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Following the approach to quantum measurement, proposed in an earlier paper, in which the apparatus is
treated as a purely classical instrument to be described by the laws of classical mechanics we examine some
simple experiments for the purpose of illustration. The Stern-Gerlach experiment is examined in detail,
within our approach, and we see explicitly how the relevant information is transferred to the apparatus
variables. We also examine a magnetic interferometer arrangement and a crossed-field arrangement.
Consideration of these experiments leads us to the inclusion of an extra procedural step in our approach.
This extra step is necessary so that an observer may measure the classical apparatus variables at will after

the interaction is completed.

L. INTRODUCTION

In our previous papers'~® we introduced a new
approach to the treatment of measurement in quan-
tum theory. The unusual feature of this approach
is to treat the apparatus as a classical system,
truly described by classical mechanics. The sys-
tem to be observed is, however, a quantum sys-
tem. Thus our approach requires that we couple
together classical and quantum systems.

The proposal, which we forwarded in Ref. 2, is
an attempt to construct an alternative theory of the
quantum measurement process. It does not yet
have.the status of a theory, as its logical consis-
tency is yet to be demonstrated. Once that is ac-
complished, then a decision as to which theory is
correct can only be made on the basis of agree-
ment with experiment.

We shall refer to Refs. 2 and 3 asI and II, re-
spectively. InI we concentrated on setting up the
formalism and introducing the tools necessary in
the detailed description of the approach. The for-
malism introduced was one which allows the direct
interaction of a classical and quantum system. In
II we examined the effect of placing certain re-
strictions on the coupling; in particular, the re-
quirement that the apparatus observables retain
their classical integrity, despite interacting with
the quantum system.

In this paper we focus our attention on the mea-
surement aspect of the model: Exactly how does
our model implement the measurement process?
InI we suggested a necessary requirement for a
measurement: Unambiguous information on the
values of quantum system observables should be
transferred to the observables of the apparatus.
Of course, this transfer is to occur as a direct re-
sult of the interdction between the apparatus and
the quantum system. We must, furthermore, ad-
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dress the problem of how the observer is to “read”
the apparatus, after the interaction has occurred.
Does the principle of integrity guarantee that the
apparatus will be classical from the point of view
of an outside observer? Another interesting ques-
tion which must be posed is whether the outside
observer will interact with the quantum-enlarged
apparatus system, or with the conventional clas-
sical system, and in fact whether it makes any dif-
ference which happens.

The approach we take in this paper is one of il-
lustration. We pursue the theoretical description
of an idealized experiment, which is related to the
Stern-Gerlach experiment.* We have previously
shown in II that such an experiment can be de-
scribed by our model so that the principle of inte-
grity is satisfied. In this paper we wish to see how
a measurement results. '

We also discuss two variants of the “Stern-
Gerlach (SG) experiment.” The first is a magnetic
interferometer,®'® where magnetic fields are in-
troduced to recombine the split beams of the orig-
inal experiment. Although there is no measure-
ment resulting from this experiment, as the re-
combination undoes the effect of the first SG inter-
action, this is an interesting case to examine. It
demonstrates that in our formalism a unique clas-
sical state can evolve in time into an effective mix-
ture state, and back into a unique classical state.
“Effective mixture state” means that from the
viewpoint of the observable sector of the theory the
state is a mixture state.

The second variant is a “crossed-field” experi-
ment where two magnetic fields, with field gradi-
ents orthogonal, are used in place of the original
field.

Before we discuss these example we review
briefly the formalism of our approach in Sec. II.
We introduce the model, with which we illustrate
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our ideas, in Sec. III. Sections IV and V are given
over to a discussion of the experiments listed
above. In Sec. VI we shall address the problem of
the observer’s interaction with the apparatus, and
we will suggest a way in which it can be under-
stood.

II. REVIEW OF THE APPROACH

In this section we review our approach to quan-
tum measurement as developed inI and II. We
first review the results of I. The main thrust of
that paper was in setting up a formalism which
would allow the direct interaction of a classical
system with a quantum-system. The main tool used
was, in effect, a new way to view classical sys-
tems. It was described how one could envisage a
classical system embedded in a much larger quan-
tum structure (insofar as the dynamical variables
are noncommuting); and yet the observable part of
this larger quantum-mechanical system would
mimic exactly in its behavior the original classical
system.

Let us denote the dynamical variables of the
simple classical system by (q,,...,q,) and
(p1y+++5 p,). The Hamiltonian is a function of
these phase-space points, H(q,p). Their develop-
ment in time is given by Hamilton’s equations

_ #H(g,p)
] ’
s @
. 8H(q,p)
bi=— aq, .

Specifying initial conditions g,(¢=0)=¢? and p,(¢=0)
=p7 then determines fully the future time develop-
ment of the system.

We can describe the quantum system in which we
find the above classical system embedded as fol-
lows. This description involves the following:

(1) We use operators acting on a state space as
the dynamical variables; for this quantum system
we write them. as

’ qn}‘
(2.2)

w={w', ..., 0" ={q,, e, Gu3Drs---

(2) We introduce operators conjugate to the w*
with respect to commutation, i.e., operators m”
such that

[wH,77] = whp? — p¥ wH =467, (2.3)

A representation of the 7 operators is

Vg = | 2.4)

T .
ow?

(3) The Hamiltonian operator is

- H(q,p) , 8H(g,p) ]
Je=— - a
;{ aq; i 3p; 5

oH (w)
ow?

ek, (2.5)

The Heisenberg picture is used to discuss the time
development of the system. Using the Hamiltonian
operator defined in (2.5), the equations of motion
of the w" operators

WH(t) = —[wh(t),5¢] (2.6)

mimic exactly the classical equations (2.1).

