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Abstract. We consider the ergodic control of a Markov chain on a
countable state space with a compact action space in presence of finitely
many (say, m) ergodic constraints. Under a condition on the cost functions
that penalizes instability, the existence of an optimal stable stationary
strategy randomized at a maximum of m states is established using convex
analytic arguments.
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1. Introduction

Ross (1989) studied ergodic (or ‘long-run average cost’) control of Markov chains
with finite state and action spaces when finitely many (say, m) other ergodic costs
are required to satisfy prescribed bounds. Using linear programming arguments, he
proved the existence of an optimal strategy randomized at a maximum of m states.
[See Hordijk & Kallenberg (1984), Beutler & Ross (1985) and Altman & Shwartz
(1990) for related work.] This result is extended in Borkar (1991) to countable state
space and compact action space using convex analytic arguments under the hypothesis
that the chain be positive recurrent under all stationary randomized strategies and
the corresponding invariant probability measures tight. In this work, we drop the
latter condition, replace it by a condition on the costs that discourages instability and
recover the same result.

This class of problems is motivated by the following considerations. Controlled
Markov chains are a popular paradigm for dynamic decision-making under uncertainty.
Important application areas include control of queueing networks used to model
computer and communication networks, flexible manufacturing systems etc., not to
mention economic applications. In many of these situations, the problem calls for a
simultaneous consideration of more than one optimization criterion. There are several
ways to approach such multiobjective problems. One is to reduce it to a single
objective problem by coalescing the objectives into one via a ‘utility function’.
However, the choice of such a function is not always obvious nor are the desirable
ones necessarily the most amenable to analysis. An alternative approach, in tune with
standard engineering practice, is to optimize one objective function (presumably the
most important) while keeping the rest within reasonable bounds. This leads to the
constrained control problem we discuss here.
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A remark on the cost structure: In situations where money or effort contributed
now is more expensive than that contributed later (due to interest, inflation etc.), one
‘discounts’ the future leading to the ‘discounted cost control problems’. This is typical
in economic applications. There are, however, situations where one plans for and
anticipates a near-equilibrium (or ‘steady state’) behaviour for long stretches of time
with no reason to favour short-term optimality over long-term optimality and with
set-up costs, transients etc. either negligible or separately taken care of. The prime
example of such is the case of computer and communication networks. Then it makes
sense to consider the ‘long-run average’ or ‘ergodic’ cost as we do here whereby one
averages the ‘running cost’ function with respect to the equilibrium distribution.

As for the assumptions used in Borkar (1991) and here, the former assumes a
blanket stability, thereby ruling out a priori any possibility that the system may
become unstable (e.g. the queue size blows up). This is often unreasonable in the
applications mentioned above. The present set of assumptions allows instability but
imposes a cost structure which penalizes instability and thereby ensures that the
optimal system will also be stable.

The next section gives a precise statement of the problem. The main result is proved
in § 4 following some preliminaries in § 3.

2. Notation and problem description

Let X,,n>0, be a controlled Markov chain on state space S= {1,2,...,} with
transition matrix P, = [[p(i,j, u;)1], i,jeS, indexed by the control vector u = [u,,u,,...].
Here u,eD(i) for ieS, D(i) being a prescribed compact metric space. As argued in
Borkar (1989, p. 642), we may assume that the D(i)’s are identical copies of a fixed
compact metric space D. Let L= D®. The maps p(i, j,.) are assumed to be continuous.

For any Polish space Y, let P(Y)= the space of probability measures on Y with
Prohorov topology (Billingsley 1968). If Y is countable, say {1,2,...}, write ve P(Y)
as a row vector [v({1}),v({2}),...] or simply [v(1),v(2),...]. :

A control strategy is a sequence {Z,},Z,=[Z,(1),Z,(2),...] of L-valued random
variables such that for ieS,n>1,

P(Xps1=i/Xps Zpym<n)=p(X,,i, Z,(X,)). (1)

If {Z,} are independent and identically distributed (i.i.d.) with a common law ®eP(L),
call it a stationary randomized strategy (SRS for short), denoted y[®]. As argued in
(Borkar 1989, p. 642), we may take @ to be a product measure @ = 1, for ®,eP(D),
ieS. Under y[®], {X,} is a Markov chain with a stationary transition matrix

P[®] =[[ j p(i.J, u)@(du)ﬂ.

If ® is a Dirac measure at some £eL, call it a stationary strategy (SS for short),
denoted y{¢}. The corresponding transition matrix is P{¢} = P,.

We assume throughout that S is a single communicating class under all SRS. Say
that an SRS y[®] (respectively an SS y{¢}) is a stable SRS or SSRS (respectively a stable
ss or Sss) if the corresponding Markov chain is positive recurrent and thus has a
unique invariant probability measure n[®] (respectively n{£}). Define the corres-
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ponding ‘ergodic occupation measure’ #[®]eP(S x D) by

Jf da[®] =} n[®]() Jf (i, u)®,(du), f€C,(S x D).

