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Abstract. Hamilton’s theory of turns for the group SU(2) is exploited to develop a new
geometrical representation for polarization optics. While pure polarization states are
represented by points on the Poincaré sphere, linear intensity preserving optical systems are

represented by great circle arcs on another sphere. Composition of systens, and their action
on polarization states, are both reduced to geometrical operations. Several synthesis
problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical
phase, are clarified with the new representation. The general relation between the geometrical
phase, and the solid angle on the Poincaré sphere, is established.
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1. Introduction

The recognition by Poincaré that the polarization states of a plane electromagnetic
wave can be made to correspond one-to-one to the points on a two-dimensional
sphere S? represents a physical and mathematical fact of deep significance (Poincare

" 1892; Ramachandran and Ramaseshan 1961; Born and Wolf 1965). It allows one to
represent different polarization states which are close to each other in an obvious
physical sense, by points on §2 which are near to each other in the obvious topological
sense. With increased sophistication, one now understands the relevance of S in this
context by realising that it is the coset space SUQR)/U(1) = S3/st.

The importance of the group SU(2) in polarization optics stems basically from the
fact that it acts in a natural way on its coset space SU(2)/U(1) =~ S2. (Its relevance
in a variety of quantum mechanical problems needs no emphasis). Stated in physical
terms, problems involving polarization states of plane light waves and their trans-
formation by intensity preserving linear optical systems lead one immediately to SU(2).
These problems have received much attention recently, particularly in connection
with the Berry, Aharonov-Anandan phase (Berry 1984, 1985, 1987a, b; Aharonov and
Anandan 1987) and its relationship to a phase discovered by Pancharatnam in the

fifties (Pancharatnam 1956).
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Hamilton, in the course of his studies on quaternions, discovered in 1853 a
geometrical or pictorial way of representing the elements of the group SU(2) and their
(noncommutative) composition law (Hamilton 1853). To appreciate Hamilton’s
method, it is appropriate to recall first the elementary pictorial representation of the
much simpler abelian group of translations in Euclidean space. Elements of this
group can be pictured as free vectors which are directed line segments in Euclidean
space. A free vector is an equivalence class of ordinary vectors with location, two
ordinary vectors being equivalent if by a rigid translation one can be made to coincide
with the other. Then a faithful graphical description of the composition law for the
translation group is given by the parallelogram law for addition of free vectors:
given two vectors, move the second rigidly, i.e. parallel to itself, till its tail coincides
with the head of the first vector; then the resultant vector runs from the tail of the
first to the head of the second.

Hamilton’s work generalises this pictorial representation from the abelian transla-
tion group to the nonabelian group SU(2), and is based on the concept of turns. A
turn is an equivalence class of directed great circle arcs on the unit sphere S2: the
arcs obtained by sliding a given arc over its great circle by all possible amounts are
all equivalent to one another. One can now associate each SU(2) element with a
turn in a natural way; and the composition law for SU(2) can be correctly reproduced
by a noncommutative geometric “addition” or composition rule for turns, analogous
to the parallelogram law for translation vectors. Thus, to obtain the product of two
'SU(2) elements, one slides the corresponding turns on their respective great circles
(more precisely, one chooses representative arcs) to one of the points where the
two circles intersect, in such a way that the tail of the second turn coincides with the
head of the first. Then the turn determined by the great circle arc from the tail of the
first turn to the head of the second corresponds to the product of the two group
elements. A lucid and comprehensive account of this remarkably elegant geometrical
description of SU(2) has been given by Biedenharn and Louck (1981).

The purpose of the present work is to bring out the role played by the group SU{2)
in polarization optics, and to employ Hamilton’s theory of turns to develop a new
geometrical representation for this important branch of optics.

The plan of the paper is as follows. In §2 we review some basic concepts from
polarization optics with the aim of highlighting the role of SU(2) in this context. The
Poincaré sphere method is seen to be a physical realization of the two-to-one
homomorphism from SU(2) to SO(3). Given a general Jones matrix JeSU(2), the
SO(3) rotation Q (J) it produces on the Poincaré sphere is presented in a simple form
which we believe is new in the context of polarization optics.

In §3 we reformulate Hamilton’s method of turns in a form convenient for the
present purpose, namely with the aid of algebraic expressions which make the
geometrical properties evident, and derive the composition rule for turns in a
straightforward manner. This immediately leads to our new geometrical representation
for polarization optics based on two unit spheres S, the Poincaré sphere 2 and the
sphere of turns 7. States and their transformations are geometrically represented on
2, while linear intensity preserving optical systems are represented as turns on 7.
The composition of the action of a sequence of optical systems is then handled
geometrically rather than algebraically.

Some applications of the new representation are presented in §4. The synthesis of
optical rotators using a pair of half wave plates is analyzed, and the importance of
such a synthesis in the experimental measurement of the Aharonov-Anandan
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geometrical phase is brought out. We also describe the synthesis of a gadget involving
only birefringent plates which is able to realize all SU(2) transformations through
simple rotations of the components. The suggestive power of the method of turns
will be quite evident from these examples of system synthesis.

In §5 we derive the relationship between the geometric phase and the solid angle
subtended by a closed circuit on the Poincaré sphere #. An example where this
relationship is dynamically manifested is discussed. Finally, in §6 we present some
concluding remarks.

2. Polarization states, Poincaré Sphere and SU(2)

The polarization state of a fully polarized quasimonochromatic plane wave propagat-
ing along the x, direction is given by the Maxwell vector (also called Jones vector)

()

where the complex components E;, E; of the transverse electric vector in the directions
X,, X, are independent of the transverse location X, x,. An optical system which
transforms the polarization state linearly is described by a 2 x 2 matrix J with complex
entries:

E—E =JE ()

J is called the Jones matrix of the system. If the transformation preserves the intensity
I = E*E, it follows that J must be an element of the unitary group U(2). Thus, there
is a one-to-one correspondence between intensity preserving linear systems and
elements of U(2): the action of two systems in succession is given by the product of
the associated U(2) matrices in that order.

If we were not interested in the overall phase, then gach optical system could be
effectively represented by an SO(3) rotation on the Poincaré sphere #. However, we
are interested in the overall phase, in addition to other things; this phase plays an
important role in, for example, the Berry-Pancharatnam-Aharonov-Anandan kinds

* of situations which have received much attention recently.

