B —

PRAMANA © Printed in India Vol. 48, No. 2,
—journal of February 1997
physics ‘ pp. 705-718

Chaos in jerky flow — Experimental verification of a
theoretical prediction

S J NORONHA*, G ANANTHAKRISHNA*,’ L QUAOUIRE™ and

C FRESSENGEAS™
*Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India

“+Laboratoire de Physique et Mécanique des Matériaux, U R A 1215 C N R S, Institut

Supérieur de Génie Mécanique et Productique, Université de Metz, Ile du Saulcy, 57045 - Metz
Cedex 01, France

Abstract. Sometime ago Ananthakrishna and coworkers had predicted the existence of chaos
in jerky flow based on a nonlinear dynamical model consisting of the time evolution equations
for three types of dislocations and an equation for the evolution of the stress. Our main focus here
is to report the verification of this prediction by analysing the stress signals obtained from

~ samples of AlCu alloys subjected to a constant strain rate test. The analysis of the stress signals

is carried out by using several methods. The analysis shows the existence of a finite correlation
dimension and a positive Lyapunov exponent. We also carry out a surrogate analysis of the
time series to ascertain that the signals are not from a power law stochastic process. From the
analysis we find that the minimum number of variables required for a dynamical description of the
jerky flow appears to be four or five, consistent with the number of degrees of freedom envisaged in
the model. ‘
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1. Introduction

The work reported here is an exercise in the application of concepts and techniques'

in dynamical systems to problems in plasticity. The subject matter falls in the general
area of ‘stick-slip’ phenomenon. For the sake of a general audience, we very briefly
recall some basic features of a specific form of plastic instability arising under a constant

strain rate test. This is known as jerky flow or the Portevin-Le Chatelier (PLC) effect
_ and has been an object of attention for a long time in metallurgical literature. Dislocations

are the basic defects contributing to the plastic deformation of specimens. The stress—
strain curves show repeated stress drops and each stress drop in the deformation curve
is associated with the occurrence of a dislocation band. The band usually propagates
along the sample. The phenomenon is seen in a number of alloys and is known to
manifest only in a window of applied strain rates and temperatures [1]. Alloys
always contain point defects such as substitutional and interstitial atoms which are
commonly referred to as solute atoms. At intermediate temperatures, the cores of these
dislocations are saturated with solute atoms, since these atoms have a tendency to migrate
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to the cores of the dislocations. Consider a constant strain rate experiment and assume
that dislocations are initially free from solute atoms. Once the stress developed in
the sample is enough to move dislocations, they sweep the sample and in the process
gather solute atoms leading to immobilization of dislocations. This happens once
the solute concentration at the core of the dislocation exceeds a certain critical value.
However, since the sample is subject to a constant strain rate deformation, the stress in
the sample increases to such a value that dislocations break away from the clouds of
solute atoms. The breakaway of dislocations results in an yield drop. This whole process
repeats thereby multiple yield drops are seen. It is clear that this repetitive nature of
the process arises due to a competition of two time scales, namely, the time scale
associated with the velocity of dislocations and the diffusion time scale of the solute
atoms. This phenomenon is known as dynamic strain ageing (DSA) and was first
envisaged by Cottrell [2]. In spite of the enormous attention the subject has received,
several aspects of the phenomenon were not well understood until recently. There has
been renewed attempts [3-9] to understand this phenomenon by introducing concepts
berrowed from the theory of dynamical systems. This has helped to gain new insights
hitherto not possible. In most of the models, the negative strain rate sensitivity (SRS) is
an input into diffusion like equations [8,9]. Some of these models have been quite
successful in explaining a number of features of the PLC effect including the band
velocity. Even the existence of chaotic solutions remains a possibility [9]. The first truly
dynamical model was attempted by Ananthakrishna and coworkers [3-5] several years
ago, wherein the spatial aspect were ignored. This method starts from the time evolution
equations for the densities of three types of dislocations. These equations are then
coupled to the equation for the stress developed in the sample. The negative SRS results
as a consequence of a Hopf bifurcation from a time homogeneous steady state to the time
oscillatory state- [3-5,12]. The theory has been improved to include the spatial
dependence as well [13]. Although, the original theory ignored the spatial aspects, it
proved to be surprisingly successful in that it could explain several features of the PLC
effect [5,12].