(#{¢} is defined analogously.) Let G = {#[®]|y[®] an SSRS}.
Let k;: S x D> R*,0<i<m, be continuous and o; > 0,1 <i<m, be prescribed.
Let H = G be the set on which

Jkidﬁ[cb]sai, 1<i<m. )
We assume that H is nonempty and furthermore requires {k;} to satisfy

liminf infk;(j,u) >o;, 0<i<m, 3)
jmoo u i

where

oy = inffko da[@],
H

is assumed to be finite. (3) is satisfied in particular for {k;} of the form k;(j, u) = f;(j)
where f;(j) increases to oo as j— 0.

We also make the following assumption, called ‘stability under local perturbation’
in Borkar (1989): If y[®] is an SSRS and product measures ®',®eP(L) differ in at
most finitely many components, then y[®'] is an SSRS. As argued in Borkar (1989,
p. 645), this is satisfied in particular when each ieS has only finitely many neighbours,
1e., p(i,j,) =0 for all but a finitely many j.

Our problem is to minimize over H the cost

J ko d[®]. @)

3. Preliminaries

This section establishes some technical lemmas, the first being recalled from Borkar
(1989). Let P, = L be the set of product probability measures on L.

Lemma 3-1. (Borkar 1989) G is closed convex and its extreme points correspond to SSS.

Proof. Lety[®,],y[®,]betwo SSRS with®; = H@ii,j =1,2. Let 0 < a < 1 and define
® =TI1d,eP,(L) by '

®; = (an[@,1()D,; + (1 — a)n[@,]()D,,)/(an [®, 1() +
+ (1 —a)n[®,](i)), ieS.
From this definition and the fact that

n[®;]1 P[®;] =n[®;], i=1,2,
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it is easily seen that
(@n[®,]+ (1 — a) n[®,]) P[®] = (an[®, ] + (1 — @) [®,]).

Thus, n[®@] = an[®, ] + (1 — a) n[®,]. Then a straightforward computation leads to
2[®@] = aft[®,] + (1 — @) £[D, ].

Convexity follows. Now let y[®,],n=1,2,..., be a sequence of SSRS such that
#[®,] —v for some veP(S x D). Let neP(S) be the image of v under the projection
§xD—S. Then n[®,]—= in P(S). Disintegrate v(Schwartz 1961) as v({i } X B)=
n(ii})('ﬁi(B) forieS and B a Borel subset of D, with the regular conditional law ®,;eP(D)
for each i. Let ® = I1®,. Since p(.,j,.), JE€S, are continuous,

Jp(.,j,‘)dﬁ[(l),,]—-» p(.,j,.)dv, jeS.

Also, n[®,]— = in P(S) implies by Scheffe’s theorem (Billingsley 1968) that
n[®,] -7 in total variation. (6)
Putting the two together
n[®,]P[®,]-nP[a], 7

termwise. From (5)—(7), we have nP [@®]=m, ie., n=n[®]. Hence v= #[®] and G is
closed. Next, let y[®],® = I1®;, be an SSRS such that for some ipeSand O<a<,
there exist ¢, ¢, in P(D) such that

Jp(iOa b u){i)io(du)‘: afp(iO:v L) u)¢1 (du) + (1 - a) Jp(lo’ R ] u) ¢2(du), (8)

fp(im - %) ¢4 (du) # fp(io,-,u) ¢ (du), ©)

as vectors, the integrations being termwise. Without any loss of generality, let i, = 1.
Define ®,ePo(L) by ®; = ¢, x m2,®,i=1,2. |

From the assumption of stability under local perturbations, it follows that y[®,],
i=1,2, are SSRS. If n[®] = n[®,]=n[d,], the equation

. 2[®,1(0 f Pk, )y (du) = n[@,1(j), i=1,2,

contradicts (9) for some j. Hence any two of n[®],n[®, ], n[®,] are distinct from
each other. Let be(0, 1) be such that

@ =bn[®, J(Abr[®,1(1) + (1 — b)x[®,](1)).

Argue as above to conclude that
A[@] = bA[®,]+(1 - b#[®,].

Thus #[®] cannot be an extreme point of G, proving the second claim. QED

P—

R S
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COROLLARY 3.1

H i1s closed convex.

Proof. Convexity follows easily from the above. Closedness follows on observing
that (2) is preserved under sequential limits in G. QED

Lemma 3.2.  Any element of H is the barycentre of a probability measure supported
on the extreme points of H.