Keeping the above in mind, we represent each U(2) optical system J by an ordered
pair (¢, u), where @ isa U(1) phase angle and ueSU(2). Since U(2) = ((U(1) x SUR))/Z,,

- we see that (¢, u) and (¢ + 7, —u) represent one and the same U(2) optical system, sO

there is a two-fold ambiguity in representing J by a pair (¢, u). Thus in the composition
of m optical systems J, J 5, Jm€U(2), there are om distinct ways of representing
this as the composition of m pairs; each one of them of course leads to the same final
U(2) element for the product system J=J, o JdyJy 1T corresponds to the pair
(¢, u) = (¢ + 7, —u), for each choice of pairs (@1,U1)s+ (s Umds the total phase
@+ @y + -+ @y cquals either ¢ or ¢ + 7, and correspondingly the SU(2) product
u, - Uuu, equals u or —u. With such decompositions, and the above equivalence
understood, we are free to use Hamilton’s method of turns in calculating the
composition of SU(2) elements, with the abelian phases kept track of appropriately.
For brevity and simplicity of notation, we will occasionally represent the (two-valued)
SU(2) part of a U(2) optical system itself by 7. In view of the above discussion this

should cause no confusion.
Typical examples of linear systems of interest in polarization optics are the rotator,
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and the compensator or birefringent plate. The rotator has a Jones matrix

(3)

. . fcos@ —sinb
J = exp (ip)Ry = exp (ig) ( sinf  cos 6)’

and has the effect of rotating the Cartesian components E,, E, through an angle 6.
The compensator, characterised by mutually orthogonal slow and fast axes, advances
the phase of the component of E along the former by an amount J relative to the -
component along the latter. If the fast axis is along x,, the Jones matrix is

e” i8/2 0
J= exXp (iX)(CE)O = €Xp (iX) ( 0 ei5/2> . (4)

For § =n/2 or n we have a quarterwave plate or halfwave plate respectively. For a
general position of the fast axis, at an angle 6 with the x; axis, we have

J =exp (ix)(Cy)s = exp (iX)Ro(Cj)oRq !

— expliy) c0s 6/2 —icos 20sin 6/2 —isin20sind/2
=explix —isin20sin §/2 cos&/2 +icos20siné/2 )

(5)
Here we have chosen exp(ip) and exp(iy) as the U(1) parts of these systems. Free
propagation, and passage through a nonbirefringent and optically inactive medium,
are examples of pure U(1) systems (with the SU(2) parts taken to be the identity), as
they simply increase the phases of E; and E, by equal amounts. One way to realize
the rotator is by propagation through an optically active medium of appropriate
specific activity and thickness, with ¢ and 6 both being proportional to the thickness.
Another often convenient way, as we shall see in the sequel, is by using a pair of
(birefringent) half wave plates.

In analogy with the pure state density matrix in quantum mechanics, one defines
the coherency or polarization matrix ® corresponding to a Maxwell vector E as

® = EE!. ‘ (6)

Since we are concerned with unitary transformations which preserve the total intensity,

we can conveniently normalize E to have unit intensity. This makes ® a 2 x 2
projection matrix:

O'=0, trdé=1, detd=0. @)

By expanding @ in terms of the Pauli matrices, we make contact with the Poincaré
sphere representation. To be consistent with the usual conventions in optics, where

the circular polarization states lie at the poles of the Poincaré sphere, we adopt the
following representation of the Pauli algebra:

1 0 01 0 —i
P1=(.O —1)’ Pzz(l 0>a P3=(i O)- (®)

This is related to the usual quantum mechanical choice by a cyclic permutation, so
we have

Pipe =0l +igy p;. ‘ 9
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The expansion of @ in terms of p brings in a vector A:

O =3(1 +1p),

. The hermiticity of ® makes # real, and the condition det ® = 0 makes # a unit vector.
Thus pure polarization states are in one-to-one correspondence with points A on the
unit sphere S? in Buclidean three-space, and this is the Poincaré sphere 2. For pure
states, points on £ are also called Stokes vectors (Stokes 1852). Circular polarization
states correspond to the poles and linear polarizations to points on the equator. Other
points on 2 represent general elliptic polarizations. For two general (normalized)
Maxwell vectors E, E', the corresponding coherency matrices and points on & obey

tr®@'® = |ETE]? =1(1 + #,A). (11)

Thus diametrically opposite points on & represent mutually orthogonal polarization

_ states. In all this, the conserved intensity and overall phase of E are suppressed.

A general state of elliptic polarization with azimuth 6, 0 < § < 7 (this is the angle
between the major axis and the x, direction) and ellipticity angle ¢, —m/4<&< n/4
(tan & = ellipticity = ratio of minor to major axis, handedness = sign of £) has Maxwell
vector

cosfcose—isinfsine 12)
sinfcose+icosfsing )’

E = Aexp (ié)(
where A and 6 are real. The corresponding point on #—the Stokes vector—is
independent of A and J: _

A = (cos 26 cos 2e, sin 26 cos 2e, sin 2¢). ' (13)

In particular, for right circular polarization, i is the north pole on Z:

1 (1 |
= )=#=(0,0,1). (14)

When E changes according to eq. (2), @ transforms as
O - =JOJ, (15)

where JeU(2). Then, as is well known, Ae® undergoes a rotation Q (J)eSO(3). As
explained earlier in this section, we can focus our attention on the (two-valued) SU(2)
part of the system, which for brevity we have agreed to denote again by J. Then J
can be expressed as an exponential

J =exp (—_;a(.l)d(J)'p), (16)

witﬁ «(J) a real scalar and 4(J) a unit vector. From the properties (9) of the Pauli
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algebra, one finds
Jh-pJ =H"p,
;= Qu()ny,
Q;(J) = 8y cosafJ) + afN)a(J) (1 —cos a(J)) — &judy(J) sin aJ). (17 «

Thus Q(J) rotates 7 through an angle a(J) about the axis 4(J), and the unitary action
of an optical system on E results in an orthogonal rotation on #. The fact that every
unitary Jones matrix has two orthogonal eigenpolarization states reduces to Euler’s
theorem on rotations: the eigenstates correspond to the diametrically opposite points
at which the axis of rotation intersects 2, namely 7= + d(J). Suppressing the U(1)
factor, we see for example that for the optical rotator (3) we have 4=(0,0, 1) and
o = 26: thus on 2 it produces a rotation of amount 26 about the positive n, axis, and
has the states of circular polarization as eigenstates. Similarly, the compensator (%)
has d = (cos 26,sin 26,0), a = 4. It rotates # through an angle § about the axis in
the equatorial plane at an angle 26 to the n; axis. Its eigenstates are represented by
the two diametrically opposite points in the equatorial plane of & at angles 26, 20 +m;
in physical space these correspond to linear polarizations at angles 0, 6 + /2 to the
X, axis.

