse grained 

description of the dynamics. The processes are shown by comparing superimposed 

configurations as well as molecular animations obtained from our simulations. Also 

the corresponding normal and shear stresses during the transformation are calculated. 

A study of these dynamical processes should be useful for controlling strain wave 

superstructures in the self-assembly of various nano- and meso scaled particles.  
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Introduction 

As is well known, “soliton staircases” are periodic patterns of localized defects that 

arise from the lack of commensurability of a (one-dimensional) crystal with a periodic 

potential that it is exposed to. In our previous study, we have shown that confinement 

can be used to impose a controllable mesoscopic superstructure of a predominantly 

mechanical elastic character on a crystal 1. Due to an interplay of the particle density 

of the system and the width D of a confining channel, ``soliton staircases''2 can be 

created along both parallel confining boundaries, that give rise to standing strain 

waves in the entire crystal. This new type of mesophase is reminiscent of charge 

density waves3 and spin density waves4 in crystals, but was demonstrated for a model 

of a two-dimensional colloidal crystal, occurring hence on much larger length scales. 

Related phenomena could also occur for dusty plasmas5, lattices of spherical block 

copolymer micelles under confinement6, superstructures of small molecules or atoms 

adsorbed on stepped surfaces7, and superlattices of nano- and meso-scaled particles8. 

A related phenomenon of standing strain waves induced by a boundary condition 

might occur in epitaxially grown thin films with lattice misfit such as Fe films on W 

(110), where a periodic structure of misfit dislocations at the Fe-W interface may 

cause a modulation that decreases with the distance from the interface in the thin film9.    

The present work also deals with a Monte Carlo (MC) model for a confined colloidal 

crystal in two dimensions, for which we investigate the stability, formation and 

annihilation of solitons caused by varying the misfit in the distance between two 

corrugated walls. We use a local MC algorithm to model the dynamics of suspended 

colloidal particles, executing random Brownian motion due to collisions with the 

small solvent particles10-12. We have neglected hydrodynamic interactions as we are 

not concerned with the small-scale details (happening on very short time scales) of the 
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mechanism but only the coarse- grained dynamics at large scales where, in the 

absence of external fields, it has been shown that hydrodynamic effects do not alter 

the qualitative form of the long time dynamics13-15. 

With increasing misfit (i.e. strain) we observed that the stress increases up to some 

critical value, where a transition occurs that reduces the number of crystalline rows 

parallel to the boundaries by one. At constant particle number, the extra particles of 

the row that disappears are distributed in the system such that a ``soliton staircase'' 2 is 

created along the walls, accompanied by a pattern of standing strain waves in the 

crystal. Reduction of the misfit in the strained colloidal crystal will cause the inverse 

transition which increases the number of crystalline rows by one. We believe the 

understanding of non-equilibrium dynamics will help to give a better control of the 

standing strain wave pattern in two-dimensional crystals. 

 

Model and simulation protocol 

The colloidal particles are described as point particles interacting with a potential V(r) 

= ε(σ / r )16, where ε sets the energy scale, σ sets the distance scale, and r denotes the 

interparticle distance. At low enough temperatures T this system forms a crystal with a 

triangular lattice structure, where the lattice parameter a is related to the chosen 

density ρ via a2 = 2/( 3 ρ). Certainly, for such systems with inverse power law 

potentials, T and ρ are not independent control parameters, in our case it is only the 

combination ρ(ε / kBT)1/6 that matters17,18. Thus, choosing length units such that ρ = 

1.05 one finds that the (presumably continuous) melting transition of the crystal 

occurs at kBTm / ε ≈ 1.35 19. 

Following Ricci et al.17, we create a confinement potential commensurate with this 

lattice structure by putting two rows of frozen particles at either side of the crystal, 
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which in our case has nx rows containing ny particles each, so that the crystal in the 

case where there is no misfit has the linear dimensions Ly = nya and D = nxa 3 /2. 