Proof. Let S= SU {0} denote the one point compactification of S. View P(S x D)
as a subset of P(§ x D) by identifying each #€P(§ x D) with the unique e P(S x D)
that restricts to 4 on § x D. Let H(G) be the closure of H (G)in P(S x D). Then H is
compact. Let H,, H, be the sets of extreme points of H,H respectively. Suppose
veH,\H,. Then v is a convex combination of two distinct elements of H at least one
of which must lie in A\ H and thus assign a strictly positive mass to {c0} x D. This
s possible only if v( {00} x D) > 0 which is false. Thus H, < H,. By Choquet’s theorem
(Phelps 1966) each ueH is the barycentre of a probability measure non H, If
n(H\H,)> 0, then we must have u({o} x D) >0, a contradiction. Thus n(H,) =1
and the claim follows. QED

Lemma 3.3. Each veH is of the form
V(A) =8V (AN(S x D)) + (1 - 8)v"(AU({o0} x D)) (10)
for A Borel in § x D where 0€[0,1], v'e G and v”éP({oo} x D).

Proof.  That (10) holds for some V'eP(S x D) is clear. Without loss of generality, let
0>0.1If 6 = 1,veH and the claim is immediate. If not, there exist {#[®,]} in H such
that

#[®,]1-v in P(S x D).
For je§,

fp(- »J>) AR [®,] = £[®,]({j} x D).

Since {j} x D is both open and closed in § x D,

[, 1({j} x D) > v({j} x D)= 6v'({;} x D). (11)
Disintegrate v' as

v ({i} x du) = n({i}) y(du)
for neP(S),i—¢;: S — P(D). Set ® = I1;4. For N> 1,

M=

R N
 "[2.10) Jp(i,j, u)%(du)-*d; ﬂ({i})fp(i,j, u);(du).

i

Thus
lim inf JP(-J, )dE[®,]=6 f p(.,j,.)dv’. (12)
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Equations (11), (12) together imply
J.p(.,j, Jadv <v({j} x D), jeS.

Both sides sum up to 1 when summed over J- Thus the equality must hold for each
Jj. Thus \

2.m({i}) jp(i,j, wi(du) =n({j}), jeS.

i

Thus v' = #[®], completing the proof. ' QED
Theorem 3.1  Expression (4) attains its minimum at an extreme point of H.

Proof. Let #[®,], n> 1, be a sequence in H such that
fko d2[®,] | .

In view of the foregoing, we may drop to a subsequence if necessary and suppose
that #[®,]—v in H for a v as in (10) with v' = #[®] for some y[®]. Fix j,1 <j<m.
Pick ¢;>0,m;< 1 such that

infk;(i,u) = o; +¢;, for i=>m;.
u

Forn>1, set

k(i u) = ke (i, u) I{i S mj+ n} + (o + &) [ {i > m; + n}.
Then

2; > lim infjkjdfc[cb,]

=0

> lim ka,,dﬁ[d),]

[=w
Letting n— co on the right,
o> 5fkjd7%[®] + (1 = 0)(a; + ¢;).

This is possible only if § >0 and

:e,.

jkjdfc [P]<a;
Since j, 1 <j < m, was arbitary, #[®]eH. Now let ¢ >0 and m, > 1 be such that

infk(i,u) = ay + ¢, for i > m,.

u
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Argue as above to conclude
oy =0 fkodﬁ[d)] + (1 —0)(ap +¢)
and therefore

Jkodﬁ[d)]sao.

From the definition of a,, equality holds. Thus (4) attains its minimum on H at #[®].
By lemma 3-2, 2[®] is the barycentre of a probability measure n on H,. Thus

o oo )

Since [kodp > o, for peH,, we must have [k,dp = a, for 7-a.s. p, proving the claim.
| QED

4. Proof of the main results
Our main result is the following:

Theorem 4.1 The constrained problem above has an optimal SSRs y[®],® = I1®;,
satisfying: For all but at most m values of i, ®, is a Dirac measure. For the remaining
I, it is a convex combination of r;> 2 Dirac measures where the integers {r;} satisfy
Zr;<m ' )

The proof proceeds in several steps. It helps at times to view G, H as subsets of
the topological vector space of signed measures on S x D. Let m=1 for the time
being. Let #[®]eH, be such that [k, d#[®] = «,. If #[®@] is an extreme point of G,
#[@] =7 {&} for some e L by lemma 3.1 and we are done. Suppose not. Then it is
a convex combination of two distinct elements vy, v, of G. (Note that {k; dv, < co for
each i because [k, dA[®] < c0). If v, v,€H,#[®] cannot be in H,. Ifv,,v,e G\ H, # [®]
cannot be in H because G\H is convex (recall m = 1). Thus exactly one of the v,’s,
say vy, is in G\H. Then [k;dv, > «; and therefore {k,dv, <a,. The value of [k, dv
increases continuously from one strictly less than o, to one strictly exceeding a, as
v moves from v, to v, along the line $egment joining the two. This segment must
intersect the hyperplane {v|{k,dv=o,} at #[®] because #[®]¢H, otherwise. Now
one can use a result of Dubins (1962) (see also Witsenhausen 1980, p. 265) to conclude
that #[®] is a convex combination of two distinct extreme points of G. (Recall
H, < H,). If either of the latter assigns a strictly positive mass to {0} x D, so would
#[@] itself. Thus both must be extreme points of G itself and hence are of the form
#{&;} for some £;e L,i=1,2. Let Z denote the line segment joining the two inclusive
of the end points. Then Z < P(S x D) is compact. ,

The rest of the proof mimics Borkar (1991) closely with a few essential differences.