In the general case, the exponential form (16) for J is related to an expansion of J
itself in terms of the Pauli matrices in this way:

. a,—ia; —ay—ia
J=a,—iap= o~ 3T
a3—la2 a0+la1

= exp (—_—;adp) = cos%— idp sing,

a0=cos%, a=dsin%, @ taa=1 (18)

Thus from a, and a we can read off the values of « and 4. Noting that (4, «/2) and
(—d,2n—a/2) lead to the same J, we can obtain all elements of SU(2) by restricting
®/2 to the range 0 < o/2 < 7, but allowing 4 to assume all values on S So we have:

=cos"ta,, 0<

d=a/ /1 —a3, (19)

determining the axis 4 about which J produces a rotation on 2.
To conclude this section we note that the connection between the unitary action
of opti-cal systems on the Maxwell vector E, and the transformations they produce
on 2, is a concrete optical illustration of the two-to-one homomorphism from SU(2)
to SO(3), which is also important in quantum mechanics. Here it is seen in the fact
that the Jones matrices J and —J produce the same rotation on 2. Rotations about
the n; axis correspond to optically active media, and those about axes on the equatorial
plane to birefringent plates with various positions of fast (and slow) axes. Rotations
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about other directions correspond to passage of light through media having both
birefringence and optical activity: for a generator proportional to 4-p, the ratio between
the specific optical activity and the specific birefringence is d4s/(a% + 43"

3. Hamilton’s turns and the new representation for polarization optics

In §2 we have reviewed the fundamental role of the group SU(2) in polarization optics
involving intensity preserving systems. We have also mentioned Hamilton’s elegant
method of turns in giving a geometrical representation for SU(2) and its composition
law. Putting the two together we are led to use turns to obtain a new geometrical
representation for polarization optics. We develop such a representation in this section,
and begin with a formulation of Hamilton’s ideas in a convenient form. A detailed
exposition can be found in the work of Biedenharn and Louck (1981) referred to
earlier; our approach is slightly different, and in particular readily lends itself to
generalization to the non compact group SU(1,1) as shown elsewhere. (Simon et al
1988). _ _

The description of a general J eSU(2) with the help of the homogeneous Euler
parameters do, a in eq. (18) shows that there is a one-to-one correspondence between
elements of SU(2) and points on §°, the unit sphere in Euclidean four-space. However
the expressions for a, and a in terms of « and 4 naturally suggest a way of associating
elements of SU(2) with ordered pairs of points of S2, the unit sphere in Euclidean
three-space; it is this that leads to turns.

Let 7, A’ be unit vectors on S2 and let us set

a,=Af, a=Hh,Hh (20

We do obtain in this way a point on S3, and so we can associate a definite SU(2)
element A(A, ') with the ordered pair (/') on 5%

A, R) = A — it . 1)

Equivalently we can associate A(f, #') with the directed great circle arc from # to 7y
on S? (the arc length is always assumed to be <m). It should however be obvious
that this association is not unique, since any other pair of unit vectors on the same
great circle, obtained by rotating A and #’ through the same angle about A ,#', leads
to the same SU(2) element. Such a rotation corresponds to sliding the directed arc
on its great circle.

This construction leads to Hamilton’s turns. A turn is an equivalence class of
directed great circle arcs: two arcs are equivalent if one is obtained from the other
by sliding it along the great circle. Thus (except for J = — 1) with every J eSU(2) we
can associate a unique turn. With J given in terms of homogeneous Euler parameters,
a specifies the great circle as the “equator” with respect to it: the sense of the turn is
also determined by a via the right hand rule; and the length of the turn, or the angle
«/2 subtended by it at the centre, is given by a, as in eq. (19). Note that the amount
of rotation produced by J on the Poincaré sphere 2 is o, namely twice the length of
the turn.

For the identity element, & =0 and the turn has zero length. This is the null turn,
represented by any point on S?. For J=— 1, we can choose A'= —#i freely on S?,
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so the directed arc is a great semi circle. There is no preferred axis, and the equivalence
class in this case consists of all great semi circles.

While we emphasize that a turn is an equivalence class of directed arcs, in the
sequel we shall for simplicity often refer to a representative arc itself as a turn. This
should cause no cornfusion. .

The turns of an element and its inverse are simply related. Indeed, from eq. (21) it
follows that

AR, )1 = AR, ). ' (22)

That is, the inverse of a turn is obtained by simply changing the sense of the turn,
very much like the case of translation vectors. It then happens that even the
composition of two turns is quite analogous (except for noncommutativity!) to the
composition of translation vectors. To see this, note first that any two great circles
on S? always intersect. Therefore given an arc on each, we can slide them on their
respective great circles until the head of the first arc coincides with the tail of the
second. This means that any two elements of SU(2) can be written in the form

J = A(#,#), J' = A(#,#") with one common argument. Now it is straightforward to
verify that '

T = AR, ) AR #) = (" — in, A" -p)(A- A — in, 7' p) |
= AR — i, A" p = A, A"). | 23)

Thus the SU(2) composition law translates to turns in this way: to compose two SU(2)
elements, slide the two turns on their respective great circles so that the tail of the
second coincides with the head of the first; then the product of the two elements
corresponds to the turn from the tail of the first turn to the head of the second. In
other words, the following diagram commutes:

J,J'eS > !
, J'eSU(_2) PTTRT— turns for J',J
SUQ) “addition”
composition of turns
ule
J'JeSU(2) »turns for J'J

SU(2) to turn rule

This geometric “addition” rule for turns is analogous to the parallelogram law for
adding Euclidean translation vectors. The differences are that it is noncommutative;
and while with vectors it suffices to translate only one of them, with turns it is in
general necessary to slide both unless they commute. «

In the usual description of polarization optics the action of a system on £ as a
rotation is represented geometrically, but the resultant of a sequence of systems is
computed algebraically. With the use of turns, both are describable in geometric terms.