In addition to above results, one specific prediction of the model is the posszbzlzty
of chaotic behaviour in a limited range of strain rates [10,11]. The first detailed
report of the analysis of the experimental stress-strain series which demonstrated
the existence of chaos was published recently [14], eventhough, this result was quoted
in an earlier paper [13]. Since then there has been a few other investigations which
have provided additional support that jerky flow is chaotic [15-17]. The implication
is that the dynamical basis of the model with only a few degrees of freedom is
correct [14]. :

The purpose of the paper is to present additional evidence that the dynamics of the
underlying phenomenon is indeed chaotic. The methods include the singular value
decomposition, calculation of a finite correlation dimension and a positive Lyapunov
exponent. In addition, we carry out surrogate analysis to demonstrate that the time series
is not due to a power law stochastic process. The plan of the paper is as follows. In §2, we
briefly present the model for the PLC effect which predicts the existence of chaos along
with the results related to chaos. In §3, we outline the various methods of analysis used

here. We then apply them to the experimental time series. Section 4 contains discussion
and conclusions.
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Chaos in jerky flow
2. Chaos in a model for the PLC effect

In the following, we very briefly outline our model for the PLC effect [3-5] in terms of
scaled variables. Details of the model can be found in the original papers. It is a dynamical
model using three types of dislocation densities, namely the mobile dislocation density
denoted by x, the immobile dislocation density denoted by y, and another type which may
be regarded as dislocations with clouds of solute atoms denoted by z The basic
mechanisms included in the model are: dislocation multiplication through cross
glide, annihilation of dislocations, formation of dislocation locks, gradual immobilization
of mobile dislocations by solute atoms, and the re-mobilization of the immobile
dislocations by stress or thermal activation. These mechanisms lead to a coupled set of
nonlinear differential equations for the rate of change of the densities. These rate
equations are coupled to the machine equation. Using a power law dependence for
the velocity of the mobile dislocations in terms of scaled stress ¢ given by V,,, = Vo()™,
we can write the equations for the time evolution of dislocation densities and the scaled
stress ¢ as

%= ¢"x — box* — ax +y — Xy, (1)
j = bolkbox® — xy —y +azl, (2)
2= clx—1, | G)
é = dle— ", @

where the parameter g refers to the concentration of the solute atoms, by to the strength of
reactivation of the immobile dislocations, ¢ to the time scales over which the slowing
down of dislocation occurs, d to the effective modulus and e to the applied strain rate.
There is a range of values of the parameters a,b,c,d,k,e and m for which we find
oscillatory solutions. The model is known to produce a large number of qualitative
features of the PLC effect [3-5]. One specific prediction which is of interest here is that
the model exhibits chaos in an intermediate range of applied strain rates [10-12]. The
model shows the period doubling route to chaos when the velocity exponent m >2
[11,12]. The value of the Feigenbaum’s exponent is the same as that for the quadratic
map. For m > 2, it shows a bubble structure. For m close to unity, the model shows a
period adding phenomenon. Other studies carried out on the model include obtaining
approximate closed form expressions for the limit cycles [4] and deriving the time
dependent Ginzburg-Landau equation for the order parameter for the creep cas,e‘ [18]
(described by equations 1-3). The model has since been extended to include spatial
coupling [13]. An additional result that emerges is the velocity of the band.

3. Detection of chaotic behaviour in experiments

3.1 Experimental procedure

Experiments performed under constant strain rate conditions often exhibit two features
that are not desirable from the point of dynamical analysis. First, there is an upward drift
of the stress-strain curve. The physical origin of this lies in the fact that more and more
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dislocations get immobilized and are stored in the sample with a time scale
commensurate with the time scale of immobilization. This is called as strain hardening.
In addition, there is a gradual increase in the amplitude of the serrations. Clearly both
these features are undesirable since they imply nonstationarity of the time series.
However, it is often possible to find stress—strain curves which are flat. In the present
case, the stress signals are in such a region. The experiments were performed on single
crystals of CuAl 14% oriented along < 111 > at 290K at Poitiers. The strain rate of
deformation was 3.34 x 10~*s~!. The stress signals were recorded in a digitized form
from a single deformation curve. Each set contained 4720 points recorded at a rate of 242
points per second. Even though the data sets are short, we have twelve data sets. As an
illustrative example, we will present the results on one data set.