These rows of periodically arranged frozen particles create a periodic potential (with 

periodicity given by the lattice spacing a) acting on the mobile particles in the strip, 

thus stabilizing a crystalline structure with this periodicity. However, by choosing a 

smaller distance between the frozen rows on both sides of this crystalline strip we can 

enforce a misfit, such that D = (nx-∆)a 3 /2. This equation defines the misfit 

parameter D. 

Here we have used a Monte Carlo (MC) method to give a coarse-grained description 

of the dynamics of stability, formation and annihilation of solitons. The method used 

generated particle positions by the Metropolis Monte Carlo process which moved 

each particle at each MC time step with a maximum displacement of 0.1 lattice 

spacing, a. Particles are selected at random for such trial moves, and acceptance or 

rejection of the move is controlled by the standard Metropolis transition probability. 

In effect, this method is similar to a Brownian Dynamics (BD) method but ignoring 

hydrodynamic interactions to investigate the broad, coarse-grained picture of the 

dynamics of the defect structures, the “solitons” that will be characterized below. 

Thus, we are concerned with the large-scale features of the stability, formation and 

annihilation of the solitons. 

Note that while hydrodynamics interactions alters the qualitative dynamics of the 

colloidal particles at times that are short relative to the time for a particle to 

equilibrate its position in the “cage” formed by its neighboring particles, at long time 

scales, in the absence of an imposed external field15, the effect of the hydrodynamic 

forces can fully be accounted for by a renormalization of the effective time scale13, 14. 

Hence, mode coupling theory (MCT)13,14 without hydrodynamic forces provides a 



 6

quantitatively accurate and highly nontrivial description of all dynamic correlation 

functions of the system, after the “microscopic time scale” is fixed13,14. 

Further, the MC method has been used to describe the slow dynamics of dense 

polymer melts where it successfully predicts the Rouse to Reptation crossover as 

accurately as molecular dynamics and in agreement with experiments20. 

In our previous work we determined the variation of stress with strain (misfit)1. 

Higher and higher stress is built up while compressing the system by increasing the 

misfit (from ∆ = 0 to ∆ = 2.0) in the colloidal crystals. This is done in steps of 

25.0=∆  (see Figure 1). We first choose the positions of the wall atoms such that 

0=∆ , with an initial condition of a perfect triangular lattice structure, and equilibrate 

the system at 1/ =εTkb  by standard Monte Carlo methods21. Periodic boundary 

conditions are used in y direction, and typically linear dimensions are chosen such 

that we have nx=30 rows with 108 particles per row. Then we move the rows with the 

wall atoms closer to each other, in order to create a misfit with 25.0=∆ . This is 

done by generating a starting configuration compatible with this reduced distance 

between two walls, by uniform rescaling of all particle distances perpendicular to the 

walls using the appropriate factor. After moving the wall atoms closer to each other, 

we equilibrate the system (typical equilibration time were the order of 8 million 

Monte Carlo steps per particle), then increase the misfit to 5.0=∆  and re-run the 

simulation, and so forth. Recording the stress yyxx σσσ −= 22 from the computation 

of the virial tensor12, an almost linear increase of the stress up to a maximum value at 

about 2=∆  is found (filled square in the lower part of figure 1), where an abrupt 

first-order-like transition to a slightly negative value of the stress occurs. Here a 

crystal row disappears; a detailed analysis of the time-dependence of the process (see 

also the animation in the supplementary material) suggests that the mechanism for this 
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transition happens via the nucleation and subsequent annihilation of a pair of 

dislocations with opposite Burger's vectors perpendicular to the walls. 

The kinetics of this transition is the phenomenon which we wish to describe in the 

present paper. Increasing the misfit further up to 3=∆ , the stress increases again 

(Fig. 1).  

Since we have found1 (see also next section) that the transition at 2=∆  where one 

row with ny particles disappeared corresponds to the formation of an almost periodic 

defect structure, we have also created a strictly periodic structure with nx – 1 rows (i.e. 