(4) The analog of the initial values of the usual
classical description is the specification of the
state of the quantum system in the Heisenberg pic-
ture. This is made more precise by the following
choice of state:

[)=|wg) =4, 1%, ; 2.7

where the initial values seen -earlier are the eigen-
values of the w" on this state.

(5) We distinguish between the observable and un-
observable parts of the system by invoking a super-
selection principle: The set of operators
{o', ..., w"} are superselecting operators. The
immediate consequences of this principle are that
the conjugate 7” operators are unobservable, and
that the algebra of observables generated by the
w* is commutative. We note here that our use of
superselection does not follow the conventional
usage.”® For example, the Hamiltonian (2.5) is
not an observable. As a result no superselection
rule applies. This usage of superselection has
been discussed inI in more detail.

The observable sector of the resulting quantum
theory exactly mimics the simple classical system
first discussed. Our proposal was to use this
model to couple together a classical apparatus and
a quantum system. First we construct the “quan-
tum-enlarged” apparatus system, in the manner
described above. The enlarged system is then
coupled to the quantum system under investigation.

Let us denote the quantum variables by {¢}, and
the undisturbed quantum Hamiltonian by X(n). Then
the Hamiltonian operator for the coupled “enlarged
apparatus” and quantum system is

l,‘;ngco"":;c'mt ’ (2.8)
where
5, = Q) iy v (2.92)
ow
and

X im=plw, m &5 8).

We should point out that we are restricting our at-
tention, at this stage of the program, -to closed

(2.9p)
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systems about which we have maximum knowledge
allowed by theory. Our quantum-mechanical sys-
tems will then be described by elementary quan-
tum mechanics so that, for example, the time de-
velopment will be effected by a unitary transform-
ation, and state vectors rather than density ma-
‘trices are employed.

Finally in I we addressed the question as to what
restrictions should be placed on the interaction
Hamiltonian (2.9b). There were two general re-
quiréments:

(1) A measurement is achieved if unambiguous
information concerning the values of certain vari-
ables of the quantum system being examined can
be “stored” in the variables of the classieal ap-
paratus;

(2) after the interaction has occurred the appara-
tus must be “classical” in some sense.

The second requirement is rather vague as
stated. As we saw in I, the classical nature of the
state of the apparatus is not retained when arbi-
trary interactions with quantum systems are en-
visaged. However, the remaining classical prop-
erty is a statement about the classical observa-
bles, which form a commuting set: The wh(¢) are
observable for all times {. We proposed that the
requirement (2) above be applied to this property
of the apparatus system. This proposal was form-
ulated in both weak and strong forms as follows:

Weak form: After the interaction has ceased, the
apparatus observables should retain their classical
integrity. While the interaction is taking place no
such restriction is enforced.

Strong form: The apparatus observables should
retain their classical integrity at all times.

We called either requirement the “principle of
integrity.” Requiring that the interactions satisfy
this principle weakly is the weakest requirement
which we can impose if we wish the apparatus to be
“classical,” in any sense, after interacting with the
quantum system.

We note that for the uncoupled classical system
this property is automatically satisfied because the
Hamiltonian (2.5) is at most linear in the unobserv-
able 7*, For a general time-independent interaction

3Cint=‘§(w’7’; g)’ (2.10)

this result no longer follows. Clearly, if the cou-
pling function ® is quadratic (or higher) in the un-
observables 7* the apparatus variables wH(¢) will
not be observables for times ¢>0. If & is linear in
m™ it may occur that the principle of integrity is
satisfied even in the presence of some interactions

of the form
Kin= ¢H(wyn )"+ h(w; &), (2.11)

where {n’} and {&} are subsets of the quantum var-

iables. This form, however, is not sufficient to
guarantee that the apparatus observables retain
their classical integrity. Both the primary cou-
pling functions ¢* and the secondary coupling func-
tion z depend on unspecified quantum variables.

InII we set out to examine what constraints the
strong form of the principle of integrity places on
the primary and secondary coupling functions. The
resulting constraints did not give further restric-
tions on the functional form of ¢* and 7, but were
in the form of criteria which could be used to
check different models. We called these the integ-
rity criteria. .

As it was not obvious that any interactions exist
which satisfy the principle of integrity we applied
the integrity criteria to a simple example. The
model we examined, and to which we return in this
paper, consists of a quantum spin system and a
freely moving classical particle as the apparatus.
It is loosely related to the Stern-Gerlach experi-
ment. For this model we found a nontrivial inter-
action which obeyed the integrity criteria. We de-
fer a discussion of the form of the interaction to
the following section where we discuss the model
in detail.

III. A SIMPLE MODEL

The purpose of this paper is to illustrate how
our model provides a theoretical description of an
idealized measurement experiment. The experi-
ment we examine is related to the well-known
Stern-Gerlach experiment. However, the setup we
use is subtly different from the conventional
Stern-Gerlach experiment. In this section we in-
troduce the apparatus and the quantum system and
we discuss the formulation of the experiments we
later examine, We include in the following two
sections the solutions for the various cases ex-
amined.

The quantum system we are going to examine is
a very simple system. Its dynamical variables
have discrete spectra only, and furthermore the
system is inert. It is a quantum spin system
characterized by the three spin operators S;, S,,
and S,, and the total spin squared $*=5.%+5,% +S,%.
These operators satisfy the commutation relations

[Su Sj]=i€ijksk!
[Sz;si]=0-

Since the system is inert, the Hamiltonian van-
ishes—the system does not change in time if left
undisturbed. The state of the system is specified
by choosing an eigenstate of, for example, S? and
S,, which constitute a complete commuting set of
operators of the system.