In addition to the sphere 2 whose points represent pure polarization. states, we
now use another sphere 4 —the “sphere of turns”—on which optical systems are
represented as great circle arcs. The two spheres are shown in figure 1. The optical
rotator (3), whose action on 2 has been described in §2, is represented by a great
circle arc along the equator of 7, with tail at azimuth 0, and head at azimuth 0, +6:
the length of the turn is 6, and 6, is arbitrary. In figure 1(a), AB represents this turn.
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Figure 1a. The rotator, compensator and general turns on 7.
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Figure 1b.  Actions of rotation and general turns on 2.
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The birefringent plate (C;), of eq. (4) produces a rotation about n; of amount 4, on
. So its turn is an arc on  in the 2-3 plane with length 6/2, and sense such as to
make the positive first axis normal to the plane of the turn. This is shown as CD in
figure 1(a). More generally, for the system (Cj,), of eq. (5) which is a birefringent plate
with fast axis at an angle 0 to the x, axis, the arc on 7 is in the plane normal to the
radial vector at azimuth 20 in the equatorial plane, has length §/2, and sense such
as to make this radial vector the positive normal. The turn GA represents a system -
with both birefringence and optical activity.

Given a turn on J, the action of the corresponding optical system on a state
represented by a point on 2 is straightforward. Draw the (unique) plane containing
the state and parallel to the turn. This plane intersects £ in a circle which can be
visualized as the circle of constant latitude with respect to the axis of the given turn
and containing the given state. Under the action of the turn, the state moves on this
circle in the same sense as the turn but through twice the angle of the turn, as measured
from the centre of the circle. These statements do not cover the two trivial elements
+1eSU(2) which produce the identity transformation on 2. In figure 1(b) we show
how a general state Pe# undergoes displacements caused by various turns. The
rotator turn AB carries P to P’; the general turn GA takes P to P".

To conclude this section we note that in this new geometric representation the
combined effect of a sequence of systems on the input polarization state is computed
in two steps: first, the turns of the individual systems are geometrically “added” on
7 in the correct order to get the resultant turn; then the effect of this resultant on

the state under consideration is again obtained geometrically by the latitude
construction of the preceding paragraph.

4. Some applications of the new representation

The new geometrical representation for polarization optics, developed in the last -
section and based on the two spheres 2 and 7, can be used for a better understanding
and sometimes faster computation of the action of a sequence of optical elements. We -
now present some examples to illustrate this. All the examples are chosen in the
context of topological phase, which is a topic of considerable current interest. We

therefore begin with some general comments on topological phases in polarization
optics.

4.1 Pancharatnam angle and Berry-Aharonov—Anandan phase

Berry’s work on geometrical phases in the adiabatic evolution of quantum mechanical
states (Berry 1984, 1985, 1987a, b) has generated a great deal of interest, particularly
in polarization optics. An optical realization of Berry’s original ideas was reported
by Chiao and Wu (1986) and Tomita and Chiao (1986). In this experiment plane
polarized light is passed through an optical fibre wound in the form of an helix, and
the geometrical phase manifests itself as a rotation of the plane of polarization of the
output beam with respect to the input beam. Clearly, as the beam is guided along
the helix the propagation direction traces a closed curve on the unit sphere S? of
propagation directions. For a uniform helix, this curve is a circle of constant latitude
with respect to the axis of the helix. It turns out that the topological phase equals
the solid angle that this circuit subtends at the centre of the sphere.
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Berry’s topological phase was subsequently generalized by Aharonov and Anandan
(1987) beyond the adiabiatic approximation. Their formulation applies to any closed
circuit in the space of pure state density matrices (the ray space or the projective
Hilbert space), so that all one requires for the validity of their formulation is that the

physical state returns to itself after evolution over a period T(cyclic evolution). In

polarization optics this corresponds to closed circuits on #, since here E plays the

- role of the state vector, and @ that of the density matrix. Given such a closed circuit

in the general case, there are infinitely many different dynamical evolutions which
can take the physical state over this closed circuit. The total phase picked up by the
state during the cycle will be different for different evolutions, i.e., it will depend on
the Hamiltonian. This is also true of the dynamical phase, defined as the time integral
of the instantaneous expectation value of the Hamiltonian. But these authors showed
that the difference between these two phases—total minus dynamical—is independent
of the particular evolution considered and depends only on the geometry of the closed
circuit. This difference is the geometrical phase of Aharonov-Anandan.

More recently Ramaseshan and Nityananda (1986) made the important observation
that a phase deficiency discovered by Pancharatnam (1956) in the 50’s in connection
with his studies on polarized light could be considered as an early example of Berry’s
phase. In fact this Pancharatnam angle is more akin to the Aharonov-Anandan phase
than to the Berry phase. The reason for this is easy to see. In the Pancharatnam type
of situation, if x is taken to be the propagation axis of the system, quantum mechanical
evolution in time ¢ is to be replaced by the unitary evolution of E in x5, and the
Hamiltonian by the generator of this evolution, as realized by the optical components.
Since such polarization experiments invariably involve discrete elements, the generator
of the evolution (the Hamiltonian) changes discontinuously; and one can hardly claim
that the state remains an eigenstate of the x;-dependent Hamiltonian throughout the
cycle. However the Berry phase as originally formulated corresponds to situations
where the evolution is adiabatic, so that the state undergoing cyclic evolution remains
an eigenstate of the instantaneous Hamiltonian throughout the evolution.

To be specific, a typical polarization experiment using optical rotators and
birefringent plates corresponds to unitary evolution under piecewise constant
Hamiltonians. That is :

-2 B = HOxg B 4
0xy

where the hermitian generator H(x;) is piecewise constant in Xj. Clearly, for the
optical rotator (3) H is a linear combination of the identity matrix and p; for the
birefringent plate (5) whose fast axis makes an angle 6 with the x,-axis, it is a linear
combination of the identity matrix and (p, cos 20 + p, sin 26). For free propagation
the generator is proportional to the identity matrix. In all these cases, on¢ can
appreciate that in polarization experiments the adiabaticity condition is generally not
satisfied.

