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Stemming from the classic work of Planck, classical radiative transfer theory works with pencils of light rays
streaming in straight lines in any homogeneous medium. But light is described by Maxwell’s equations in classical
and quantum electrodynamics, and so we need to find a bundle of rays equivalent to the electromagnetic waves. In
this paper we realize such a pencils of light rays. Their properties and the equations obeyed by the ray density
function are deduced. We need to generalize radiative transfer theory for this purpose appropriately. For
homogeneous statistical wave fields radiative transfer theory obtains rigorously. Particular attention is paid to the
polarization properties of light rays. These concepts have some relation with the phase-space picture of quantum
mechanics. Also, other general questions including possible further developments are discussed.

I. RADIATIVE TRANSFER, ELECTROMAGNETIC
WAVES, AND LIGHT RAYS

Quantum electrodynamics has reconciled the old
corpuscular and wave theories of light. Our pre-
sent understanding of light is that it is a quantum
wave field and that in free space the propagation
is described by Maxwell’s equations.! But, as
Wolf? has so eloquently expressed, radiative
energy transfer by electromagnetic waves is still
treated by a phenomenological theory, virtually
unchanged in its essentials from the work of
Planck® except for the phenomenological develop-
ments by Chandrasekhar.* Since electrodynamics
is the fundamental theory, to the extent phenomeno-
logical radiative transfer theory is valid it should
be derivable from electrodynamics.

The notion of pencils of rays® has been very use-
ful in optical theory in a variety of contexts. In
free space light rays travel in straight lines, they
are reflected and refracted according to simple
laws and provide a graphic illustration of the

dynamic propagation of light. Such rays are natu- .

ral in a corpuscular context with individual pho-
tons having simple trajectories. Reflection is
easily explained in terms of elastic collisions
with unyielding boundaries; but refraction already
generates some problems. For point photons one
would expect light to travel faster in water than
in air in direct contradiction to experiment.® So
a formalism in which photons are treated as class-
ical point particles is not acceptable. Yet, since
in photoelectric effect” and Compton effect® pho-
tons are undoubtedly making themselves seen,
how could we abandon the corpuscular picture,
and along with it the concept of light rays?

Wave fields can have rays associated with them
through the familiar methods of the eikonal ap-
proximation. In this method we consider the Som-
merfeld-Runge eikonal function S in the phase of
the wave amplitude considered as a path length.

This function obeys a simple differential equation
under the assumption of slow variation of the am-
plitude and may be considered as the “wave fronts
of geometrical optics.” The rays are then taken
along the gradients to the eikonal. This derivation,
originally given for a Kirchoff scalar wave is an
approximation procedure not necessarily appli-
cable to all relevant electromagnetic problems.
The constancy of the amplitude may be relevant
to a plane-wave field but not even to relatively
simple problems of propagation in unbounded
media. Further, in interpreting the results ob-
tained in this approximation method each ray is
treated as if it is distinct from every other ray
and a pencil of rays is just a jumble and not a
correlated bunch.

We must, therefore, strive to obtain an exact
ray description of wave fields free of approxi-
mations and applicable to all wave propagations
including radiative transfer and typical inter-
ference and diffraction phenomena. We expect
qualitatively new features to emerge in the latter
case, though it will share some properties with
the Sommerfeld-Runge eikonal method.

If we are successful in reintroducing the no-
tion of light rays into the wave theory, a conse-
quence will be the outline of a theory of radiative
transfer. Some generalizations would naturally
arise in any such theory to reproduce the typical
wave behavior in such situations as diffraction
and interference. Further, the light rays will be
endowed with polarization. We would expect
light rays to travel in free space move or less in
straight lines, yet the intevfevence phenomenon
of light superposed on light producing darkness
must emerge from the theory.® We must, there-
fore, be prepared to have some surprises about
light rays in electrodynamics.

Phenomenological radiative transfer theory
uses the concept of the specific intensity of radia-
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tion I, (¥, §) which is related to the amount of ra-
diant energy transported across a unit area per
unit time per unit solid angle in the neighborhood
of a point with coordinates T in a direction 5. Ac-
cording to Lambert’s law this should be propor-.
tional to cos§, where 6 is the angle between S and
the normal to the surface. The coefficient of pro-
portionality per unit frequency interval is called
the specific intensity I, (7, §). By definition it is

a scalar function depending on the vector ¥ and
the unit vector S.