For the classical apparatus we also choose a

(3.1)
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simple system; namely a freely moving classical
particle of mass m. The quantum-enlarged ap-
paratus system, following the outline in Sec. II, is
characterized by dynamical variables

w'={q,, 5]}
and their (unobservable) conjugate operators
t= {’”g’ ﬂf} .

The w" are superselecting operators, and they
generate the algebra of observables for the appar-
atus. As a consequence, the conjugate 7” opera-
tors are not observable. The state of the apparatus
can be specified to be an eigenstate of the observa-
bles, which form a commuting set. (We assume
that the state space has been appropriately extended
to include such non-normalizable states.) The

time development of this system is given by the
Hamiltonian

1.
=~ P 2
3 peT (3.2)

which is derived from the usual classical free-
particle Hamiltonian (1/2m)p? using the prescrip-
tion (2.5). We note that the Hamiltonian operator
(8.2) is not an observable.

We must choose a suitable interaction between
the apparatus and the quantum spin system. To
describe such an interaction we envisage the quan-
tum system being carried along as internal de-
grees of freedom by the (electrically neutral) par-
ticle whose translatory degrees of freedom are
classical. The internal degrees of freedom may be
considered to give rise to a magnetic moment, [Z
= y§, for the particle. The interaction is induced
by causing the classical particle to pass through
an inhomogeneous magnetic field, as in the Stern-
Gerlach experiment.*

The coupling between the apparatus and the quan-
tum system is-specified by requiring that the ap-
paratus observables satisfy the correct classical
equations of motion, namely

p(t)=F; and q,(t)=—%p‘(t).

At the purely classical level the potential energy
of the particle in a magnetic field B(g) is u -B(q).
The force exerted on the particle is then

F=-v(/-B)=-»8-VB,. (3.3)
The choice of primary coupling functions

$3=0, ¢4=F, (3.4)

then ensures the correct equations of motion for
the apparatus observables. The full Hamiltonian
is then

=— pem—5,[VB,(@)] 7. (8.5)
This form can be derived from the classical

Hamiltonian -
1 - =
o b2+ Blg) (3.6)

by using the prescription (2.5). We note that we
have chosen a vanishing secondary coupling func-
tion, As we saw in II for this example we could
transform such a coupling term to zero.

The coupling functions ¢)§ are still arbitr_ziry in
as much as the form of the magnetic field B(q) is
unspecified. InII we investigated what form of the
coupling functions, or, equivalently, what form of
B(g), is allowed if the strong form of the principle
of integrity is to be satisfied. When applied to the
above model the integrity criteria led to the result
that the gradients (a/aqi)ﬁ(q) must all point in the
same direction. In other words, only magnetic
fields of the form

B(g)=B(0)+F(¢g)#, (3.7)

where F(0)=0, can be used to induce the interac-
tion between the apparatus and the quantum system.

We found that the form (3.7) for the magnetic
field does not allow a treatment of the conventional
Stern-Gerlach experiment. The actual experiment
makes use of an inhomogeneous magnetic field pro-
duced by suitably shaped fixed magnets. The field
pattern in the space between these pole pieces is
necessarily rather complicated. Also, in that re-
gion, in absence of currents, Maxwell’s homogen-~
eous equations are satisfied, giving us

v:B(g)=0 and VvxB(g)=0. (3.8)

Magnetic fields of the form (3.7) can only satisfy
Eqgs. (3.8) if they are homogeneous. Such fields,
clearly, do not induce an interaction term in the
Hamiltonian (3.5).

However, our aim in this section is to describe
a simple, idealized, even if impractical, interac-
tion between the apparatus and the quantum sys-
tem. In fact, we could choose a magnetic field
B(g) of the simple form (3.7) which does satisfy
Maxwell’s homogeneous equations. We choose a
further simplified form of (3.7), namely

§(q)=B(ql’ qz)ﬁ’ (3-9)

where 7 is a constant unit vector pointing in the g,
direction. If we have a nonvanishing current dis-
tribution

T=(dy(q, %), (a1, %), 0) (3.10)

Maxwell’s equations can be solved® to yield
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a2
Blq,, qz)zf Jy(qy, g3)dgy
()

)
+ [* (qt, 0)agf (3.11)
[\]
For the purposes of the calculations in the follow-
ing sections we use the following explicit form:

Blgy, ¢,)=aq, +b,

where g and b are constants independent of ¢,, ¢,,
and gq;.

IV. ILLUSTRATION: THE STERN-GERLACH EXPERIMENT

In this section we illustrate our approach to the
measurement of quantum systems by taking a de-
‘tailed look at the model described in Sec, III. This
analysis demonstrates how information on quantum
variables can be stored in the variables of the
classical apparatus.

A. The Stern-Gerlach experiment

The first application of the model is to describe
a Stern-Gerlach experiment. In this experiment
the heavy particle passes through a single region
of inhomogeneous magnetic field. Inside this re-
gion the classical and quantum degrees of freedom
interact. Outside of this region the classical and
quantum degrees of freedom do not couple. In our
treatment we ignore the contributions from the
edge region. We later justify this approximation by
treating the edges and taking the appropriate limit.