29 rows in this study). Since it was found1 that the rows adjacent to the walls (open 

circles in the upper part of Fig. 1) do not host any extra particles from that 

disappeared row, we use a structure with ny + ny / (nx – 3) particles per row as an 

initial condition (open circles in the lower part of Fig. 1). 

To study the reverse process (soliton annihilation) we start out at 3=∆ , the system is 

equilibrated with this initial condition, and then ∆  is reduced in steps of 0.25 and re-

equilibrated at 5.1=∆ . As a result, a transition back from nx-1 to nx rows is obtained 

(open triangles in the lower part of Fig.1). During these structural transitions that 

occurs after varying the misfit, we observed and recorded the kinetics and the 

variation of normal stress and shear stress in the colloidal crystal. 

As a test, we also simulate the system with D smaller than 1.5. Then the stresses 

before and after soliton annihilation were also plotted. With D larger than 1.5, the 

soliton annihilation does not occur. 

 

Results on the transition kinetics 

As described above, compression of the two-dimensional crystal strip leads to a 

transition nx → nx-1 in the number of rows, and the ny particles of this disappearing 
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row are distrbuted over the nx – 3 inner rows of the strip. If there were no effect due to 

the periodic potential of the two confining walls, one would expect that the strip forms 

a crystal with a lattice spacing a’ in y direction that is reduced in order to 

accommodate more particles a’ = a / [1+1/( nx – 3)]. However, a lattice with this 

reduced lattice constant is incommensurate with the periodic boundary potential 

created by the fixed wall particles, which remains at the original periodicity. 

This conflict of periodicities at the walls is reminiscent of the problem of a harmonic 

crystal in one-dimension exposed to a periodic potential: if the periodicity of this 

crystal coincides with the periodicity of the potential, all particles will sit in the 

potential walls (Fig. 2a). However, if the number of particles in the harmonic chains 

exceeds the number of potential wells slightly, the crystal contains defects, so-called 

“solitons” where a few particles are forced to be at positions different from the 

potential minima (Fig.2b). The minimum energy configuration is then a periodic 

arrangement of these defects, the so-called “soliton staircase”2. In between the 

solitons the particles stay eventually in the potential wells. 

Of course, the choice of which the particles sits on top of a potential well (full dot in 

Fig. 2b) is arbitrary, and due to this degeneracy the defect structure shown in Fig.2b 

can be translated along the y axis (without energy cost when the soliton lattice moves 

as a whole, with little energy cost when an individual soliton moves, as long as the 

distance to the neighboring soliton is large). While in the mechanical problem of 

Fig.2a, b the motion of solitons has the character of travelling waves, in a colloidal 

system due to friction of colloidal particles caused by the solvent fluid only a 

diffusive motion of solitons is expected. 

When we now consider superimposed configurations of the particles (Fig. 2c), we see 

that particles staying in potential wells show up as irregular black dots (the “size” of 
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these dots gives a measure of the typical mean square displacement of the particles). 

Particles in solitons, however, show up as dark stripes smeared out a distance of the 

overall lattice spacing in y-direction, due to the lateral diffusion of these defects (Fig. 

2c). However, we can also see that these defects are not localized in single row, but 

are extended over several adjacent rows. Far away from the walls where the periodic 

potential is created, however, all the particles are again localized to lattice positions 

(but now the lattice spacing in y-direction indeed has a smaller value d < a). 

In the following, we shall explain how these defect structures are formed during the 

transition nx → nx-1, as well as how these defect structures disappear again for the 

reverse process, nx-1 → nx. 

