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1. Introduction

Many problems in optimization can be cast as problems of finding a fixed point of
a map F:R?— R? which is nonexpansive with respect to the co-norm, or a weighted
version thereof. Examples are algorithms for solving dynamic programming equations
for shortest path problems and Markov decision processes, certain network flow
problems, etc. A standard approach then is to use the iteration

X,+1=F(x,)
or its ‘relaxed’ version
Xps1 =(1—@)x, +aF(x,), ae(0,1). | 5

A comprehensive account of synchronous and asynchronous implementations of these
algorithms and their applications to optimization and numerical analysis appears in
[1], along with an extensive bibliography. A continuous time analog is studied in [4].

This work considers a distributed implementation of a variant of (1). We replace ‘@’
by a tapering stepsize {a(n)} = (0, 1) as in stochastic approximation theory, satisfying
for some re(0, 1),

1=za(n+ /am)—1, Yam=ow, Y an'*ti<o 2
for g=r. An example is a(n)=(n+2)" !, r=(say) 0-5. Our model of distributed
computation is as follows: We postulate a set-valued random process which selects
at each time a subset of {1,...,d} indicating the indices of the components which
are to be updated. The update uses delayed information regarding other components
with the delays being required to satisfy a mild conditional moment bound. We obtain
a very general convergence theorem under these conditions (Theorem 1.1 below)
which does not require F to be a contraction or a pseudocontraction as in the earlier
literature.

Tapering stepsize as a means for suppressing the effects of delays was proposed in [3]
in the case of algorithms whose continuous limits are differential equations admitting
strict Liapunov functions. Equation (1) need not satisfy this condition. Furthermore,
the model of distributed computing is more elaborate than in the above work.
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The paper is organized as follows. The remainder of this section formulates the
algorithm and states the main result. The next section studies an associated o.d.e. which
this algorithm tracks in the limit. The third section proves the main result using this
‘o.d.e. limit’. The last section gives some examples if nonexpansive maps arising in
numerical analysis and optimization. A forthcoming companion paper studies the
asynchronous version of this algorithm (i.e., one without a ‘global clock’).

Introduce the norms

], = max|x,.

for x =[x,...,x,]. Let F:R*— R? be oo-nonexpansive, i.c.,
IFG) = F) o < llx—yllo> x,yeR

In particular, it is Lipschitz. Let G = {x|F(x) = x} denote the (closed) set of fixed points
of F, assumed nonempty.

LetI={1,2,...,d} and S a collection of nonempty subsets of I that cover I. Let { Y, }
be an S-valued process and for each n, 7;,(n), i # jeI, random variables (delays) taking
values {0, 1,.. ., n}. We set t,(n) = 0 Vi, n. The distributed version of (1) we consider is as
follows: Given X (0), compute X (n) =[X (n),..., X,(n)] iteratively by

Xi(n+1)=X,(n)+am)[F,(X,(n — t;;(m)),..., X y(n — 7;4(n)))
— X, (n]1I{ieY,} : ©)

for iel, n20. Let #,=0(X(m), Y(m), m<n, 1(m), m<n,i,jel) and %, =0(X(m),
Y(m), 7,;(m), m < n,i,jel), n > 0. We shall be making the following key assumptions:

(A1) There exists a § > 0 such that the following holds. For any 4, BeS, the quantity
P(Y, . ,=B/Y,=4,%,) v 4)

is either always zero, a.s., or always exceeds §, a.s. That is, having picked 4 at time n,
picking B at the next instant is either improbable or probable with a minimum
conditional probability of ¢, regardless of n and the ‘history’ ¢,.

Furthermore, if we draw a directed graph with node set S and an edge from A4 to
B when (4) exceeds 0 a.s., then this graph is irreducible, i.e., there is a directed path from
any AeS to any BeS.