Thus, the magnetic field which we use in our cal-
culations to induce the interaction between the ap-
paratus and the spin system is, in line with our
discussion of Sec, III,

B(q)=Blg,, @), ‘ (4.1)
where
0, &<y
Blgy, )= aq,+b, y,<g < (4.2)
0, »m<g

and # is a unit vector pointing in the positive g,
direction. The classical particle moves to the
right along the ¢, axis and is initially situated at
¢, < ¥,. The points y, and y, define the boundaries
of the region of the inhomogeneous magnetic field.
The magnetic field (4.1) is, in fact, not differ-
entiable at the boundary points y, and y,. This,
however, is an artifact of our approximation and a
harmless one at that as will be seen when we treat
_explicitly the edge effects. Thus in taking deriva-
tives of B(q,, ¢,) to define the field gradients (and
it is these which induce the interaction), we define

"0, @<y
s Bl @)= a<0, p<gy, (4.3)
0, m<g
and

9 2]
"a";z‘B(qu @)= a_qs‘B(qu qZ)=0-

The time development of the combined apparatus
and quantum system is given by the Hamiltonian

operator
- L5y 2 E-Hm (4.4)
m 9q; ¢ :

Here, the gradients of B are given by (4.3) and
from our choice of B the quantum variable coupled
to the apparatus is §-7=§,. As stated in Sec. III,
the state of the apparatus, initially, is an eigen-
state of the six apparatus variables § and D,

,d)>= |¢?,,f>.-)- . (4.5)
The initial conditions of the experimental setup are
incorporated by the choice

a2<yo, 52>09

G=3 =ﬁ1 =ﬁ3=0'
For the initial state of the quantum system we
choose an eigenstate of S? and S,, namely

[¢)=1s,8,=s").
Then the initial state of the combined system is
() =9 e|e).
We treat the time development in the Heisenberg

picture. The operator equations of motion then are
very simple, namely

(4.6)

8 . 1 ,
BS;, ()= ——p,t), i=1,2,3,
1

5,(8)=0, i=2,3,

(0= = #3(0), 73(0)=0,

S,(6)=0, 4.7
S(0=vy —gg (0)S,(2)

1
S, (2) =-y—:q£ w8 (2)S, (8)

The times at which the classical particle enters
and leaves the magnetic field are determined by
the eigenvalues of

1:(8)=p,(0)=p,
and

t ~ . t ~
qz(t)=112(0)+ sz=‘12+ %pz
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in the state |y), and they are, respectively,

m
t=——(¥,- %),
o= 7, Yo— 42

and (4.8)
m
b=ty+t = (3= %) -
p2

For times ¢ >¢, the solutions to the remaining equa-
tions are

pl(t) =P1 (0) - d‘)’Sg(O)(tl - to) )
(0 =6,0)+ = p,(0)

- 50, - to)< - Lo;_&) :

74(¢) =7¢(0), (4.9)
74(t) = 74(0) - - 7%(0),

S;(2) =54(0),
S,(2)=5,(0)cos® +S,(0) sind ,
S, (#)==5,(0) sin® +S,(0) cos® ,

=s"|s, S,

a0{lp el =a®lped (ss,
=q1(t)zasn,s'|¢>®ls, S3=s")

-_ay
———m—(t - 1,) (t—

From the action of ¢,(¢) on the state |y) ® | ¢), we
deduce that the position of the classical particle at
time ¢ >, depends on the action of S,(0) on the quan-
tum state |¢). Thus if we know the position of the
particle, we know the value of S,(0) on the internal
quantum state.

If we consider an initial beam of classical par-
ticles each with an internal quantum system in the
same state |¢), then Eq. (4.11) tells us that the
trajectory of the initial beam has split into (2s+1)-
phase correlated beams, which are spatially sep-
arated, as a result of the interaction. The result-
ant beams are characterized by the states

) ®|s,S;=s") for s”=s,5-1,..., ~s,
(4.12)

and on each of these the eigenvalues of ¢,(¢) is

ay 1, +1,
el Ul to)(t— —°—§-L>s” for ¢>t,.

SHERRY, AND E. C. G.
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where the operator & is given by
t2
=gy [ﬂf(())t— 73(0) *2‘-7;] .

To find out about the measurement aspect of the
interaction we need only concentrate upon the ef-
fect of the quantum system on the apparatus ob-
servables, which in this case means p,(¢) and ¢,(¢).
Nevertheless, we have included the other solutions
for later use. The apparatus observables p,(¢) and
ih(t) depend functionally on the quantum variables
S4(0). In fact, information has been stored in the
classical observables. Let us consider the action
of ¢,(¢) on the state |¢) ® | ). Clearly

201019 =(2+ 5 5) W ol#,
and ' (4.10)
%0 @) =0.

However, we notice that [¢) ® | ¢) is not an eigen-
state of ¢,(¢) [though it is an eigenstate of ¢,(0)] as
is clear from the Eqs. (4.9). We can expand the
state in terms of the eigenstates of ¢;(#), and we
find

=S’>ls, S;=s")

(4.11)

This treatment in the Heisenberg picture allows
us to deduce that in the corresponding Schrodinger
picture analysis the initial state |¢) ® | ¢) evolves
into, at time ¢, a superposition over distinct ¢,
eigenstates. Since the apparatus observables are
also superselecting operators, each of the g,
eigenstates in the superposition belongs to a differ-
ent superselected sector of the state space. Such
a state is not a unique classical state. We call
them effective mixture states. This state is effec-
tively a mixture state as the relative phases in the
superposition are not measurable. The example
above demonstrates that within our formalism a
unique classical state can evolve in time into an
effective mixture state.

We have satisfied the requirement imposed in the
introduction so that the interaction might lead to a
measurement. Unambiguous information on the
values of the quantum variable S;(0) has been
stored in the observables ¢, and p, of the appara-
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tus. In the first case above, with just one particle,
what is measured by ¢, is the value of S; on the in-
ternal spin system. In the case of a beam of par-
ticles what is actually measured is the eigenvalue
of S% which is

s(s+1)=3[(2s+1)2-1],

by counting the number of 25+1 resultant beams.
However, we must emphasize at this point that for
a true measurement to occur an observer must
read the information from the apparatus. We re-
turn to a discussion of this question in Sec. VI.