More recent experiments on the Pancharatnam angle, inspired by the work of
Berry and of Aharonov-Anandan, have been reported (Bhandari and Samuel 1988;
Chyba et al 1988; Simon et al 1988). Just as in Pancharatnam’s original experiment,
the set up in (Bhandari and Samuel 1988) uses a polarizer (along with two quarter-wave
plates) and hence does not correspond to unitary evolution. The experiments in
(Chyba et al 1988; Simon etal 1988) use, in contrast, only quarter-wave plates and

hence correspond to unitary evolutions.

i L R e
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4.2 The new representation and some synthesis problems

We have already noted that a birefringent plate produces a rotation about an
equatorial axis, and an optically active medium produces a rotation about the polar
axis, on 2. It will be shown later, by an elementary geometrical construction on 7,
that any rotation on £ (in fact any. SU(2) element) can be synthesized using an
appropriate birefringent plate and an optical rotator.

In a typical experimental measurement of the Pancharatnam-Berry-Aharonov- ’
Anandan phase one needs to change the closed circuit on £ in such a way that this

‘change does not affect the value of the dynamical phase, so that the consequent

measured change in total phase could be identified with a change in the geometric
phase alone. Now, if the polar axis rotation on & were realized by propagation
through an optically active medium of a particular specific optical activity, an increased
(decreased) rotation designed to change the circuit on 2 can only be achieved by
increasing (decreasing) the length of the medium. In this process the dynamical phase
is sure to change since the U(1) part of the phase is proportional to the thickness of
the medium. It follows that an optically active medium is not a suitable candidate
for effecting polar axis rotations in experiments designed to measure the geometric
phase directly. We are faced with the problem of synthesis of a variable optical rotator
with constant dynamical phase, at least for specified initial states on 2.

It turns out that two half-wave-plates can be used to produce a polar axis rotation
through any angle in such a way that the dynamical phase is independent of this
angle. Our new geometrical representation using 7 brings this out in a vivid pictorial
manner, as shown in figure 2(a).

We wish to realize a system which has the Jones matrix of the form (3) and produces
a 20 rotation about the polar axis of 2. Clearly on Z its turn is the equatorial arc
AB in figure 2(a), with tail at azimuth 6, and head at azimuth 6, + 0, for any value
of 8,. This turn has length 6. Through A and B draw the great circles passing through
the poles of 7, and consider the turns AC and CB. Both are meridional arcs of length
n/2, hence both correspond to half wave plates. A moment’s reflection shows that
the half-wave plate corresponding to AC has its fast axis at an angle 4(6, + =/2), and

that corresponding to CB at an angle 3(6, + 6 — =/2), with respect to the x,-axis.
Now from the spherical triangle ABC it is clear that

_(turn CB)(turn AC) =turn AC “+” turn CB =turn AB. (25)

The noncommutative “addition” of turns has been indicated here by “+”. Thus the
combination of two half-wave-plates, with the fast axis of the second at an angle
(6 — m) with respect to that of the first, amounts identically to the optical rotator R,

of (3). The fact that addition of turns is non-commutative manifests itself in this
particular example in the following way:

turnCB“+”turn AC = — turn AB = (turn AB) 1. (26)

One can see this result geometrically by sliding CB and AC to the northern hemisphere
of 7.

It remains to be shown that if a certain state traces a closed circuit on 2 under
the action of this two-half-wave-plates arrangement, the dynamical phase it picks up
is independent of 6; it must of course be independent of , as well. Specifying the
system components amounts to choosing the piecewise constant Hamiltonian of




C

Figure 2a. Synthesis of rotator turn on J by half wave plates.

n3

n2

Figure 2b. Closed circuits traced on £ under two half-wave-plate arrangement.
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eq. (24) in a definite way, and therefore to a determination of the dynamical phase
as well.

Itis clear that the circular polarization states are the ones which trace closed circuits
on 2, since they are the eigenstates of the combined transformation. As shown in
figure 2(b), the state of right circular polarization traces the closed circuit RMLNR
on 2. Since diametrically opposite points on 2 remain so under all rotations of #
(i.e. orthogonal states remain orthogonal under unitary transformations), the state of
left circular polarization follows the closed circuit obtained by inverting RMLNR"
through the origin. Thus, if M’ and N’ are the antipodes of M and N, the inverted
circuit is LM'RN'L.

The dynamical phase is well-defined for every segment of the circuit, and the total
dynamical phase is the sum of contributions from the various segments. It is easy to
see that if, under the action of a constant Hamiltonian, a state traces a great circle
arc on 2, then for that segment the SU(2) dynamical phase is zero. To this end recall
that the dynamical phase is the x5-integral of the expectation value of the Hamiltonian.
If a constant Hamiltonian H = 4-p has the effect of driving A in ® =3 (1 + #i-p) along
a great circle, then necessarily :

a-i=0. @27

Hence the expectation value of the Hamiltonian, and the dynamical phase, are both
ZEero:

E'HE=trH®=34-A=0. | (28)

Since the circuit in figure 2(b) consists of two great circle arcs generated by two
constant Hamiltonians, it follows that the SU(2) dynamical phase is zero, and the
dynamical phase is entirely due to the U(1) part of the Hamiltonian. But the U(1)
phase does not depend on how the fast axes of the half-wave-plates are oriented in
the x, — x, plane. We have thus proved the following assertion:

Two half-wave-plates, the fast axis of the second making an angle 3(0 — ) with
respect to that of the first, act as an optical rotator R, in such a manner that the
SU(2) dynamical phase is independent of the angle 6, it being understood that the
input states are of circular polarization.

Since rotating a half-wave-plate (or any birefringent plate) through = in its plane
is an identity operation, we could have used (6 + x) in place of 3(6 — ) in this
assertion.

It should be noted that while the turns AC, CB in figure 2(a) for the two half-wave

| plates do depend on 6,, the angle 8 in R, corresponding to the effect of the combined

turn is independent of 8,. Further, while the actual ¢losed circuit traced on £ under
the action of the two half-wave-plates depends on 6,, the initial state that traces this
circuit, the dynamical phase and the geometric phase are all independent of 6,. The
initial state is independent of 8 as well. ‘

Generalization of these considerations to a great polygon (closed circuit formed
by great circle arcs) on 2 is straightforward. First, note that evolution of a state along
a plane curve on 2 can be produced by a constant Hamiltonian, and hence evolution
along a great polygon by a piecewise constant Hamiltonian. The previous analysis
(basically eqgs (27, 28) then shows that with such a Hamiltonian the great circle arcs
do not contribute to the SU(2) dynamical phase. But there remains the possibility
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that at one or more vertices of the polygon there act Hamiltonians for which the
respective vertices form eigenstates. In such a case these pieces of evolution which
do not displace the state on # contribute only to the dynamical phase and not to
the geometric phase. If this possibility is ruled out, one can state that SU(2) evolution
on a great polygon under a piecewise constant Hamiltonian contributes only to the
geometric phase. ,