 

(i) Non-equilibrium dynamics in two-dimensional colloidal crystal 

We observe the kinetics in the two-dimensional colloidal crystal from superimposed 

configurations of the particle positions. Figure 3 shows the animation corresponding 

to the formation of solitons with a misfit with ∆= 2.0 and the sliding transitions which 

were observed between two structured walls. Each picture shows a superposition of 

100 individual configurations, which were taken every 100 MC steps. In Figure 3a, a 

sliding centre (which is the two-dimensional analog of a gliding plane for dislocation 

motion in three dimensions) moves downward progressively from the soliton on the 

top of the system (indicated by solid arrow) to the bottom, and then a new soliton is 

formed beside the wall, which is shown in Figure 3b, indicated by an ellipse 

encircling the defect. Also in Figure 3b, the sliding centre moves upward to the top 

arrow and the other soliton is formed. Figure 3c and 3d show that more and more 

solitons are formed during the zigzag motion of the sliding centre in the structural 

transition. These phenomena are analogous to transport phenomena in three-
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dimensional crystals during plastic deformation23. 

From the animation in Figure 4, we observe the structural transformation back from 

nx-1 to nx rows during the annihilation of solitons. A similar sliding transition is also 

found but the sliding centre moves away from the annihilated soliton to the opposite 

soliton beside the opposite wall of the system (Figure 4b and 4c). After the zigzag 

motion, solitons are deformed and then annihilated in the colloidal crystal, and finally 

the whole structural transformation is completed and the number of rows of colloidal 

particles is increased by one. 

From these observations one can conclude that several competing local structures 

representing local minima in the free energy landscape are available to the confined 

solid during the layer transformation. These structures, being more or less degenerate 

in energy are visited by the system over long time scales. At shorter time scales, on 

the other hand, the system prefers to stay within any one of these local minima. 

Similar phenomena have been observed in hard disc particles confined within smooth 

walls22, 24 and appear to be generic for such systems.  

 

(ii) Stress and shear stress during structural transformation 

Other than the observable dynamics, how the system responds mechanically to the 

structural transformation is also interesting. Thus we calculate the normal stress and 

shear stress of the system according to the fluctuation formalism proposed by Farago 

and Kantor25: 

 

Summation over all distinct pairs of atoms <αβ> is performed. Rαβ is the 

interparticle distance of the pair under consideration, and Ri
αβ

 denotes the ith 
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Cartesian component of the vector   - . The symbol < > denotes a 

thermal average. The term /V is the kinetic contribution to the stress, which 

originates in the additive term –NkT ln V in the free energy. Here, we calculated the 

average normal stress σ = (σxx +σyy) and the shear stress σxy. 

The variations of normal stress during soliton formation and soliton annihilation are 

shown in Figure 5a and 5c respectively. The normal stress σ decreases as more and 

more solitons are formed, and vice versa. Also it is clear that the normal stress in the 

colloidal crystal changes sharply once soliton(s) are formed and annihilated. 

Interestingly, we find that the extent of the change of the normal stress value is 

roughly inversely proportional to the change of the number of solitons.  

In the structural transformation that leads to soliton formation, we identify the 

precursory sliding transition before the start of the transformation. The sliding centre 

appeared and disappeared from time to time until the first soliton was formed. In the 

plot of the normal stress variation, we also find the sudden stress change which 

corresponds to the existence of the sliding centre in the colloidal crystal. The stress 

value goes down to a lower level for a small period of MC time, and then rapidly 

returns to the original level of the stress. 

We also record the shear stress σxy of these two transformations, which is shown in 

Figure 6a and 6b. It is obvious that the fluctuations of the shear stress in the 

unstrained crystal, relative to that in the strained crystal have a very small amplitude. 

For the precursory sliding transition, the sudden large changes of the shear stress are 

also found before the continuous fluctuations due to the occurrence of the soliton 

formation.  