B. The edge regions

In Sec. IV A to simplify the anélysis we made use
of an approximation—we simply ignored the possi-
ble effects of the magnetic field at the edges of the
region in which it was nonzero. We now wish to
justify the use of that approximation.

We shall examine the model Stern-Gerlach ex-
periment of the previous subsection with the fol-
lowing magnetic field:

Blq,,)% =f(g,) aq, +b) 7, (4.13)

where
(0, ¢ <

_Z__O_q —J < <

Y= 3o’ Yo< GG <MW
f(q2)=< 1, % <q <y, (4.14)
V3= @

< <
Yo — 3y " Y2 <qz<Y3

0, ¥3<¢,.

With this choice the magnetic field tapers off to

zero linearly in the edge regions. This function is
)

once differentiable everywhere, although f/(g,) is
not continuous. The Hamiltonian for the interac-
tion is, .

1 -~ » 9B 8B
FCop = Z p'"q_7<——>s3”§—7(5(1:> S31Tf. (4.15)

In the regions ¢, <y,, 3 < ¢ <y, and y; <g, the
analysis is as in Sec. IVA, It is only in the regions
Yo < @ < ¥, and y, < g, < y, that the edge effects en-
ter the problem.

For the region y, < ¢, < 3, the equations of motion
for the apparatus observables are

ﬁl(t)=— ‘_l_-_yy [qz(t)"yo]ss(t)s

ﬁz(t) -

2w (0+ L)syo),

Ps(t) =0,
a;(8)=p;(&)/m,
S,(0)=0.

These equations can be written as follows:
da* .
<E?4——’B4>p,-(t) =0, ¢=1,2
a* b
(f-#) a0= 25

(& - ) a0=-x",

where we have used

g =

(4.16)
i=1,2,3

(4.17)

W‘*——) 53(0) .

At times ¢ such that ;<< tl, the solutions to
these equations are

pa(t)= ba( );p (fo) coshB(t—t,) +Bm %L sinhB(¢ - #,) + AU )+p( ) cosB(t— to)—Bm%z- sing(t- ¢,),

)= LR =) Gy % cosng(e- 1)+

2mp 2

_l(_EQl__li.O_ Slle(t-— to)"' _%.

5 ‘t; 5 cosp(t—t,) +y,,
)+

pl(t)- ——(57)——1)"-(19—) coshB(t-¢,) - Bmay smhﬁ(t 1)+ —Z—(—t“-—-—-“i-“—) cosp(t-t,) - —B%% sing(t~¢,),

2

a(t)=- —”i’fﬂ)—&(—ﬁ sinhB(t-£,) - 2 coshp(t- 1)+ 2 ;:n% ) Ging(e- 1)+ 2 cosplt- f) - %,

2mp 2

where
- 1/2
B=+ (—5—@3;1)> , S;(0) diagonal
1~ Yo

& =[a () - 3] - () + 5 ). (4.19)

o =g, () - 3] + (ql(to)+ —Z—) .

(4.18)

r

These solutions are interesting for the following
reasons. If we let y, —y,, that is, we let the edge
region get smaller and smaller, the solutions in
(4.18) behave as

pi(8) = p;(8,),
a;(8) ~ q;(%,),

i=1,2
i=1,2.

(4.20)
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In other words, if we let the linear edge get smal-
ler, its effect on the apparatus observables tends

to zero. Furthermore, in this limit the gradients
of Blq,, ¢,) approach the values we used earlier in
(4.3). It is in this sense that our earlier approxi-

mation is justified.

V. ILLUSTRATION

In this section we illustrate our approach fur-
ther. We consider experimental arrangements
which are slightly more complicated than that of
the previous section. To the right of the inhomo-
geneous magnetic field we consider other regions
where the magnetic field is nonzero, and these
magnetic fields induce further interactions be-
tween the apparatus and the quantum system.

A. The magnetic interferometer

In this subsection we investigate an interaction
which will undo the effects of the “Stern-Gerlach”
experiment described in Sec. IV. That is, after
the classical beam has passed through the inhomo-
genecus magnetic field we introduce an interaction
which returns the variables of the classical appar-
atus to the form they would have had in the absence
of any interaction—we recombine the beams. The
interesting question is whether the internal quan-
tum system returns to its original state or not.°

The experimental arrangement we are discussing
is called the magnetic interferometer.5'® As de-
picted in Fig. 1, there are three disjoint regions
of space where the magnetic field gradient is non-
zero, separated by two regions of zero magnetic
field. The first region of the nonzero magnetic
field, labeled region II and the following region of
no magnetic field, labeled region III, are as in the
Stern-Gerlach model set up of Sec. IV. Region IV,
immediately after these, is chosen with the mag-
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netic field antiparallel to that of region II, but with
the same magnitude and twice the spatial extent of
region II. This has the effect of bending the diver-
gent beams so that in the middle of the region IV
the beams are moving parallel to each other.
Thus, if we had just I, II, III and ;IV the emerging
trajectories of the classical particles would be
parallel. The final region VI is identical to the re-
gion I and is separated from region IV by a region
of zero magnetic field, the same as region III in
extent. The effect of the final region is to cause
the converging beams to coalesce.

The details of the analysis of this experiment fol-
low much as in Sec. IV. The Heisenberg equations
of motion for the dynamical variables are

S,(H)=0,

0= 5 ), 72,3

p:(8)=0,
b(D==¢,
a8 =p, )/ m,

S, (8)=i[S,(8), @172(2),
S, =S, (1), oIt (®),
#(#)=0, fori=1,2,3
#(8) = =13(8)/m,

where

i=2,3

(5.1)

avyS; in regions II and VI
—ayS; in region IV (5.2)
0 elsewhere.