3.2 Time series analysis

It is known that the stress drops in constant strain rate experiments can appear noisy in a
certain regime of the parameter space and devoid of any pattern. Whenever one meets
such a noisy sequence, the main objective of any analysis is to determine whether it is of
deterministic origin or stochastic origin. In general stochastic noise is always present, for
instance, the machine noise or inherent randomness due to other causes.

Our first analysis of the experimental data on Al~Cu alloys [14] has shown that there is
a finite correlation dimension. This was obtained using the algorithm due to Grassberger
and Procaccia (GP) [19]. However, the existence of a finite correlation dimension cannot
always be taken as an indicator of chaotic dynamics. This is because a stochastic process
with a power law spectrum can also exhibit a finite correlation dimension [20,21], and
therefore such a process mimics a low dimensional attractor. There are other methods
such as singular value decomposition [22] which can be used effectively, particularly
when used in conjunction with other methods [23]. Even so, these methods only provide
dimensional estimates, and as such cannot always be taken as an evidence of chaotic
behaviour. The most reliable quantifier of chaotic dynamics is the existence of a positive
Lyapunov exponent. However, conventional methods of determining the Lyapunov ex-
ponent require long time series [24, 25] which are impractical to obtain from experiments.
Recently, the well known Eckmann’s algorithm has been modified to suit short time
series [26] giving the entire Lyapunov spectrum. Yet another particularly simple method
is due to Gao and Zheng [27]. This method allows one to calculate both the optimum
delay time and the optimum embedding dimension in addition to providing an estimate of
the positive Lyapunov exponent. Finally, it is always worthwhile to generate surrogate
data sets and repeat the analysis to ensure that the signals are not due to a power law
stochastic process. ‘ '

All the methods are based on phase space reconstruction by embedding the signal in a
higher dimensional space and carrying out the required analysis. The purpose of
embedding a scalar time series in higher dimension is to reconstruct other variables which
constitute the dynamics of system from the measured time series. This is done by
embedding the signal in higher and higher dimension until an optimum dimension is
reached. The object of increasing the embedding dimension is to remove:or minimize the
contribution from ‘false neighbours’ since at small embedding dimensions, there are large
number of such “false neighbours’. The rule of thumb for selecting the time lag is to use
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Figure 1. A typical stress-time plot for AlCu alloy.

the value of the time at which the correlation function falls to 1/e of the initial value.
Some use a value of the first zero crossing time. Thus, there is some arbitrariness in
estimating the optimal time delay. The method due to Gao and Zheng [27] allows one to
determine the optimum value of the time lag as well as the embedding dimension (see
below). ‘ _

Consider a stress signals measured from a jerky flow normally sampled at regular
intervals of time represented by {o; = 1,...,N}. A typical stress-strain curve is shown in
figure 1. The constructed d dimensional vector is & = {01, Oigr)s - - - ,o[,-+(d__1)71}, where
+is some fixed time interval used as a delay. Noise present in the signal can be ‘cured’ by
using singular value decomposition technique. In this method, the (dxN) trajectory
matrix A

At:{é‘lﬁéa-'ng} ) (5)
is rotated onto the basis of its principal vectors. The d principal values of the matrix A
(ie., the eigenvalues of the covariance matrix A’A) are positive. Eigenvalues are conven-
tionally ordered in a decreasing order. If some of the principal values say, (¢ +1,. .. ,d)
are zero, then, it is clear that the trajectory remains confined to the subspace spanned by
the basis (1,...,q). In practice the presence of noise prevents these eigenvalues from
taking zero value exactly. However, there may be a set of eigenvalues which are small
compared to the largest one. Then, an estimate of the embedding dimension is obtained
by the sharp decrease in the eigenvalue to a certain low level. It is possible then to obtain
the cured trajectory matrix by retaining only the first g components and back rotating
these components. Often, this method is used as a noise reduction technique.