A more quantitative account of the transition kinetics is given in Figure 5a and b for 

the transition from the crystal without solitons to the crystal with standing strain wave 
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pattern, and in Figure 5c and d for the reverse transition. These figures illustrate how 

we can obtain a probability distribution )(σP  that a stress σ  occurs during the 

transformation. The very high peaks of )(σP  at the low end and at the high end of 

the distribution represent the initial and final state, respectively, while the 6 

intermediate peaks (labelled as 1,2, …,6 in Figure 5b) represent the intermediate 

plateaus, in Figure 5a; these plateaus are metastable intermediate states, and are 

characterized by much larger fluctuations than both the initial and final state, 

respectively. The gaps G1, G2, …, G6 in between the peaks of the stress distribution 

)(σP  represent the relatively fast transitions from one metastable state to the next 

one. Of course, also these “relatively fast” transitions are still rather slow processes, 

on the time scale (Monte Carlo step per particle) the time needed for these transitions 

is in between 12500 MCS (Gap1) and 48000 MCS (Gap5). The “lifetime” of the 

intermediate metastable plateaus in Figure 5a is still distinctly larger, e.g. for plateau 1 

it is about 760 000 MCS! Figure 5c and d show similar phenomena for the reverse 

process. The estimated lifetimes of these intermediate metastable states, as well as the 

time that the transitions between them take, are collected in Tables 1 and 2 for the 

soliton formation and the soliton annihilation, respectively. Since all these times are 

so large, our statement that we deal with very slow and thermally activated dynamics, 

and hence a Monte Carlo modelling of the stochastic transitions that occur in such a 

system is adequate, is in fact fully corroborated by our data. 

 

Conclusion 

We have used the Monte Carlo method to simulate the long time non-equilibrium 

dynamics of a confined model two-dimensional colloidal crystal. A coarse-grained 

description of the dynamics of these strained lattice systems is given by use of a 
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combination of superimposed configurations and the behavior of the normal and shear 

stresses. By this method we have shown that the conditions under which the structural 

transformations occur may be readily identified by these means and that an 

understanding of these novel dynamical properties should be important to the 

experimental control of the structure of confined colloidal crystals, self-assembly of 

nano- and meso- scaled particles, mono-layers on stepped surfaces, etc. 

In order to be able to extend our study to related systems described by different 

dynamics, such as adsorbed atoms on stepped crystal surfaces, Molecular Dynamics 

(MD) simulations are currently being performed and detailed analysis are being 

carried out, in order to ascertain the influence of the dynamics on the progress of the 

layer transitions in strained two-dimensional crystals with confinement. These MD 

result will be presented elsewhere. 
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The molecular movies of formation (Part1-3) and annihilation (Part1-3) of solitons 

and standing strain wave superstructures in a two-dimensional colloidal crystal, and 

the molecular movies of solitons and standing strain wave superstructures without 

transition (Part1-2). 
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Figure Captions 

Figure 1 Internal stress yyxx σσσ −=  (in LJ units) in the confined crystalline strip 

plotted vs. ∆ , for the case of a system started with 30=xn , 108=yn  (filled 

symbols) and a system started with 29=xn ; 108=yn  (open symbols) plus the 

appropriate extra particles per row, as described in the text. Open circles represent the 

stress of the system before the soliton annihilation, and Open triangles represent the 

stress of the system after the soliton annihilation. With D larger than 1.5, the soliton 

annihilation does not occur. Curves are guides to the eye only.  

The upper insert shows a schematic sketch of our geometry: we study a system of size 

D  in the x -direction and yL  in the −y direction, apply a periodic boundary 

condition along the −y axis, while the boundary in the −x direction is created by 

two rows of fixed particles (shaded) on the ideal positions of a perfect triangular 

lattice with lattice spacing a at each side. In the fully commensurate case, 

2/3anD x= . The open circles represent the first row of mobile particles adjacent to 

each wall. 

 

Figure 2 The origin of soliton lattice in two-dimensional colloidal crystal: (a) In 

perfect crystal, all the particles are located at the bottom of the potential energy wells 

and the system is fully commensurate. (b) The distance between structured walls is 

reduced. The number of particle row is reduced by one, and the particles from the 

missing row compete for the space with the particles in the remaining rows. Some of 

the particles should move out of the bottom of potential energy wells, and one of them 

(black) is even located at the top of the potential energy barrier. The system becomes 

incommensurate. (c) The zoom-in superimposed configurations show two solitons 
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near to the structured wall. The back square dots represent static wall particles. 