Here & is the gradient 8B/8q, of the magnetic field
for the interferometer.
It is a rather straightforward matter to solve

ela el
Tacidevt beam a=e 640 |ase ado aw| Qo aso
— MLt et >
NINEEXI I Z AL ]
¢~L—| |¢— RL——| Je—L—> 2
i I o ™ T i 4
D

FIG. 1. The magnetic field arrangement for the magnetic interferometer. The solid arrows denote the direction of

the magnetic field gradient (8/6¢4)B(qg).
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region of inhomogeneous magnetic field to the right
of the original setup. The field gradient in this ad-
ditional region is chosen to be orthogonal to that of
the first region. Thus, in the no-edge approxima-
tion we have a magnetic field

these equations in the various regions. The choice
of the magnetic fields in the different regions, and
the sizes of these regions, guarantees that the sol-
utions at a time after the interaction is completed

are

pi()=p,(0),

(t) q¢(0)+ Pi(o)

7¥(#) =74(0), (5.3)

w(t) =15(0) -~ = 73(0),

S4(2)=5;(0).

These solutions tell us that not only have the clas-
sical beams recombined, but also the quantum
states also interfere coherently—the quantum state
finally is the same as it was initially. Thus all the
effects of the first interactions have been undone.

In II we considered, as well as the couplings dis-
cussed in this paper, a m-independent secondary
coupling function for the Stern-Gerlach model. In
that case the above result does not hold, i.e., the
quantum variables S, (#) and S,(¢) are not the same
as S,(0) and S,(0), although they are related by a
unitary transformation. However, as we saw in1I,
the secondary coupling function could be trans-
formed away by a unitary transformation.

In the magnetic interferometer described in this
section there has been no measurement. At no
stage could information on the state of the quantum
system be transferred to an observer. We will re-
turn again to discuss this question in Sec. VI.

B. The crossed-field experiment

In this subsection we examine a crossed-field
experiment. The simple experimental arrange-
ment of Sec. IV is extended by including another

B(gy, > ) = By(ay, @) 7+ By (e, 45) 7', (5.4)
where
7-7#'=0, B,(q,q) is as in (4.2) (5.5)
and
0, &<
By(de, @) =¢ caz+d, 32 <z < (5.6)
0, 354

with ¢ <0, such that y, <y, <y, < 3,; thus, the re-
gions of the support of B, and B, are disjoint, as
shown in Fig. 2.

We have discussed an interaction derived from a
magnetic field of this type in II.. There we were in-
terested in finding the most general interaction al-
lowed within our model “Stern-Gerlach” arrange-
ment which satisfied the integrity criteria—that is,
which allowed the observables of the classical ap-
paratus (in this case the particle) to remain clas-
sical after the interaction. We derived the result
that the magnetic field gradlents (8/8g;)B q) must
all be unidirectional leading to the following form
for the magnetic field:

B(@)=B(0)+B@)7#,
where 7 is a constant unit vector, provided the
magnetic field were to be analytic. On the other:
hand, if the magnetic field was not restricted to be
analytic, the necessary integrity criteria required
the field gradients f;(q) to be unidirectional in
every disjoint region of support. With the choice
we have used, in Sec. IV, for the form of the mag-
netic field, namely B(0) parallel to %, we have in

%
A
a<o,ce0 ¢¢o,0z0
-/ /7 .
[ w (m
cao czo tao
1 I 0 w T
%

FIG. 2. The magnetic field arrangement for the crossed field experiment.

of the magnetic field gradients (3/8q1)B(q) and (8/9 q;,)B(q)

The solid arrows denote the direction
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this case as the allowed form for the magnetic
field:

B@=Y_ B"@#in, 5.7

where 7#,, are constant unit vectors and the support
regions of B™Q) for different m are disjoint. How-
ever, it is not yet clear if this form for the mag-
netic field is sufficient—does it allow the apparatus
observables to remain classical? In1II, we gave
an argument that this would not be the case. In

the present section we will demonstrate the re-
sult explicitly.

Clearly the inhomogeneous magnetic field in this
experiment is not analytic as is seen from the Eqs.
(5.6). In fact at certain points it is not even differ-
entiable. However, because the linear edge model
of Sec. IV B reduces in the limit of zero edge to the
treatment of Sec. IVA, we are justified in ignoring
the nondifferentiable points. The magnetic field
does take the form (5.7) allowed by the (necessary)
integrity criteria.

The analysis of the experiment through the first
three regions of space is identical to that given in
Sec. IVA, for the Stern-Gerlach case. In the
fourth region we can concentrate simply on the ap-
paratus observables. Their equations of motion are

ba(t)z_c)’sl(t),
- .
a5(8)= —— ps(2),
i.)z(t)=0,
1
&= — p ), (5.8)
i’l(t)z(),
1
7()=— p(8),

S,(#)=0.

The corresponding solutions for a time ¢, where
t,<t<t,;, are

S, @) =5,(¢,), "(5.9)
p3(t)=p3(0)- cy(t- tz)sl(tz) )
g5 (8)=g5(0) + 7;— P5(0) - —2% (t—15)%S,(ty),
(5.10)
pz(t)=p2(0),
¢

qz(t)zq (0)+— PZ(O) )

’ " (5.11)

Pl(t) =171(t2) 3

a®=at)+ =2 p,).