The correlation integral C(r) is calculated by

c<r>=3v'1;ZH<r~'té-é;l>' - ®

where H(:-) is the Heaviside step function and N, is the number of pairs of the embedding
vectors (&;,&;) whose distance is less than r. These vectors may refer to either the d
dimensional vectors obtained directly from the time series or to the d dimensional vectors
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obtained by back rotating the first p principal components. We still need to identify the
optimal delay time. This can be done using the following method.

In a chaotic time series, points on two neighbouring trajectories diverge exponentially in
time. This divergence can be measured by calculating the distance between them at t = 0
and at a later time after k time steps. In a short time the difference vector corresponding to
the two points aligns itself in the direction of maximum stretching. Consider two vectors f,
and £; in d dimension. Let d; ;(k) =] Eivk — §J+k ||, where || - || is the Euclidean distance
between the two vectors at time k between &; and & ;. Let d; ;(0) be the initial distance.
Since for a chaotic system, d;;(k) should be larger than d;;(0), a measure of the
divergence is the time dependent Lyapunov exponent A(k,d, ) = (In[d; ;(k,z)/d; ;(0)]),
where (-} refers to the average over all pairs of points for which d; ;(0) is less than a
chosen dy. Another quantity is A, (k,d, ) where the average is limited to those pairs of
points for which (d; ;(k)/d; ;(0)) > 1. An appropriate window t, = (d — 1)7 is imposed
such that points on the same orbit satisfying |i — j| > t,, are discarded. The optimal time
lag is found by looking for the minima in the plots of A(7,d, k) vs 7 and A, (7,d,k) vs T
for various values of the embedding dimension. The optimum embedding dimension can
also be determined by looking for minimal changes in A(7, k, d) versus 7 as d is increased
around the minimum of the curve. In addition, the divergence plots of In [d; ;(k)/d; ;(0)] vs
In [d; ;(0)] do not change much as we increase the embedding dimension beyond a certain
dimension which is identified as the optimal embedding dimension.

Since the time series is short, the calculation of the entire Lyapunov spectrum is limited
to a few embedding dimensions (d < 5). This method is a modification of the algorithm
due to Eckmann ez al [25]. It relies on the construction of a sequence of (du, dy) matrices
T;, (dy<d) which map the difference vector f, 5 ; to 5,+k - § s+ and successively
reorthogonalize T; using the standard Q:R; decomposition. (Q; is an orthogonal matrix

and R; is an upper triangle matrix with positive diagonal elements.) Then the Lyapunov
exponent is given by

1 2
AN =— ln(R-)ll, 1=1,2,...,d (7)

where p is the number of available matrices and k is the propagation time in units of At
which is the time step. The modification effected in this method is to choose all orbits in a
shell rather than a sphere so that the effect of randomness is eliminated. The time lag used
in this algorithm is the value where the correlation function falls to 1/e of the initial value
or an optimum choice determined by another method.

Finally, one method of determining if the signals are due to a stochastic process with a
power law spectrum is to construct surrogate data sets and repeat the analysis. Sutrogate
data sets can be generated.in a number of ways [21]. One simple way is to take the
Fourier transform of the signals randomize their phases and Fourier invert it. If the
surrogate data sets do not show a finite correlation dimension or a positive Lyapunov
exponent, while the original data sets exhibit both, this is taken as a confirmation that the
data is due to a low dimensional attractor.

All the algorithms have been checked against standard benchmark cases such as

Rossler and Lorenz attractor; good agreement with the known values in the literature has
been obtained.
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Figure 2. A plot of A(k,7) vs 7 for various values of k for the Rossler attractor.
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Figure 3ab. A plot of A(7) and Ay (7) vs 7 for k = 20 for various values of d.