(A2) There exist b > r/(1 —r) and C > 0 such that
E[(rij(n))b/g",,] <C as. Vij,n

(A3) If = the integer part of a(n)" ™, then 71 is o(n) and moreover, lim sup, _, wan—n)/
a(n) < 0o. (Note that this condition is satisfied by our example a(n) = (n + 2)~ ! with
r=05)

The condition 7,(n) = 0 implies that for updating the ith component, its most recent
value is immediately available. The idea is that each component is computed by
a specific processor, and the different processors communicate with each other in
conformity with (A2). We make the following immediate observation for later use.
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Let zeG. If C,=max,,,[|X(n) —z]|, then by (3) and co-nonexpansivity F,{C,} is
a nonincreasing sequence. Thus

sup | X (n) — z, <[ X(0) — 2 -

Our main result is the following:

Theorem 1.1. X (n)— G a.s.

The proof will use the fact that (3) asymptotically tracks an o.d.e. The next section
studies this o.d.e.

2. An associated o.d.e.
We start with some notation. For AeS, define FA(-) = [F£(")..., F4()]: R*>R? by
Fi(x)=F(x)I{jeA} + x;I{j¢A}

for x=[x,,...,x,]. For any Polish space X, let 2(X) denote the Polish space of
probability measures on X with the Prohorov topology. In particular, 2(S) s the space
of probability vectors on S. For ueZ(S), define F*: R*— R? by

Fi()= Y WA F().
Clearly, F4, F* are oo-nonexpansive. Given o >0, say that ue#(S) is a-thick if
min , 4(A) = o and thick if it is a-thick for some o > 0. The following is easily proved.

Lemma 2.1. G is precisely the set of fixed points of F* for thick u and the intersection of
the sets of fixed points of F4, A€S (resp., F¥, ue#(S)).

Let U denote the space of 2(S)-valued trajectories i = {u,,t > 0} with the coarsest
topology that renders continuous the maps i— (7 f(H)u(A)dt for T>0, AeS,
f€L,[0,T]. U then is compact metrizable. Let us say that geU is a-thick for a given
a > 0if p, is for a.e. ¢, where the ‘a.e’ may be dropped by taking an appropriate version.
Say that it is thick if it is a-thick for some o > 0.

Lemma2.2. Let i"— % in U and i" is a-thick, 0. > 0, forn=1,2,.... Then 1% is a-thick.
Proof. For any AeS,t>5>0,n>1,

f )ty > al—)
The inequality is preserved in the limit n —+ o0. The rest is easy. | O

Given e U, consider the o.d.e.
X(t) = F*(x(t)) — x(t), x(0) = x. (5)

Lemma 2.3. The map (i1, x)eU x R*— x(-)e C([0, o0); R?) defined by (5) is continuous.

Proof. Let (i, x,) —»(a®,x ). For n > 1, let x"(-) satisfy
xX"(t) = F% (x"(t)) — x"(t), x"(0) = x,,.
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Using the Gronwall lemma and Arzela-Ascoli theorem, one verifies that {x"(-)} is
relatively compact in C([0, 0); R?%). By dropping to a subsequence if necessary, suppose
that x"(-) = x*(-). Then x®(0) =x. Also,fort 20,n>1,

't

") =x,+ | (FA(x"(s))— FX(x®(s)))ds

JO .

[t

+ | (FA(x2(s)) — F& (x™(s)))ds

J o

ft t

+ | (FR (x™(s)) — x*(s))ds + J (x*(s) — x"(s))ds. (6)

IAO 0

The first and the fourth integral go to zero as n— oo because x"(-) » x(-). (We use the
oo-nonexpansivity of F* in the former case.) So does the second integral in view of our
topology on U. Thus x® (') satisfies

x®(t)= F“zm(x“’(t)) —x®(8), x®(0) = x, .
The claim follows. | O

The main result of this section is the following:

Theorem 2.1. Given a thick jie U, the solution x(-) of (5) converges to a point in G which
may depend on the initial condition. Furthermore, t — || x(t) — x* ||, is nonincreasing for
any x*eG.

The proof will closely follow that of Theorem 3.1 [4], except for the additional
complications caused by the fact that (5) is nonautonomous. We split the proof into
several lemmas. Let x*eG and ji be a-thick for « > 0.

Lemma 2.4. The map t— ||x(t) — x* |, is nonincreasing and hence converges to some a> Q.