Lemma 4.1. If #[®] is a convex combination of #[®,], i=1,2, in G, the latter must
lie on Z.
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Proof. If not, the intersection of the rectangle formed by 2[®;],#{&;},i= 1,2, with
the hyperplane {v|[k,dv=q,} is a line segment in H containing #{®] in its relative
interior. This contradicts the fact #[®]eH,, proving the claim. QED

Fori=1,2, let &=[&(1), &(2),...] and define £,,n >0 by & =¢&,, & =[&01),...,
£,(m), Ex(n+ 1), & (n+2),..Jfornz=1.

Lemma 42. #{{,}eZ for n>0.

Proof. We shall prove a more general result: For e L such that £(i) = either &, (i)
or &,(i) for each i, p{£} is an ssS with #{¢}eZ. Suppose that p(1,.,&, (1)) #p(L,., &, (D).
[1f not, take the least j for which p(j,., E,())) #pUs-»E,(j))-] Let ¢; denote the Dirac
measures at &(1), i=1,2. From the proof of lemma 3.1, it is clear that for
@, = ¢; x 12, ®;,i=1,2,#[®,],i = 1,2 are distinct and #[®] is distinct from either
and is a convex combination of the two. (By our assumption of stability under local
perturbation, y[®;],i= 1,2, are SSRS.) By lemma 4.1, 2[®;],i=1,2, lie on Z. Repeat
the argument with ®, or @, in place of @ and state 2 in place of state 1. It follows
that for @ eP(L) of the type: @ =, x yr, x I1%23®;, where y; are Dirac measures
at either &, (i) for &, () for i=1,2,A[®]€Z. Iterating the argument, we have: for any
@ =T1d,, such that for some n> 1, @', = @, for i > n and the Dirac measure at either
&, (i) or &,(i) for i <n, we have #[®']eZ. Let Q denote the set of such @'. Then there
exists a sequence {®,} in Q such that &, — the Dirac measure at ¢ as n— o0. Since
Z is tight, we may drop to a subsequence if necessary and suppose that n[®,]—n
in P(S) (and hence in total variation) for some . Letting n— o0 in

fp(-,j, )dr[@,]=2[®,]({j} x D), J€S,

we have

S 2@plij, £0) = () JeS.

Thus = = ={¢}. It is now easy to check that £[®,] —#{&}. Since Z is closed, the claim
follows. “ QED

Consider Z as a union of two closed line segments Z, and Z,, Z, (respectively Z,)
being the line segment joining #{¢, } (respectively #{,}) with £[@]. By lemma 4.2,
#{¢,}eZ, and as n— oo, £{&, } moves from Z, to Z,. Then either #{¢,} = #[®@] for
some n (and we are done) or there is an n such that #{¢,,}eZ;,#{&,}eZ,. But

' _,, & differ only in their nth component and #[®] is a convex combination of the
two. Argue as in lemma 3.1 to conclude that #[@] = #[®] for @ = II@J- satisfying: ®,
is a Dirac measure at ¢, (i) (respectively &,(i)) for i>n (respectively i <n) and a
convex combination of Dirac measures at £, (n), £, (n) for i = n. This proves theorem 4.1
for m = 1. The general case follows by induction, replacing G at the nth induction
step (n <m) by G {#[@]|[k;dA[@] < a;, 1 <j<n}.

The following then follows immediately from standard Lagrange multiplier theory
(Luenberger 1967, pp. 216-219).

Theorem 4.2 Suppose that (2) is a strict inéquality for all j,1<j<m, and some

" #[®' eH. Then there exist numbers Aise.r Am€R™T such that the map

V— jkodv + Z /‘vi(ai“‘ j‘kld\))
i=1
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attains its minimum on G at the #[®] of theorem 4.1. Moreover, the following holds
for veG and y,,...,u,eR":

Jkodv+ 5 li<ai—J.kidv)>Jkodﬁ[<D]+ iii(ai—Jkidﬁ[dﬂ)
i=1 i=1

> Jkodﬁ[d)] ) ﬂ,.(ai—‘ fkidﬁ[d)]).
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