3.3 Analysis of experimental signals

In the method due to Gao and Zheng, the choice of an appropriate value of k is not
specified. Generally, it is so chosen that it reflects a reasonable extent of divergence and
is taken to be of the order of the correlation time. However, often one finds that the
minima in A(T,k,d) vs T coincides with the value of k chosen and therefore gives a
spurious optimal lag time. We found that it is possible to estimate the correct value k by
plotting A(7) vs 7 for various values of k. We find that the. minima in A(7) vs 7 for
various values of k initially increases as k is increased and then decreases going through a

‘maximum. This maximum value is chosen to be the optimum value of k. A plot of

A(7,d, k) vs T for the Rossler attractor is shown in figure 2 for various values of k. The opti-
mum k can be seen to be 9. We find that this value Kopt 18 independent of the choice * of dy.
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Figures 3a-b show plots of A(7,d) and A (7,d) respectively for d = 4,5 and 6 for
k = 20 for one data set. When we increase the dimension form 4 to 6, we see that the
curve corresponding to d =35 lies lower than d =4, while d = 6 does not change
significantly from d = 5. This suggests that d = 5 is the optimum dimension. Further, we
also note that the minimum occurs around T = 27, corresponding to the optimal time lag.
Figures 4a—f show the divergence plots for various embedding dimensions and delay
times. It is clear that as we approach the optimal d, the divergence plots become most
compact. Thus, the optimal embedding dimension appears to be d = 5. Nonoptimal
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values of the time lag 7 can be seen to give rise to excess positive excursions over the
optimal value. This can be seen from figure 4f shown for d = 6 and 7 = 37. Note that
most of the values are positive even though the plot appears quite compact. Using the
value of the optimal time delay, we calculate the time dependent Lyapunov exponent
A(7,k,d). This is shown in figure 5 for d=35 and 6. We note that the curve
corresponding to d = 5 is slightly more linear and has a small positive intercept. The
value of the Lyapunov exponent obtained from this plot is 1.4. Having obtained the
optimal time delay, we can use this to compute the correlation dimension for this data
using the G-P algorithm. This is shown in figure 6. It is clear that even for very small
embedding dimension of 5 there is a saturation effect of the slope. Note the dashed
straight lines drawn for d = 4 and 5 are parallel implying the convergence in the slope.
The slope thus obtained is 2.1. It may be worthwhile to point out that the shrinking of the

scaling regime starts at fairly small values of r for d = 6. Beyond this embedding

dimension we find that the scaling regime becomes very small. This behaviour is
common to short time series. The saturation of the slope for such a low embedding
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Figure 7. A plot of A(7,k,d) vs k for optimum 7 for various values of dy for the
Rossler attractor.

dimension must be contrasted with the high embedding dimension required for a similar
saturation in our earlier calculation where a much shorter time lag was employed. This
can be clearly attributed to the small delay time that was used in our previous calculation
[14] since it is the total window length ¢, that remains constant.

It is worthwhile to comment here on the actual values of the Lyapunov exponent
obtained by this method. We found that the Lyapunov exponent depends on the value of
dy chosen. Using large values of dy gives smaller values of the exponent, since the
number of points contributing to the average is large, and often, is not a true indicator of
the divergence. On the other hand, if too few points are included ( ie., dy is small) then the
statistics gets poor as is the case for dy = 0.05% of the attractor. Indeed, the extent of
linearity appears to be less when dj is large and it improves as dj is reduced. It appears to
break down for small values. Thus a choice of a few percent appears to be reasonable.
This is shown in figure 7 for the case of the Rossler attractor. The value of the Lyapunov
exponent obtained by this method is a lower bound to that obtained via calculations
(which give the largest exponent [24] or the entire spectrum), since in the present method
the average is over all possible values including the contracting directions. Even so, we
feel that fixing an appropriate value of this parameter in a way that gives a correct value
of the Lyapunov exponent for the experimental signals is not easy due to the presence of
noise and therefore, the actual value cannot be taken seriously. However, it must be
emphasized that the Lyapunov exponent is positive. This is an adequate criterion for the
time series to be chaotic.

The singular value decomposition technique has been used to analyse the data as well.
The spectrum for various values of window length #,, is shown in figure 8 . It is clear that
there is a sharp drop in the relative magnitude of the eigenvalues. Indeed, the maximum
fall is at the second component. The changes there after are not so large. This shows that
the number of degrees of freedom is of the order of two or three, consistent with the value

Pramana — J. Phys., Vol. 48, No. 2, February 1997 (Part I)
714 Special issue on “Nonlinearity & Chaos in the Physical Sciences”

»

T

R ——

/J?"