Proof. A straightforward computation shows that for pe(1, o)

d
g P60 = x* = — llx(t) = x*[|, + lIx(t) — x* I 7?g(®),

where
d

= Z () — xF [P~ F sgn(x, () — xF)(Fy(x(2) — F¥(x*))

< HX(t) — x* [T F(x() — FH(x*) .- (7
Thus for t > s,

() — x*|, < [lx(s) — x*{| , + j (= %) —x*1,

+ 1F#Ge(v)) — F*(x*) [ ) dy.
Let p— o0 to obtain

t

1(2) — x*[| o < flx(8) —x* . + J (= [Ix () = x*[

s

+ [[F*(x () — F*(x*) || ,)dy




S

Fixed point computation 293
The claim follows in view of the co-nonexpansivity of F*. O
If a = 0, we are done. Suppose a > 0. Define B, = {xeR"|||x — x*|| , = a}. Introduce

the terminology: An m-face for m <d is a set of the type
{x=1[xy5....x,1|x;€la,.b; ], k<m, X, = ¢, k>m},

where {i,,...,i,} is a permutation of {1,...,d} and b, > a,, ¢, are scalars. Then B, is the
union of (d — 1)-faces of the type {x|x, — x} = a (or —a)and |x; — x}| <aforj # i}. For
any (d — 1)-face of this type (say, H), define G, = {xeH|F(x)eH}. Then Gy is closed,
possibly empty. Since ||x(f) — x*|| , —a, x(t)— B,. Now the trajectories x(t + ), t >0,
form a relatively compact set in C( [O oo); R%. Thus any limit pomt X(-)thereofast— o0
must lie in B,. By Lemmas 2.2 and 2.3, %(-) satisfies

() = FH(%() — %)
for some a-thick feU. Let {X(-)} = {X(¢)|teR"}.

Lemma 2.5. {%(")}nH < Gy.

Proof. If both sets are ernpty, there is nothing to prove. Suppose {%(")} " H # ¢. For
simplicity, let H = {x|x, — x* = a,|x; — x}¥| < a,i>1}. Suppose {%(t)|te[0,A]} = H.
Then X, (¢) = x¥ + a, te[0,A], leading to 0 = X, () = F‘1 (X(2)) — %, (t). Thus FE(X(2) =
%, (t)=x}+a=F, (X(?) in view of oc—thickness of fi, for te[0,A]. Since F is oco-
nonexpansive and x* is a fixed point of it, we also have

IFE@)) = x* <%0 — x*||, =

Thus we must have F(X(t))eH, te[0,A], implying X(1)eGy. It follows that all
connected segments of {£(-)} n H that contain more than one point must be in Gg. On
the other hand, those containing a single point must clearly be in the relative boundary
0H of H, which is the union of its (d — 2)-faces. Let xe{X(")} " 0H. It suffices to show
that F(x)edH. If not, F(x)—x and therefore F*(x)—x for any thick u would be
transversal to 0H at x. This is not possible because X(-) is a differentiable trajectory
confined to B, and cannot make ‘sharp turns’around corners. This completes the proof.

O

Consider a fixed (d — 1)-face H of B, for the time being. Let H = {x|x, = x¥ +a,|
x; — x}| < a,j > 1} for simplicity.

Lemma 2.6. If Gy # ¢, themap F:Gy— H can be extended to an co-nonexpansive map
F:H — H which has a fixed point XeH.

Proof. The second claim follows from the first by the Brouwer fixed point theorem. Fix
1 <i<d and define

g;(x)= inf (F;(y) + |x — ¥l ), x€H.

yeGn

Then g,(x) < F,(x), xeGy. For x, yeGy, co-nonexpansivity of F leads to

Fi)+ 1x =yl = Fi(x)-
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Thus g,(x) > F,(x), implying g, = F, on G. Now for x,zeH,

9:0) < inf (F,(n) + [y — zll o + |z — x| )

yeGu
<gi(2) + 1z — x| . ®)
Similarly, g,(z) <g,(x) + ||z — x| .. Hence
l9:() — ;)| < 1z — x| .-
Let F,(x) = max(x} — g, min(g,(x), x* + a)). Then
Fix) - Fi2)| < |x~zl .
Let F, (x)=x* +a, xeH. Then F() = [F,(),.. .. F,()]is the desired map. N

Proof of Theorem2.1. The same argument as in Lemma 2.6 can be used to extend Fto
anco-nonexpansive map F:R?— R? that restricts to F on H and to F on U G ,. Define
F4, F* in analogy with F4, F* using F in place of F. Then %(-) satisfies

%(2) = FR(%(t)) — 2(2).