Let us concentrate on the solutions (5.9) and
(5.10). The spin operators S,(¢,), which occurs in
these solutions, is given by Eq. (4.9). Further-
more, it is a function of the unobservable opera-
tors n2(0) and 7(0). As a consequence, S,(t,) lies
in the unobservable sector of the algebra of opera-
tors—it is unobservable even in principle. From
(5.10) we see that the apparatus variables p,(¢#) and
g5(#) also are unobservable for ¢>¢,. In the langu-
age of our approach the apparatus has lost its clas-
sical integrity.

Thus we have wrongly applied the model in at-
tempting to examine this experiment. Either we
should pick an alternative apparatus, or we should
modify the experiment, if we wish to describe it
within our approach. As we shall discuss in the
following section, we can describe this experi-
ment if we require that an outside observer inter-
act with the apparatus before it enters the
crossed-field region.

VL. DISCUSSION OF THE EXPERIMENTS

When we proposed the present model for use in
the description of measurement, the motivation
for choosing the apparatus to be a classical sys-
tem was that for such systems the question of
measurement does not, in principle, present a
problem. In principle we can know simultaneously
all that can be known about the theory at any in-
stant of time. Of course, a particular act of mea-
surement may present technological problems,
but these are not of concern to us at present.
Then, if one could have a classical apparatus in-
teracting with a quantum-mechanical system, in
such a manner that information passes from the
quantum system to the variables of the classical
theory, we have taken the first step. The next
important step is to discuss whether or not the
hoped for simplification of the measurement pro-
cess takes place—namely is it now possible to
“measure at will” the classical variables of the
apparatus. The information which has passed to
the apparatus must, after all, eventually be avail-
able to an observer.

This step is not so easily achieved. We must re-
member that in causing the classical system to
interact with the quantum system we had to embed
it within a larger quantum structure. The observ-
able sector of this quantum theory coincides with
the classical theory, but it is accompanied by the
unobservable sector. This unobservable sector is
not an inert passenger—it has a definite role to
play in the time development of the quantum sys-
tem. We have also seen that following the inter-
action with a quantum system the state of the com-
bined system is no longer an eigenstate of all of
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the apparatus observables. The question which
arises at this point is whether the apparatus ob-
servables can be measured at will after the inter-
action has taken place.

The answer is that it cannot be done in general.
Measurement of the apparatus observables will
cause a disturbance to the unobservable operators.
Since the state of the system is not an eigenstate
of the observables, this measurement will affect
the state. In complicated experiments this step
may even have an effect on the quantum system.

It is only when the classical theory is formulated
in the classical Hamiltonian language that its vari-
ables can be measured at will. Thus if we wish to
make such a measurement (at will), we must first
map the quantum-enlarged apparatus back to its
purely classical form. This mapping will be the
inverse of the embedding procedure used to write
down, originally, the quantum-enlarged description
of the apparatus. This step means, in effect, that
we discard the unobservable sector of the quantum-
enlarged apparatus. It will also entail the loss of
phase correlations in the final state between the
distinct eigenstates of the apparatus observables
which occur in its expansion. The only information
we retain is the “classical” state of the apparatus
which is got by carrying out a partial trace over
the quantum system states.

Once this is done, it is possible to measure at
will the apparatus observables to extract the re-
quired information, After such a measurement has
been carried out, we can reanalyze the apparatus
and quantum system for further experiments, but
the original experiment cannot be undone, due to
the loss of phase correlations inherent in the step
referred to above.

Let us illustrate this point with the treatment of
the magnetic interferometer given in Sec. VA.
Suppose we were to specify that after the first
splitting, that is, in region III, a (tfue) measure-
ment was to be made on the eigenvalue of S,. This
would necessitate first the projection back to the
corresponding classical theory—in this case 2S+1
beams of classical particles moving with momenta
p» and p, - ayTs’. The measurement can now be
carried out to find the value of the classical vari-
able p;, and hence measure the values of s’. How-
ever, for the remainder of the experiment we be-
gin with (2S+1) classical beams, each carrying
along an internal quantum system with state speci-
fied by the spin s and a particular value for S,. The
internal quantum spin states are now not phase
correlated with each other, so that, if we do re-
combine the beams, the state of the quantum sys-
tem will not be pure. The uncorrelated states will
not interfere coherently— rather they will form a
mixture state. In this case, the results of Sec. VA

would not be valid.

In the treatment of the crossed-field experiment
of Sec. VB, it is now clear that if an outside ob-
server observes the beams of particles in the re-
gion of space between the crossed fields, then the
difficulties encountered before do not arise. In
this region we will now have (2s+1) beams of clas-
sical particles each correlated to a particular
quantum state specified by eigenvalues of S? and
S;. Each of the beams now interacts with the or-
thogonal magnetic field gradient in a manner ex-
actly analogous to the treatment of the Stern-
Gerlach experiment in Sec. IV.

We note that the principle of integrity is now

- satisfied. However, the experiment now describes

two different measurements of noncommuting op-
erators occurring sequentially. But the values are
not held by the corresponding quantum operators
simultaneously. :

It remains to be shown how the mapping back to
the classical Hamiltonian formulation is to be car-
ried out. Examining a classical system on its own
we found that the mapping proceeds via the eigen-
values of the observables in the state of the clas-
sical system.? However, for a classical system
interacting with a quantum system, the state is, in
general, not an eigenstate of the classical system
observables. One can write the final state as a
superposition over such eigenstates. Then it is
clear that we can only proceed by mapping back to
the usual classical formalism for each eigenstate
which occurs. But in this step we unavoidably lose
the phase correlations between the states in the
final-state superposition. This occurs because in
the Hamiltonian formulation of classical mechanics
we cannot form superpositions of pure states. We
may, in fact, view this loss of phase correlations
as one aspect of the state collapse which occurs in
any probabilistic theory.