Yo

Chaos in jerky flow

O L T T 1 T T T T T T [ T T T T T T T T T T T T T T j

C —— (d0=(7,11) ]

r —— (d0)=0,17)

s —— (d1)=(169) -

C —— (d1)=(264) 1

i —— (d=289) ]

-2 0 -
SN :
g |
5 0 ]
Y -4 7
- C ]
-5 “

N N :

-6 [ \\R 7

C — -l

-7 C 1 1 1 l I ! 1 l { | 1 | 1 1 L l L 1 i) | .‘I { ] ] A 1 1 j
0 4 8 12 18 20 24 28

Index 1
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Figure 9. A plot of slope of the correlation integral for various values of window
length retaining only the first two principal components.

obtained from calculation of the correlation dimension. As an illustration of the method,
we can estimate the correlation dimension on the cured time series obtained by back
rotating by keeping only the first few components. Figure 9 shows the result obtained by
keeping only two components. The convergence of the slope is clearly around 2. General
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Figure 10. A plot of the Lyapunov spectrum as a function of time for d = 3 for the
original data. ‘

features are not altered if more components are included, since the correlation dimension
when all the components are considered is 2.1 as seen from figure 6.

The spectrum of Lyapunov exponents have been calculated using a delay time of
T = 27 for the first few embedding dimensions. From d = 3, we find a positive exponent.
A plot of the Lyapunov spectrum as a function of time (in units of At) is shown ford =3
in figure 10. The value of the largest, the smallest and the zero exponent remains roughly
the same from d =3 up to d = 5. However, there is an additional positive Lyapunov
exponent seen for d = 5 which is spurious. This statement is based on calculations carried
out on standard models like the Lorenz and the Rossler attractor. In these two cases, we
find that at d = 5, there is an additional spurious positive eigenvalue. This is due to the
fact that we need at least 10000 points for d = 5.

Finally, we have generated six surrogate data files. We have calculated both the
correlation dimension and the Lyapunov spectrum. We find no saturation in the slope of
the scaling regime in any of the six surrogate data sets. Further, we do not see any positive
Lyapunov exponent for dimensions up to d = 5 for any of the six surrogate files. This§

clearly shows that the underlying dynamics of the original data is due to a low
dimensional attractor.

4. Discussion and conclusions

Using a combination of several methods we have analysed time series obtained from
experiments on AlCu alloys. The singular value decomposition method clearly shows that
the orbit is confined mostly to a few dimensions. We have used a method due to Gao and
Zheng to obtain the optimum time delay and the optimum embedding dimension. Since
the method gives positive values for the Lyapunov exponent, one can confidently say that
the jerky flow is chaotic. In addition, using the optimum value of the time lag, we have
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calculated the correlation dimension of value 2.1. We also have calculated the spectrum
of Lyapunov exponents by a method suited for short time series. There is one positive
Lyapunov exponent of magnitude ~ 4. We have further carried out a surrogate analysis to
show that the time series is due to a low dimensional chaotic attractor. These calculations
confirm the theoretical prediction that jerky flow could be chaotic. Further, the analysis
shows the optimum embedding dimension for the time series to be dope = 5. This is also
consistent with the correlation dimension 2.1 obtained by using optimal time delay of
Topt = 26. In conclusion, the important prediction, namely, the existence of chaotic flow
in the PLC effect is confirmed. This verification strongly suggests the inherent correctness
of the basis of the theory, namely, that the dynamical origin of the PLC effect is the

_nonlinear interaction between the participating defects. F urther, the optimum embedding

dimension being 5 tells us that we need only five degrees of freedom to describe the
dynamics of jerky flow. We recall that we had only four degrees of freedom since the
variable corresponding to the concentration of solute atoms was deliberately suppressed
in the original formulation of the model for the sake of simplicity. Lastly, it may be
recalled that the phenomenon is spatially inhomogeneous which implies infinite degrees
of freedom. Thus, these few degrees of freedom must correspond to the collective
behaviour of dislocations and other defects. This fact gives a clue as to why this theory
works so well in spite of the fact that it ignores the spatially inhomogeneous aspect which
is thought to be so crucial for a proper description of the phenomenon.
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