Given the specific intensity we can define other
related quantities relevant to radiative transfer.
The specific net flux at an arbitrary point (per
unit frequency interval) is

F,@= [ aa1,G 33, 1.1

the integration being over the whole 47 solid angle.
Similarly, the specific energy density of radiation
is given by the formula

u, (F) = f dQr,(%,8). (1.2)

By virtue of the phys1ca1 interpretation of the
specific intensity I,(T, §) as the e energy carried by
the light rays in the direction 8 at the point T we
must expect

LE,8)=I¥F,9), (1.3)

I(F,8)>0, ‘ (1.4)
as well as

§-VI,F, =0, - , (1.5)

with the V operator acting on the ¥ dependence.
The last equation corresponds to the fact that in
Jfree space the enevgy is carvied by the light rays
and it is conserved.

Implicit in radiative transfer theory is the as-
sertion that energy associated with different fre-
quencies is independently propagated. One could
therefore carry out the discussion for different
frequencies completely independently. It follows
that if we are to establish a correspondence with
wave theory we must arrange to have waves of
different frequencies to add in intensities, rather
than in amplitudes. This would come about if the
different frequency components are phase inco- -
herent. Such a wave ensemble would be completely
equivalent to a stationary ensemble. We must,
therefore, look for a-correspondence between time
stationary ensembles in wave theory and radiative
transfer theory. This important observation was
made by Wolf? in his fundamental study of radia-
tive transfer.

Classical electrodynamics in empty space is
described by Maxwell’s equations

- - 3 =

VxE=- =B,

Y 8 =

VXB=+8_tE’ .
(1.6)

v-E=0,

v-B=0.

By virtue of these equatiohs both E and B propa-
gate as waves:

2

1.7)

In general, both E and B contain both positive-
and negative-frequency components. Following
Gabor!® and Wolf'! we may introduce the analytic
signals which contain only positive frequencies:

2% =vE,

(1.8)
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The analytic signals are always complex, and are
the positive-frequency parts of the real fields
with their complex conjugates containing only neg-
ative frequencies.

In classical electrodynamics 1t is possible to
demonstrate that the energy and momentum densi-
ties are given by the expressions

T (P = & [E2() + B2(F)] , (1.9)
T o(F) = E ;4 E4(F) B, () -

The momentum density T ,(r ,(*) may also be identi-
fied with the flow of energy measured by the
Poynting'? vector

SH)=E@¢)xB@), (1.10)

which describes the flow of energy. (In all these
formulas we have adopted natural units so that
the velocity of light in vacuum is unity.) In terms
of analytic signals we must write the energy den-
sity W (¥) and the energy flow S () in the form

W@ = L [E*@) EF) + B*@®- B@®], (1.11)
SE) =L [B*@XB@ -B*@XEF)].  (1.12)

We would expect a close relationship between u,,(?)
defined by Eq. (1.2) and the value of W (¥) for
monochromatic waves of frequency v; and similarly
between the spec1f1c net flux ¥ (r) Eq. (1.1), and
the Poynting vector S(F) for monochromatic

waves. But before these relations can be made
precise we must introduce the second-order cor-
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relation tensors for the statistical wave field.

In this paper, following Wolf’s pioneering study,
we demonstrate the equivalence of the wave field
to a collection of rays and derive radiative trans-
fer theory.

II. CORRELATION TENSORS
IN ELECTRODYNAMICS

The electromagnetic field as encountered in
classical optics is a statistical entity with an
ensemble representing its state specification.”
Rather than specify the value of the field quantities
(taken to be positive-frequency analytic signals),

~we have an ensemble of such fields. When E and
B are analytic signals which are random vari-
ables, the quantities of physical significance are
the expectation values of these quantities identi-
fied with their ensemble averages. For most
practical purposes of radiative transfer theory
the important quantities are the second-order
space-time correlation tensors of the ensemble
which are second moments of the ensemble prob-
ability distributions. We may define the general
second-rank tensors in classical statistical op-
tics:

TEF, Ty by, ) =(EFF, 1) En(T, 1))

( b)(rl’ r23 tI’ tz) <E*(rl’ t )Bk(r2’ t2)> I
rj:e) (1‘1, r2’ tl’ tz) = <B*(rp tl)Ek(rzy tz)) ’

(bb)(rp Ty iy tz) <B*(I‘1, t )B (rg, tg))

(2.1)

Since the operators of ensemble averaging and
space and time differentiation commute, these
four-tensors obey 32 relations among themselves
obtained by applying Maxwell’s equations with
respect to the variables (T,, £,) and their complex
conjugates with respect to (¥, ¢,) to each of these
tensors. As one consequence of these relations
we may deduce all the correlation tensors if only
%) is known.