 

Figure 3 Superimposed configurations with a misfit of ∆ = 2.0. The numbers indicate 

Monte Carlo (MC) steps after the start of the simulation run. Each snapshot consists 

of 100 individual configurations, and each configuration is generated every 100 MC 

moves. The top and bottom two rows of static particles are the structured walls which 

provide the confinement. The arrows indicate the direction of the motion of the 

sliding centre which leads to the formation of a soliton. The ellipses indicate the 

newly formed soliton after the sliding transition in the two-dimensional colloidal 

system. The movie (see the supplementary information) is generated from consecutive 

superimposed configurations from this Monte Carlo run. 

 

Figure 4 Superimposed configurations with a misfit of ∆ = 1.5. The Monte Carlo 

(MC) simulation started with a system started with 29=xn ; 108=yn  plus the 

appropriate extra particles per row. The numbers indicate the number of MC steps 

after the start of the simulation run. After a very short MC run, the extra particles lead 

to the formation of solitons and a strain wave structure. The solitons are however not 

stable because the misfit ∆ is too small to stabilize the strained system. As a result the 

annihilation of the solitons occurs. The arrows and ellipses indicate the sliding 

direction and location of annihilated solitons. (The molecular movie can be found as 

supplementary information) 

 

 

 

Figure 5 (a) Time evolution of the stress σ  during the transition from the crystal 
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without solitons to the crystal exhibiting soliton stair cases causing the standing strain 

wave pattern, showing the assignment of 6 plateaus 1,2,3,4,5,6 and gaps G6 (between 

plateaus 6 and 5), G5 (between plateau 5 and 4, etc.) (b) shows the resulting stress 

distribution, )(σP , where plateaus show up as peaks, and the minima in between 

(gaps G1, G2, …) represent the transitions between these metastable plateaus. Note 

that the area of the peaks in )(σP  can be taken as a measure of the lifetime of the 

state which the peak belongs to. (c) and (d) show the case of reverse transition. 

 

Figure 6 (a) The variation of shear stress during the soliton formation and (b) the 

variation of shear stress during the soliton annihilation. 

 

Table Captions 

Table I: Label of peak (upper part) or gap (lower part) for the forward transition, 

shown in left column; associated area of )(σP , middle column; estimated lifetimes 

of the metastable states (right column, upper part) or passage times to move from one 

plateau to the next (right column, lower part) 

 

Table II: Same as Table I, but for the reverse transition. 
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(a)  7700 MC steps                    (b)  25000 MC steps 

  
(c)  40500 MC steps                   (d)  65500 MC steps 

Figure 3 
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(a)  0 MC steps                            (b)  100000 MC steps 

  
(c)  200000 MC steps                       (d)  300000 MC steps 
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Peak Area Estimated MC steps 
(Number obtained from 
Stress vs MCS) 

1 0.06349 761500 (~763800) 
2 0.01712 205300 (~202100) 
3 0.0393 471300 (~478400) 
4 0.00763 91400 (~87400) 
5 0.03361 403200 (~402600) 
6* 0.02607 312700 (~316100) 
 
Gap Area Estimated MC steps 
1 0.00104 12500 
2 0.00154 18500 
3 0.00235 28300 
4 0.00222 26600 
5 0.004 48000 
6 0.00201 24100 
 

                            Table 1 
 
Peak Area Estimated MC steps 

(Number obtained from 
Stress vs MCS) 

1 0.06617 463200 (~479400) 
2 0.03329 233100 (~234200) 
3 0.03753 262700 (~280100) 
4 0.06981 488700 (~514100) 
 
Gap Area Estimated MC steps 
1 0.01154 80800 
2 0.00333 23300 
3 0.00397 27800 
4 0.00448 31300 
5 0.00771 54000 
 

                            Table 2 
 

 