We conclude that t — ||X(t) — ]|, is nonincreasing in ¢t and hence decreases to b > 0. If
b=0,wearedone. Ifnot,let B, = {x| | x — X||,, = b}. Then %(z) —B,. Also, itis clear that
10 (d — 1)-face H of B, is coplanar with H. This argument can now be repeated for each
(d —1)-face H of B, that intersects {X(-)}, leading to possibly more .l ., -spheres
B, B,,... defined analogously to B, such that %(f)— B,nBynB,N.... The above
remarks also imply that this intersection is a union of m-faces with m at most (d—2).
Now consider a limit point x'(-) of £(t +.), > 0, in C([0, 00); R%) as £ — co. Repeat the
above argument to conclude that x'(z) converges to a union of m-faces with m at most
(d — 3).Iterating this argument at most d times, we are left with a union of finitely many
points to one of which %(-), x'(*)... and hence x(-) must converge and which then must
be a fixed point of F* for some thick u, hence of F. This completes the proof. O

COROLLARY 2.1

Givene,b > 0, there exist T = T(e,b) > 0,5 = n(e, b) > 0 such that for any solution x(-) of
(5) satisfying | X (0)] , < K < o0 and

(1) [ is b-thick,

(i) {x(t)|te[0, TI} NG’ = ¢ where G° = {x|inf,; |x — y| <&}, we have

inf[|lx(t) = y|l, <inf[x(0) — yll , —y for t>T.
yeG yeG

Proof. Suppose that the claim is false. Then there exist x"e RY, " U such that for some
b>0, {i"} are b-thick and x"(-) satisfy (i) x"(t) =F¥(x"(f)) — x"(t), x"(0)=x",
Ix"ll , < K, (ii) x"(£)¢ G* for te[0,n] and

inf |x"—y[ > sup inf(|x"(t) -y, > inf |x"— y| _ — 1/n,
yeG te[0,n] yeG yeG

for n> 1. By dropping to a subsequence if necessary, we may then suppose that
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X" x%¢G, i"— % in U and x"(*) » x®(*) in C([0, c0); RY). By Lemmas 2.2 and 2.3, i*
is b-thick and x* () satisfies.

x°(t) = F&4 (x® (1)) — x°(t), x*°(0) = x*.

Also, inf ; ||x* — yll,, =inf;[x*(¢) — ¥ | »» t 2 0. This contradicts Theorem 2.1, es-
tabhshmg the claim. O

Fora,n,T>0,call a trajectory y():R* = R?% an (o, 5, T)-perturbation of (5) if there
exist 0=T, < T, <T,<- in [0, 00) with TJ+1 T,> T, such that for some x’(*)
satisfying (5) for some oc—thlck @ in place of i, we have

sup [|y(t) = x'(®) ], <n.j>0.

te[T;,Tj+1]
COROLLARY 2.2

For any a,e>0, T>0 as in Corollary 2.1 and y > 0 sufficiently small, any (a, y, T)-
perturbation y(-) of (5) converges to G :

Proof. In view of Corollary 2.1, thlS is a straightforward adaptation of Theorem 1, p.
339 of [5]. O

3. Proof of Theorem 1.1

Asa first step towards establishing that { X (n) } tracks (5) asymptotically, we analyze the
S-valued process { Y, }. In particular, we shall show that it may be viewed as a controlled
Markov chain.