Of course we must realize that an actual labora-
tory observation of a system, either classical or
quantum, consists of two parts. The first part is
the interaction between the observer and the sys-
tem. This has the result of transforming the prob-
ability amplitude into a more complicated proba-
bility amplitude in which the various possible re-
sults are each correlated with a different state of
the observer. The second part is the use of the
result of an actual measurement as input to the
theory, that is, resetting the state from the prob-
ability distribution to a particular realization.
This second part is known as state collapse. As
we have seen above it does occur not only in quan-
tum systems, but can also occur for classical sys-
tems described by a probability distribution.

In the previous sections of this paper, and in
narts I and II also, we concentrated upon the first—
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the setting up of correlations and the development
of the probability amplitudes. In this section we
have touched on the second part, namely carrying
out an observation for a single apparatus (single
particle in the Stern-Gerlach case) and using that
information in the subsequent development of the
system.

There is another way in which we can interpret
the mapping, as a result of which we discard the
unobservable sector. Initially, we knew the value
of S,(0) on the quantum state. We assumed that
S,(0) and S;(0) were observable. To prepare the
state, however, necessitated interactions of the
type we have discussed here. Thus when an ob-
servation is made, and use is made of the informa-
tion gained, we are justified in discarding the un-
observable part of the theory and treating it as if
it were pristine.

V1. DISCUSSION AND COMMENTS

In this paper we have achieved two main objec-
tives. The first was to illustrate our new approach

CLASSICAL
APPARATUS

EMBEDDING PROCEDURE

QUANTUM-ENLARGED’
APPARATUS

to the question of measurement in quantum physics
by means of simple examples. The second was the
gaining of a deeper understanding of measurement
within our approach.

To illustrate our approach we discussed an ex-
perimentloosely based on the Stern-Gerlach experi-
ment. We made this choice as the Stern-Gerlach
experiment is conceptually quite simple, and so it
allows a relatively simple interpretation within our
model. The original experiment* was a striking
verification of the validity of quantum physics for
the microworld., Our treatment differs from the
conventional treatment afforded this experiment in
the literature.?"® We treat the particle motion as
strictly classical. However, in the conventional
treatments, the complete experiment is treated at
the quantum level, i.e., even the translatory mo-
tion is quantum mechanical. To facilitate the cal-
culations, the mass of the particle is then assumed
to be so large that the particle motion can be
closely approximated classically.!!

We differ from the conventional approach for two
reasons. First, if we wish to treat the particle as

 QUANTUM
SYSTEM

INTERACTION

/

—

QUANTUM-ENLARGED
APPARATUS

POST -INTERACTION

CLASSICAL
APPARATUS

PROJECTION BACK
TO OBSERVABLE
SECTORS =

QUANTUM
SYSTEM

POST-INTERACTION

PRISTINE
QUANTUM
SYSTEM

FIG. 3. Schematic diagram of a typical measurement process within our appfoach, illustrating the different stages

in the procedures.



being the apparatus, and this is usually the case,
then it should be strictly a classical system, and
not only in the limit of its mass becoming very
large. Secondly, if it is incorrect to treat the par-
ticle as classical, for instance if it is not a heavy
atom in the experiment, then we cannot use the
particle as the apparatus. In such a case, we
should treat the particle and the internal spin sys-
tem as the quantum system, and introduce an ap-
propriate external apparatus admitting a classical
description. Thus, our description can only rep-
resent the Stern-Gerlach experiment if the particle
motion is truly classical.

Our analysis showed that our approach to the
measurement problem can account for the qualita-
tive features of the Stern-Gerlach experiment. Of
course, the particular inhomogeneous magnetic
field we used to induce the interaction does not
correspond to the arrangement in the Stern-Gerlach
experiment. :

We also examined a magnetic interferometer ar-
rangement, and verified, within the context of our
model, the coherent interference of the quantum
spin systems provided no outside observation was
performed. On the other hand we examined a
crossed-field arrangement, where the magnetic
field gradients in two disjoint regions are ortho-
gonal to each other, and in this case we found that
our approach cannot be used to describe the ex-
periment unless an outside observer makes an ir-
reversible measurement on the apparatus, i.e.,
the particle, in the region between the magnetic
fields.

As to the understanding of the meaning of mea-
surement within the approach, we have been led to
consider a mapping which undoes the effects of the
embedding procedure after the interaction has oc-
curred. In this way the apparatus will be described
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by a Hamiltonian system after the interaction.

This mapping induced by the measurement does in-
volve the loss of phase information. This phase
information, however, lies in the unobservable
part of the state space, and as such is not felt in
the observable sector of this configuration. We do
not know how to cause an information transfer with-
out also having an unreversed interaction.

The propagation in crossed fields followed by
reversed crossed fields deserves special mention.
Standard quantum theory prediction would require
that the phase information is not destroyed in the
intermediate region. Our theory also makes the
same statement if no act of measurement has been
performed in the intermediate region. Under this
situation the relative phase between the two altern-
ate paths, and as such unmeasurable, has observ-
able consequences when the beams are again
brought together. If on the other hand, an act of
measurement were performed in between, the
phase information is not just nonobservable but is
actually destroyed. Consequently, the recombina-
tion by the reversed fields does not lead to coher-
ent superposition but a mixture.

The effect of the act of measurement on the beam
is to destroy the phase; it has no observable conse-
quence at that location since the phase was in the
unobservable sector. But the destruction of the
phase information reflects itself in the pattern
formed in a subsequent interaction.

We sketch, in Fig. 3, a schematic description of
a typical measurement process within our ap-
proach.
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