Our geometric representation also makes transparent the interesting way in which
any SU(2) transformation can be synthesized using only birefringent plates. Let
JeSU(2) be the Jones matrix of the system we wish to synthesize. We can slide its
turn on . until its tail lies on the equator and its head in the northern hemisphere,
as shown by AC in figure 3. Now draw the meridian through C, and let it intersect
the equator at B. Both AB and BC are great circle arcs (lengths less than 7), hence

define turns; and the original AC is the “sum” of these:
turn AC = turn AB “+” turn BC. (29)

We have already discussed the realization of the rotation turn AB using half-wave-
plates, figure 2(a). The turn BCis a meridional one, representing a birefringent plate.
Thus, to realize any SU(2) element one needs just a birefringent plate to follow the
two half-wave-plate arrangement, with only the former depending specifically on the
particular SU(2) element being synthesized.

Instead of sliding the given turn to the position AC on 7, we could equally well
arrange for its tail to be in the southern hemisphere and its head on the equator,
corresponding to MA in figure 3. Now let the meridian through M intersect the
equator at L. Again it is clear that the turn ML followed by LA yields the given
element MA. Tt is easily seen that ML corresponds to the same birefringent plate as

Figure 3. Synthesis of a general turn on 7.
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BC, but appropriately rotated in its plane. However, LA and AB represent the same
rotation turn.

This geometric description of the synthesis of any SU(2) element using only
birefringent plates is a pictorial representation of the fact that any SU(2) matrix can
be written as the product of an exponential of p; and an exponential of a linear
combination of p, and p,. (The two constructions shown in figure 3 correspond to
the two possible orders of these exponentials). We maintain that while the analytlc
proof of this fact involves some algebra, in our geometric description it becomes "
obvious!

To conclude this section, we extend this all birefringent-plate synthesis of SU(2)
elements one step further leading to a single gadget capable of realizing every SU(2)
element. From the foregoing analysis and figure 3, it is clear that what are needed
are a variable polar axis rotator and a variable birefringent plate corresponding to
the turns AB and BC respectively. The variable rotator—turn AB—has been realized
by the two-half-wave-plate arrangement. To realize the variable birefringent plate—
turn BC—in a similar way with fixed optical elements, it is only necessary to see that
such a turn is obtainable by conjugation within SU(2) from a rotator type turn. This
is shown in figure 4. If R is a polar axis rotator (two-half-wave-plate arrangement)
and Q a quarter-wave-plate with fast axis along x,, we claim that the arrangement
QRQ™! realizes a variable birefringent plate. We use the method of turns to show
this. In figure 4, the equatorial turn AB of length 6 represents the rotator R; the point
A has been chosen as (0, —1,0). Let C'N and CA, both lying in the 2-3 plane, represent

3

Figure 4. Relation between rotator and birefringent plate.
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Q and Q™! respectively; each is of length /4. From the spherical triangle ABC it is
clear that CB is the turn representing RQ™'. Let its length be a, and let y be the
angle between CA and CB. Slide CB to the equivalent position DC'. We will see in
a moment that D lies in the 1-3 plane. The great circle NACSC'N (in the 2-3 plane)
and the one containing C'DBC, making an angle y between them, intersect at C and
C'. Hence the angle between DC' and C'N is x. Since DC’ has length a while C'N
has length /4, we see that apart from orientation the spherical triangles DC'N and
BCA are similar. Hence the angle DNC' is ©/2, and DN has the same length 6 as
AB. But as DC' is the turn for RQ ! and C'N is that for Q, we find that DN represents
QRQ ™. It is a birefringent plate with fast axis at n/4 to the x, axis, and with 6 = 26.
Since 6 which gives the relative orientation of the two half-wave-plates in R can be
varied, we see that QRQ ™! synthesizes a variable birefringent plate with fast axis at
n/4 to the x, axis. To change the fast axis, one has to simply rotate QRQ™! about
the beam axis (x;-axis). 4

To summarize, the combination of a two-half-wave-plate arrangement R’ followed
by QRQ ™1, ie. QRQ 'R/, realizes every SU(2) element. The part R’ with variable ¢’
(the angle between the fast axes of the two-half-plates in R’ being 3(& + n}) realizes
the turn AB in figure 3, and has length ¢'. The part QRQ ! realizes BC: the angle
0 in R is the length of BC, and rotation of QRQ ™" (or equivalently of QRQ'R'as
a whole) chooses the meridian on which BC falls. The gadget consists on the whole
of six birefringent plates, four being half-wave-plates and the other two being
quarter-wave-plates. The variable parameters are the relevant angle between the fast
axes in each half-wave-plate pair, and the overall orientation of the system (transverse
to the beam axis), this accounting for the three parameters of SU(2).

5. The geometric phase as a solid angle

We have earlier recalled the important result of Aharonov-Anandan (1987): when a
state evolves over a closed circuit in the projective Hilbert space, the diffc?renge between
the total phase picked up by the state and the dynamica} pha_sc gthe time integral of
the instantaneous expectation value of the Hamiltonian) 1s mdepeflden.t of Fhe
particular Hamiltonian and depends on the circuit alone. We. shall shqw in 'thls secngn
that for SU(2) systems for which the projective state space 1S the l?omcare sphereds?;i
given any closed circuit on & this phase difference 1s half the solid angle sul?ten f:l
by the circuit at the centre of 2. The proof is structured in such a way Fhat it easily
generalizes to the noncompact group SU(1, 1) ~SP(2,R) =~ SL(2,R) whrgh plays an
important role in first order Fourier optics anq thq problem of squeeze stflti:’s. .
Given A, A'€S?, we need to construct a distn}gulshed SU(2) element, {3(2,11; Gaz
which rotates 7 to A’ along the (shorter) great circle arc. The element {4.(n, nl)e (2(3 ))
in eq. (21) will not do this, since it was tailored to obtain the i;f)mpzsngoilt swan k;
In fact, A(A, A') rotates A beyond #' to A" in the plane of # and #', such that the ang

between A and A’ equals that between A’ and A"
A(h, )R- pAR )~ L=4"p,
A" = 20-AA — 1,

(30)

A Al A Al
A =HA", A=A\
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On #' the effect is similar:
AW, R -pAH,#) ™1 = (A -A"A" — /') p. (31)

But these properties of A(A,7') show that the element B(#, i) we are in need of, and
which will take A’ while leaving A, #’ invariant, can be obtained by replacing #
in A(A, ") by the unit bisector of A and #":

B, ) = A(h, (h + )|+ ']
= [2(1 + A-A)] 12 (1 + A, A)),
B(A, #)f-p B(it, /)™ * =#'p,
A(A, ) = (sign (h, 7)) B(A, /") (32)

(Here in the last line A" is as in eg. (30)). As one should expect, this expression for
B(A,#) becomes indeterminate when A-A'= —1; the two unit vectors then have a
one-parameter family of bisectors rather than a unique one, or equivalently a
one-parameter family of great circle arcs connecting them.