For AeS, let D, = {BeS| (4) exceeds 6, as.} and V, = {ue?(D,)|u(B) >6YBeD,,}.
Let V=I1,V,. Deﬁnep Sx8SxV-[0,1] by

p(A, B, 1) = 4(B),

where u , is the Ath component of u. Define V-valued random variables {Z"} as follows.
The Ath component of Z", denoted by Z7, is given by

Z(B)=P(Y,., = B/%,)I{Y, = A)+ ¥ I{Y,# A},

where W, are fixed elements of V,, A€S. Then (4) equals p(4, B, Z") and {Y,) may be
viewed as an S-valued controlled Markov chain with action space V' and transition
probability function p. It should be kept in mind, however, that this is purely a technical
convenience and it is in no way implied that {Z"} is actually a control process. In
particular, this allows us to conceive of a ‘stationary control policy 7’ associated with
amap 7: S — V wherein Z" = n(Y,), n > 0. The latter part of (A1) implies that {¥,} will
be an ergodic Markov chain under any stationary policy n with a correspondmg
unique stationary distribution v, e Z2(S).
Lett,=0,t,=2" _ a(m),n>= 1. Define y(-):[0, 00)— S by

y(t) n’ n t<tn+1=n>0'

Define ieU by p,(A) =I{y(t)=A},t >0 and @*cU, s=0,by uj=p,,,, t 2 0.
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Lemma3.1. There exists an o> 0 suchthat any limit point of {[*} as s— oo is a-thick, a.s.

Proof. Let AeS. Then

M,= z‘ijla(m)[I{YﬁA}—gp(B,A,zm-l)I{Ym-l ~B)]

is a zero mean bounded increment martingale with respect to {¢,}, whose quadratic
variation process converges a.s. in view of (2). By Proposition VII-2-3(c), pp. 149-150,
[6], {M,} converges as. For n >0, let fi(s) = min{m > n| 2 +1a() = s}, s>0. Then
lim, , (Mg —M,)=0as. and T% a(m) > s together imply

Y9 amI{Y, = A} e ,a(m)Y yp(B, 4, Z" " YI{Y, _, =B}

- — a -0 (9
2o a(m) Y2 a(m)

a.s. Define @, . 2(S x V) by

_2n,a(m)I{Y,eC,Z"e])
D=

for C = §, J = V Borel. Then from (9), it follows that a.s;, any limit point @ of @, , in
P (S x V) as n— oo must satisfy

({4} x V)= jp(.,A,.)d@, AeS.

Thus ® must be of the form
O({A} x J)=v(A)¢ ,(J), A€S, J = V Borel,

where A — ¢ ,:S — P(V) defines a stationary randomized policy and v the correspond-

ing stationary distribution (see e.g. [2], pp. 55-56). By Lemma 1.2,p. 56 and Lemma 2.1,
p. 60 of [2], it follows that

minv(4) >minwv,_(4) £ o> 0.
A A,m
Thus
A(s) -
- 2 m2na(m)

From our definition of {j'}, it then follows that

=0 a.s.

t—+co

.. L
llmxnf-s—f dyu,(4) > aa.s.VAeS.
0

Fix a sample point outside the zero probability set on which this claim fails for any

AeS, s> 0 rational. For this sample point, the claim follows easily in view of our
topology on U. . ‘ O

Now rewrite (3) as
X(n+1)=X () +a(n)(W(n) — X (n))

for appropriately defined W(n)= [W.(n),..., W,(n)] and set. W(n) = E[Wn)/F,],
n 2 0, the conditioning being componentwise. Write Wn)=[W,(@n),..., Wd(n)]
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Lemma 3.2. There exist K >0, N =1 such that for n = N,
IF¥(X () — W(n) |, < Ka(n).

Proof. W.lo.g., let X(0) be deterministic. Then V4 < I, zeG,
[FAX M)l < 1X M) =zl + [F@) ], Vizlo
<3zl o+ IF@ I + [X(0) ], & M < c0.
Foreachi,1<i<d,andc=1-r,
[F¥(X (n)) — Wi{m)| < E[IF"(X(m)) — Wym)|1 {;;(m) < a(m)~* for all 1,j}/#, ]
+ ELIFP((X(n) — W) {z;(n) > a(n)* for some i,j}/7,].