If the classical ensemble is stationary in the
sense that all the second-order correlation tensors
obey

I‘jk(Fl? Fz, b+t b+ b)) = I‘jk(Fl’ Fz: tta),

then it is only a function of the difference of times:

r!k(;v Fz: t,ty) = f durjk(Fv ;z, v)eivtimta) |
()
(2.2)

The specific correlation tensors I ,,,(F 1 Fz, V) sat-
isfy the equations

(V3 + Vz)l"jk(;p Fz, v)=0, . (2.3)
(VE+ V)T (F , T, v)=0, (2.4)

and a number of other such relations of the form

€jab 5 ox rbk) (1‘1, Ty V)= 1,VI"( 4 (1‘ 1 rz: v),

(2.5)
9 > >
€iab 5y I‘(,,‘;f)(rl, T, V)=—i VF(Be)(rp r,v).
a

It is seen that for the time-stationary ensemble
the second-order correlation tensors are all di-
rect sums of specific tensors for definite fre-
quencies. From now on we may restrict our at-
tention to excitations of a definite frequency v.

In quantum electrodynamics in free space the
field quantities E(T, #) and B(F, ) are operators
(more precisely, operator-valued distributions).
Following Glauber,'® the analytic signal is now the
positive-frequency part of the field operators
which can be expanded in terms of annihilation
operators only; and their adjoints consist of crea-
tion operators. The quantum ensemble of the
states is now associated with a density matrix p
and the second-order correlation tensors are
defined. by

T8 tr 7t 1) = tr[pE] ,, £))E,(F,, 1,)],
L&, T by 1) = tr [0E] (7, £,) Ba(Fy, 1))]
TENT, To ty ty) = tr [pB] (¥, ) EL(F,, 8],
T, Ty by, 8,) = tr [pB] (F,, 1)) Bi(F,, t5)] «

.6)

Equations (2.2)—(2.5) remain valid for the quan-
tum electrodynamic correlation tensors. More-
over, considered as a matrix in its arguments,
subscripts and superscripts, the correlation ten-
sors in quantum electrodynamics are also non-
negative just as in the classical electrodynamic
correlation tensors. In fact, given a classical
ensemble of light waves which yield a set of cor-
relation functions we can construct a quantum
ensemble in quantum electrodynamics with the
same correlation functions. The quantum ensemble
will be defined by a density matrix p which enters
Eq. (2.6). In this sense classical electrodynamics
and quantum electrodynamics are indistinguish-
able as far as the second-order correlation func-
tions are considered, a result which is of general
validity in coherence optics.™

III. RAYS IN ELECTRODYNAMICS

Since the second-order correlation functions
give a complete discription of all the classical
optical phenomena (with the exception of nonlinear
optics) the light rays must be deducible from the
correlation function. Yet the waves are quite un-
like rays: to specify the direction and location of
a ray is natural but to localize a wave is to lose
all ability to determine its direction of motion. On
the other hand, if we know the direction more or
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less accurately from having a wave front, then the
localization is lost. This is a familiar problem
in quantum theory of particles where position and
momentum cannot be simultaneously specified.
Conjugate variables like position and momentum
cannot be simultaneously specified. Hence, ex-
pressions containing both position and momentum
variables are not unambiguously defined: we
must define an “ordering.” The simultaneous
probability distribution in such conjugate pairs of
variables is thus a new kind of mathematical ob-
ject; depending upon the ordering we use for speci-
fying functions of conjugate variables the pro-
bability distributions will take on different forms.
For classical optics we face a similar problem
when searching for a suitable definition of rays.

We seek a suitable association of the second-
order correlation functions with the specific in-
tensity I,,(F ,8). Such a correspondence involves
the analogs of sets of conjugate variables of posi-
tion and momentum for waves: and, as such, we
expect some degree of ambiguity in defining the
corresponding distribution function but none of the
possible definitions would satisfy all the standard
requivements of a probability distribution in the
two sets of variables. The choice we must make
is one that violates the fewest intuitive require-
ments on I (T, §). Since intevference phenomena
involve addition of light to light producing dark-
ness we cannot retain the positivity of I,(r, s) if
we are to have exact corvespondence.® Granted
that, we should attempt to satisfy all the other

‘requirements.

A suitable solution to the quantum-mechanical
problem is to introduce the Wigner-Moyal distri-
bution. In this case the ordering problem is solved
by taking the completely symmetrized product of
momentum and coordinate factors. The quantum-
mechanical state, now represented by the wave
function (or, more generally, by an ensemble of
wave functions), is associated with a two-point
density whose partial Fourier transforms give the
Wigner function which is the probability distribu-
tion function of the Wigner-Moyal theory. This
suggests to us that the proper quantity to deal with
is the second-order correlation function and its
partial Fourier tranformation. This we proceed
to do.