For A, A’eS?, the most general constant Hamiltonian which generates a unitary
transformation taking A to A’ is not unique, but is an arbitrary linear combination
of A, A'-p and (A + ) p. (This nonuniqueness is over and above the reparametrization
of the evolution parameter resulting in a scale change of the Hamiltonian, which
freedom is always present and is ignored). A Hamiltonian proportional to 7, A-p
alone takes 7 to A’ along a great circle arc; one proportional to (A + #')-p does so
along a circle of constant latitude with respect to the axis 7 + #’, which incidentally
is the smallest circle containing # and #’. Under each constant Hamiltonian # traces
a plane curve on £; conversely for each plane curve connecting # to #', we have a
unique constant Hamiltonian that drives # along it. Both A(#,#') and B(#,#) are
generated by 7, 7p.

We are now equipped to carry out the calculation of the geometric phase. For
0 <s< 1, let A(s) be an arbitrary smooth closed circuit I" on £, as shown in figure 5.
Let 7(0) = ri(1) = Ai,. As s varies, the state

B(s) =3(1 +#(s)p) (33)

evolves along I, starting and ending at ®(0) = ®(1). Let J(s)eSU(2) for 0 <s< 1 be
the most general choice of unitary operators which produce this evolution:

d(s) = J(s)D0) J(s) L. (34)
We recover the s-dependent Hamiltonian H(s) generating this evolution through
dJ(s) . _ ~
i =J(s)= — xH(s)J(s),

JO)=1,

J(s)= ?exp(— i r H(s) ds’). ) | (35)

0
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n3

n2
Figure 5. Calculating the geometric phase on 2.
From our considerations in the preVious paragraph it follows that
H(s) = $#(s) JA(s)p + as)A(s) P, (36)

where afs) is an arbitrary real c-number function of s. Since A(s)-A(s) =0, we can
readily check that '

(—?S-(J (8)™ A(s)-pJ(5)) = J(8) " GLH(s) Als)p] + fi(s)-p)J(s) = 0, (37)

showing that J(s) indeed produces the required evolution along I:
Js)ho pJ(s) ™  =Als)p (38)

Now for each s in the range 0<s<1 consider the s-dependent closed circuit I'y
consisting of the portion of I from 7, to #(s) followed by the great circle arc from
A(s) back to fiy. Fors=1, I, coincides with the original I'. We may choose the closed

circuit evolution over T’ to be produced by
000) = Blis) A8
QO)=1, Q(1)=J(). | (39
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By cdnstruction Q(s) for each s returns #j, to itself, hence ®(0) is an eigenstate of Q(s).
Thus Q(s) must necessarily be of the form

O(s) = exp (—ip(s)hop),
¢(0) =0, | \ : (40)

where the real c-number function ¢(s) is the total phase picked up by the state #, on
evolution over the closed circuit I',. We are interested in ¢(1), the total phase for the
circuit I" and the Hamiltonian (36).

The problem has been reduced to evaluation of ¢(s). We develop a first order
differential equation for it. From egs (32, 39), we have:

Q(s) = B(A(s), Aio)J () + B(A(s), o) J(s),

L0 4 sy o) 2 A(s) (1 + AGAs), o))

816,100 = 2|

NG
+(1 4 (s)- o)~ Y2 ((s) A —iﬁ(S)Aﬁo'p)}- Gy
After straightforward algebra, this simplifies to

O(s)J(s) ™ * = B(A(s), Aip) — iB(i(s), Ap)H(s)

- %a + A(s) 7o) ¥ (s) , A(S) (Ao + A(S)) P

— io(s) B(A(s), Aig)A(s)" p. (42)
Hence

Q(5)Q(s)™* = Q(s) J(5) ™ 1 B(A(s), Aig) ~*

_ —ifigAls) () , ‘ .
= d+n, ﬁ(s))ﬁo p — i(s)fg°p, (43)

which in view of eq. (4(]) means

L Lhgeifs) JA(s)
§)=o— )

o) =30+ gy O | 44)
Now, if Q(s) is the solid angle subtended by the closed circuit I, at the origin, then
(Al + Ay A(S))” lﬁo‘ﬁ(..S‘)Afl(S) is the rate dQ(s)/ds at which the great circle arc from A, to
fi(s) sweeps out solid angle as A(s) moves along I'. Further, afs) is the expectation
value of the Hamiltonian H(s) in the instantaneous state ®(s):

(H(s)) = tr H(s)d(s) = a(s). (45)
Thus we may rewrite eq. (44) as

do(s)  1dQs) |
a5 "2 45 TCHBD, (46)
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and on integration from s =0 to s=1 we get an expression for the geometric phase:

1 ' .
o(1) — L ds(H(s)> =39 (47)

Here Q is the solid angle subtended by the closed circuit I' at the origin. This completes
the proof of the assertion made at the start of this Section.

* A difference in signature between our definition of the geometric phase and that
of Aharonov-Anandan should be noted. Assuming that in both conventions the
geometric phase is half the solid angle, our definition implies that the solid angle is
positive (negative) for a positively (negatively) traversed circuit, while that of
Aharonov-Anandan amounts to taking the solid angle positive for a negatively
(clockwise) traversed circuit. '

There is an interesting way in which the relation (47) between the geometric phase
and the solid angle on 2 can be dynamically exhibited in a polarization experiment.
Consider right circularly polarized light passing through the two-half-wave-plate
arrangement discussed earlier in connection with figure 2(a, b). Upon passage through
the first half-wave-plate, the input state R is transformed into the left circularly
polarized state L along the meridian RML. Upon passage through the second plate
L is transformed back to R through the meridian LNR. Thus the initial state has
traversed the closed circuit RMLNR, which subtends the solid angle 460 (assuming
that the fast axis of the second plate is at 8+ 7/2 with respect to that of the first
plate). Hence from eq. (47) the geometric phase change suffered by the state is 26. If
the dynamical phase is @o, We have shown in §4 that for this arrangement @ is
independent of 6.