The second term is bounded by 2MCa(n)** in view of (A2) and the conditional
Chebyshev inequality. Let 7 be the integer part of a(n) ™. Since a(n)™° is o(n), we may
pick n large enough so that n > 7. Then for m < 71, (A3) leads to

I X(n)—X(n—m)|, <2M i a(k) < Ka(n)*

k=n-—n

for a suitable K > 0. Thus the first term is bounded by Ka(n). Since b > r/(1 —r), the
claim follows. o

Let T>0. Define T,=0,T,=min{t,lt,>T,_, +T} nx 1. Then T,=t,,, for
a strictly increasing sequence {m m}. LetI,=[T,,T,,,],n>0.Define x"(t), tel,, by
X"(T,)= X (m(n)) and

n
Xty +141) = X Gy 1) + FTm (% (b iy +1))
- JEn(tm(n)+1rc))(tm(n)+k+ 17 tm(n)+k)9
with linear interpolation on each interval [t +i» tmm+i+1]- Define x(¢), £ =0, by
x(t,) = X (n) with linear interpolation on each interval [%,,¢t,. . ].
Lemma 3.3.
lim sup ||x(t) — x"(t)|| , = 0 a.s.

n—+oo teln

Proof. Let 1 n= 1. For i = m(n), we have
x(t;1 1) = x(t;) + al) (FY(x(t,) — x(t,)) + a@)(W () — F¥'(x(t,))
+a)(W(i) — W)
Let M, == ,a())(W() — W (i) and &, = M, — M, for i > m(n). Then {M,,F,}is
azero mean bounded increment vector martlngale and the quadratic variation process
of each of its component martingales converges a.s. by virtue of (2). Thus by Proposi-

tion VII-2-3(c), pp. 149-150 of [6], {M,,} converges a.s. Fix a sample point for which
this convergence holds and let 6 > 0. Then

sup 11, <6/2

izm(n)

for n sufficiently large.
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Let £,y = X(ti11) — & i = m(n) with £, = Xy (65 &,y - 1 2 0). Then for i > m(n),
ﬁi-i-i = ﬁi + a(i)(FY[(ﬁi) - 321‘) + a(i)(FYi(Jei + fi—-1) - (Jei + éi— 1)

— FY(%) + %) + a@)(W (i) — F¥(x(z,))-
Also - '
(1 1) = 2() + a@)(FI( (1)) — £(2,).

Subtracting and using the preceding lemma, we have, for n sufficiently large,
[Ri s = X0 Moo <A +2a@) 1%, =Xt ||  +2a() 1€, | oo + Ka()* ™.
By increasing n if necessary, we may suppose that

Y a(i)i*r <52,

izn

Then using the inequality 1 + 2a(i) < exp(2a(i)) and iterating, we have for n sufficiently
large,

sup 1% — 2], <2e*TTHK + T+ 1)6.

m(n)gismn+1)

Also
sup 1%~ x(t) 1l <6/2,

m(n)y<ism(n+1)

for sufficiently large n. Since § > 0 was arbitrary, the claim follows on observing that
x(-), X"(-) are linearly interpolated from their values at {t.}. O

Next define £*(t), tel,, by X" (Eny) = X (t ) and
(1) = PO (1) — 2'(t), tel,,.

Lemma 3.4,

lim sup [[%*(£) — %*(t)||, = O.
n—>o teln
Proof. This follows easily from the Gronwall lemma. O

Let « > 0be asin Lemma 3.1.
Lemma 3.5. Almost surely, the following holds. There exists an a-thick sequence
#"eU,n 20, such that if £"(t),tel,, is defined by X (trnny) = X (b)) and
(1) = FR (" (1) — %(0), tel,,
forn=1, then

lim sup [|2"(f) — £"(t) | ,, = 0.

n—oc  tels

Proof. This is immediate from Lemmas 2.3 and 3.1. O

Proof of Theorem1.1. Lete>0.Let b = abovein Corollary 2.1 and pick T = T/, «)
accordingly. Pick y > 0 as in Corollary 2.2. Combining Lemmas 3.3-3.5, we have
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lim sup ||®"*(t) — x(t)|| , = 0 as.

n—oo tels
Thus x(z, + ) is a (¢, T, y)-perturbation of (5) for sufficiently large n. By Corollary 2.2, it
follows that x(t) - G®. Since ¢ > 0 is arbitrary, the claim follows. O

Observe that the foregoing can be easily extended to the following relaxation of
the latter half of (A2). The directed graph formed therein need not be irreducible,
but each communicating class in it must correspond to elements of S which together
cover I. Also, extension to nonexpansive F with respect to the weighted co-norm
is straighforward.