To get the specific intensity we need a function
of the nature of an energy density which depends
on six variables. We are, therefore, naturally led
to choose the generalization of the energy density

M, T,) = H([Exr) - E@,) + BxF) - BE,)))

= 3[TIF, T,) + T{F,, T5)) (3.1)

and its transform, W (f, k), defined by®
WEE,B) = (@n® [ doem oM + 15, F-17)

= (2w)'3fcﬁoe“k'°%<-ﬁ*(f+ ) E(F-10)
+B*T+L0)-BFE-0) -
(3.2)

By construction W¥,K) is veal for all values of T
and & and may be identified with the specific in-

tensity of radiation at point T in the divection K.

By virtue of Egs. (2.3) and (2.4) of the preceding
section we may write

(G +iK)? + V] W(E, K) =0,

(& V - iK)?+ v?) W(F, K) =0.
These, in turn, imply

EPW(T, K) = (% + £ VO)W(E, K) (3.3)
and

K- VW(,K)=0. (3.4)

For fields which are not rapidly varying, that is,
not varying appreciably over the distance of sev-
eral wavelengths, the second term on the right-
hand side of Eq. (3.3) is negligible and we get the
approximate equality

k2~ p2,

Hence, |k| may be taken to be the frequency (or,
more precisely, the wave number) of the photons
associated with the rays whose specific density is
given by the function W(¥, K). Equation (3.4) is
identical with Eq. (1.5) of Sec. I if we identify
(%, §) with [dp p*W(F, p§) with § being identified
with the unit vector in the direction K:

1,68 = [ W& p8) rap. - @5)

By construction we also note that the integral of
the W function over all wave numbers is just the
energy density of the electromagnetic field:

M, F) = $([EX(@)- EF) + Bx@)-BI@)))
= [ W, B) = u, @) (3.6)

by virtue of Egs. (1.2) and (3.5).

Let us now consider the next F defined by Eq.
(1.1). The flow of energy in the electromagnetic
field is associated with the Poynting vector S.
We must take the two-point generalization of the
Poynting vector:

8(F,, F,) = X [BEx(T) X B(,) - BXxF)XE@G)]) 6.7
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or
Sj(irv T,)= %ij,[rff,b) (Fl’ T,) "rge)(?v 5,)] .
Making useof the (generalized) Fourier expansions

E@)= [ape™ E@),

BE) = fdape‘:‘; ¥ B@),

and making use of Maxwell’s equation for the
monochromatic waves, we may write

=KW, K)+ VXV(T,K), (3.8)
where
NE, 1,) = H([E*F) ¥ E@) + B*F,) x BE,)]) .
(3.9)
Let us write
vIIEW(E K) = §,(F K), (3.10)
VIIVXV(E, K) = 8,(F K). (3.11)

Then §2 is negligibly small compared with §1 for
most practical situations where the correlation
tensors are only slowly varying. Moreover, we
see that S, being the curl of a vector does not
contribute to the net flux in any case. We may now
identify the net flux of radiation with the integral
of § (%, K):

F,0= fdsz §,(f,K)

o fdﬂ fdzae‘i‘sé’(f-k%o*,xf—%(?).
(3.12)

We have thus arrived at a picture of energy and
energy flow in the electromagnetic field consis-
tent with the intuitive notions: the specific flow
of energy is in the direction of the momentum and
numerically equal to the specific energy density
(velocity of light =11) except for a fine circulatory

motion extending over distances of the order of
a wavelength.'”

In the phenomenological (scalar) theory the
primary quantity was the specific intensity I,,(i", s)
in terms of which the energy density UV(F ) and
the specific net flux ¥ () were defined by Eqs.
(1.1) and (1.2). If we compare them to Egs. (3.10)
and (3.12) we see that we may make the identifi-
cations

I(F, §) = W(f, K),
U,(F)= fdﬂk w(r, k), (3.13)

Fir)=v! [ a9, KW )

with the neglect of §2(17, K) and the identification of
v with |K|. We shall see below that for statistically
homogeneous fields no approximation is involved.

If the field becomes statistically homogeneous,
the results assume an even more appealing form.
A statistically homogeneous field is invariant

under space translations:
rjh(rv Ty v)= ij(rx +p, Xy +p, V).

In this case the functions W, K), §,(f, k), and
S,(f, K) assume especially simple forms:

W(IT, E) = W(k) )
5,(F,k)=§,(k), (3.14)
5,(F,K)=0,

and hence (3.12) becomes an exact equality. More-
over,

wE)=4 [ eI rees, -17)
+TPPG6, -30)].
It follows that
wE)=0. (3.15)

This reproduces Eq. (1.4) by virtue of the identifi-
cation (3.12).