Now suppose the second half wave plate is rotated in its plane with angular
frequency @, so that 6 varies as '

6(t) = 6, + wt, (48)

where the initial value 8, will turn out to be irrelevant in the present situation. With
this rotation, the meridian LNR in figure 2(b) rotates about the n, axis with angular
frequency 2w, while the meridian RML stays constant. Thus we have a closed circuit
at each time, with a time-dependent solid angle

Q(t) = 46, + 4ot, ‘ (49)
a time-dependent geometric phase
B(t) = 3Q(t) = 20, + 2o, (50)

and a total phase @o + B(1). Since this phase change is linear in time, it results in a
shift in the frequency of the light. If the input frequency is @o, the output frequency
will be

o = wy+ 2. , (51)

If this output light is superposed on a reference beam extracted from the input which
has frequency ®,, then beats will be seen at the difference frequency 2w. Such an
experiment where this effect can be used to fine tune the frequency of a laser beam
has been reported recently (Simon et al 1988). Instead of using two half-wave-plates
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under a single pass configuration we could equally well realize the closed circuit in
figure 2(b) by using two quarter-wave-platés in a double pass configuration as in a
Michelson interferometer, with the input state being a linearly polarized one
corresponding to the point M in figure 2(b). This is the option actually adopted in
(Simon et al 1988).

The above example involves a geometric phase which grows linearly in time, leading
to a simple frequency shift. There are physical situations where the geometric phase
could have a more complicated time dependence, leading to a general phase
modulation and frequency spread. A specific situation where this could take place is
explored in (Simon and Kumar 1988)

Returning to the above experiment, if we had used left circularly polarized light as
input, then the closed circuit would have been LM'RN'L. While the solid angle has
the same magnitude as for RMLNR, the circuits are traversed in opposite senses and
hence give equal and opposite geometric phases. It follows that for left circularly
polarized input light and the second half-wave-plate rotating at an angular velocity

o, the frequency shift will be in the opposite direction so that the output frequency
is Wy — 2.

6. Concluding remarks

We have presented in this paper a new geometrical representation for polarization
optics based on Hamilton’s turns. In this representation not only the action of
individual optical systems on polarization states but also the sequential composition
of several systems is handled geometrically rather than algebraically. We have also
presented several applications of the new representation in the context of the geometric
phase, and the suggestiveness of the formalism in synthesis problems must be evident.

For simplicity we limited our attention to pure polarization states. The generaliza-
tion to transformation of mixed states by unitary systems is straightforward. A mixed

state can be written as an incoherent superposition of characteristic orthogonal pure
states:

®=oad; + (1 —o)®,. (52)

Here ®; and ®, are the normalized orthogonal eigenstates of the given mixed state
®, and without loss of generality we can assume 4 < o < 1. The representation (52) is
unique except in the degenerate case a =7 when ® becomes a multiple of the identity
matrix. Since ®, fixes ®, uniquely, a mixed state can be represented by the pair
(o, @), where @, is a point on 2 and { < « < 1. Under the action of a unitary system
® transforms as in eq. (15). It follows that « remains invariant, while the transformation
of @, on £ follows the analysis in §§2,3. However, the generalization of the notion
of geometric phase to mixed states has never been clear.

While our analysis has been in the specific context of polarization optics, it should
be clear that all our considerations apply faithfully to quantum mechanical spin half
and pseudo spin half systems. The role of the polarization matrix @ is then played
by tl}e density matrix and that of the unit vector 7 on 2 by the (pseudo) spin vector.
Again the geometric phase is half the solid angle subtended by the closed circuit

traced by the tip of the (pseudo) spin vector at the centre of the sphere of (pseudo) -

spin vectors.

1
|
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While the group SU(2) is compact, the closely related noncompact group SuU(1, 1)
plays an important role in several physical problems. We note that SU(1,1) is a
two-fold covering of the three-dimensional Lorentz group SO(2, 1), and is also the
group. of linear canonical transformations in one canonical pair of variables; equally
well, of Bogoliubov transformations (squeezing being a subset of such transformations)
for a creation-annihilation operator pair in view of the isomorphisms SU(1,1)=
SL(2,R) = SP (2,R). This group plays a fundamental role in first order Fourier optics
involving axially symmetric systems and also in problems of squeezed states. Our
presentation of Hamilton’s turns for SU(2) was designed to make the generalization
to SU(1,1) possible. Indeed such a generalization has been recently accomplished in
(Simon et al 1988), where the term «serews” has been used in place of turns for SU(1, 1).
The role of the sphere of turns 7 is now played by the single sheeted unit hyperboloid
x? + x3 — x3 =1,and that of great circles by the intersection of planes passing through
the origin with this hyperboloid. We can then employ screws to obtain a new geometric
representation for first order optics and the squeezed state problem. A generalization
of the geometric phase-solid angle connection to the noncompact SU(1, 1) case is also
suggested.

We note that the present analysis was restricted to polarization states of plane
waves and their transformation by non-image forming unitary systems. Recently we
have developed a systematic method, based on the Poincaré invariance of Maxwell’s
equations, for handling polarization of profiled beams and their transformation by
first order image forming systems (Mukunda et al 1983; 1985). In situations when the
lenses are made of nonbirefringent non-optically active material, it has been shown
that the transformations of the transverse position dependent polarization is described
by the SL(2, R) group of first order optics. If the lenses are made of birefringent and/or
optically active material, then the transformation of the polarization states and also
the geometric phase will be expected to be governed by the product group
SL(2,R)® SU(2).

Finally we note that, as has been shown elsewhere, every SL(2, R) first order system
can be synthesized with at most three lenses (Sudarshan et al 1985). The powers of
these lenses, as also their separations, do of course depend on the particular SL(2,R)
system being synthesized. Our design in section 4 of a single gadget capable of realising
all SU(2) transformations through simple rotations of the components without having
to change the components themselves raises the following question: Is it possible to
design a lens system which can realize every SL{2,R) element by merely adjusting the
locations of the lenses in the gadget without changing their powers?

We plan to return to these various questions elsewhere.
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