4. Examples

This section sketches some important instances of fixed point problems for oo-
nonexpansive maps. A general reference for these is [1].

(i) Shortest path problems. Given d+ 1 locations {0,1,...,d} and the distances
{d;0<i,j<d,i# j} between them, the problem is to find the shortest path from
location i # 0 tolocation 0. Letting V(i) = the length of the shortest path from ito 0, one
has the dynamic programming equations

V(i) = min (dio, min (d; + V(j))), I<i<d
j#i,0

Letting V = [V(1),..., V(d)]7, this has the form V = F(V) for an co-nonexpansive F.
(i) Markov decision processes: Consider a controlled Markov chain {X,} on a
finite state space S, with a compact metric action space 4 and a continuous transi-
tion probability function p:S x S x 4—[0,1]. The aim is to choose an A-valued
sequence {Z,} that does not anticipate future, to minimize a suitable total expected
cost. Thus

PX,,,=j/X,Z,i<n)=pX,.j,Z,)Vn.

Let B be a proper subset of S and ae(0,1). Consider two cost functionals: For
ke C(S x A),

(1) cost up to a first passage time:

t—1 -
E[ k(X,,,Z,,)}
n=0

where 1 =min{n > 0|X,eB},
(2) infinite horizon discounted cost:

E[ i a"k(X,,,Z,,)].
n=0

Letting V(i) denote the minimum cost when X,=1i, the dynamic programming
equations in the two cases are, respectively,

V(i) = min (k(i,u) + Y p(i.j,u) VU)), ieS\B,

Jj¢B
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and

V(i) = min (k(i, u+ay p(i,j,u) V(j)), ieS.
u Jj

Both can be cast as fixed point equations ¥ = F (V) for co-nonexpansive V.
(1ii) Systems of linear equations: The problem of solving a system of linear equations
Ax =) can be cast as finding the fixed point of F(x)=x— a(4dx —b),ae(0,1). If
[I—A4|, <1, Fis co-nonexpansive.
(iv) Strictly convex network flow problems: The following problem arises in network
flow optimization:

minimize ) a(f;)

(i.j)ed
subject to
Ji— > J=5;VieN,b;; < Jii<e;Vi.jeA4,

{ji(i.ed} {jiUed}
where a;;()) are strictly convex. This problem can be cast as that of finding a fixed point
of a pseudononexpansive map, i.e., a map F satisfying | F(x)— y| o < Ix —y| , when-
ever y is a fixed point of F. (See (1), § 7.2 for details). Our analysis applies here as well.

Acknowledgements

This research was supported by a grant from the ISRO-IISc Space Technology Cell.
The author would like to thank Prof. Vinod Sharma for pointing out an error in the
preliminary version of this paper.

References

[1] Bertsekas D P and Tsitsiklis J N, Parallel and distributed computation (Prentice Hall, Englewood Cliffs)
(1989)

[2] Borkar V S, Topics in Controlled Markov Chains, Pitman Research Notes in Maths, No. 240, Longman
Scientific and Technical, Harlow (1991)

[3] Borkar V S and Phansalkar V V, Managing interprocessor delays in distributed recursive algorithms,
Sadhana 19 (1994) 995-1003

[4] Borkar V S and Soumyanath K, A new analog parallel scheme for fixed point computation, Part I:
Theory, preprint (1993)

[5] Hirsch M W, Convergent activation dynamics in continuous time networks, Neural Networks 2 (1987)
331-349

[6]1 Neveu J, Discrete Parameter Martingales (North Holland: Amsterdam) (1975)

L gp