In a homogeneous stationary electromagnetic
field, classical or quantized, the primary quanti-
ties of radiative trvansfev theory obtain.

IV. POLARIZATION PROPERTIES OF LIGHT RAYS

Light is polarizable. Light rays must therefore
be endowed with polarization. The electromagnetic
field equations (1.6) and their consequences for
the second-order correlation functions imply that
there are two constraints on each of the correla-
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tion tensors. These are, for example,

T T G =0,

(4.1)
3 (ee)(r v r,)=0,
and similar equations for the (eb), (be), (bd) cor-
relation tensors. In terms of tensor W functions
this may be written in the form

<k‘ T2 —'> WP £) =0, 4.2)

(112 52 Wi -,

where

(ee)(r k) (2n)-3

xfdsol‘(“)(r+ L5 F=15)ei®0 (4.3)

and similar equations for the (ebd), (be), (bb) corre-
lation tensors. For a homogeneous illumination
which has no dependence on ¥, these equations sim-
plify to assert the transversality of each of the
W;;(K). In most cases where the variation with ¥
of W;; is small over several wavelengths we may
neglect the gradient terms in (4.2). The wave
equations (1.7) and hence (3.3) and (3.4) apply
equally to W¢)(¥), etc. Hence, in particular,

E-Vw,(FK)=0. (4.4)

To the extent that the gradient terms can be ne-
glected and the correlation tensors are taken to be
transverse to the wave number, we can expand
the tensor Wolf’s function in terms of a complete
set of 2X2 matrices.’®*'® A natural method is
in terms of the Stokes’ parameters. In as much as

ExXE=vEB,
(4.5)
ExB=-vE,
the combinations E +iB correspond to modes with
positive (negative) helicity. Denote these modes
by indices 1 and 2. Then the tensor W functions
can be written in the form

Wu(i': E) = Iu(i?, E) + U{j(ir, E) + Vu(ir’ E)

+Qy(F, B) (4.6)
with
I=Wyy+ Wy,
U=Wy,+W,,, @
V=iWy, =Wyy),
Q=W,, =Way,.

Associated with each location ¥ and wave number

K there are four Stokes parameters I, U, V, and @,
which describe the polarization properties of the
rays. Since any 2X2 non-negative Hermitian
matrix has two orthogonal eigenvectors and hence
a decomposition into two opposite (elliptic) polari-
zations, we may identify at each location for each
wave numbevr these specific polarizations and their
vespective weights. If the rays gradually bend,
these polarizations will also tilt gradually. In
empty space and for homogeneous fields these
specific polarizations are constant along the ray.

V. DISCUSSION

The contrasting pictures of light as consisting
of electromagnetic waves and as consisting of pen-
cils of rays are synthesized in this paper. With
every beam of light waves we may associate a
system of generalized rays of light with wave
mumber K at the location . In terms of the density
function W(r, K), we can define the energy density
and energy flow. These derivations provide a
basis for the phenomenology of radiative transfer
theory. The Poynting vector decomposes into
two components, one of which is the convective
radiation transport, the other being a divergence-
free flow with a fine structure with the scale of
the wavelength of light.

The function W(¥, k) which is identified with the
specific intensity I,(f, §), apart from a factor of
kz, is a real quantity (associated with the excitation
of a field). For a homogeneous field it becomes
independent of ¥ and is then guaranteed to be non-
negative. This function bears a close resemblance
to the Wigner-Moyal phase-space density'®:

p@ 5= e [ doe™Pyr@+ 16 9@-4d)
(5.1)
associated with a wave function?y in quantum me-
chanics. While (5.1) has a similar structure to
the W function (3.2) there are some essential dif-
ferences. First, the Wigner-Moyal phase-space
density is normalized:

f ffqupp(&, p)=1,
while no such restriction obtains for the W function.

A proper identification of W(¥,K) is obtained by the
eigenmode decomposition’®

rna(ﬁ: T,) = ZYn u:lk.l(i:l) unk(Fz) (5.2)
n
appropriate for any second-order function. With-

out loss of generality we may choose the mode
functions to be normalized:

[ @0 w0 Ny ) = 81 - (5.3)
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Then

fdsolI‘j,('r T = z”:y,,
and

WEE) = Yy, W, FK),
with

) * - -> > -
W,r, k) = (2m)~2 fdsoe‘f"’[u‘g} (T+30 ) F-40)

1

s F 456 uF -56)]
u", 20 ) Uyj Ir—=30 .

(5.4)

In other words, the W function is the weighted sum
of a collection of Wigner-Moyal phase-space den-
sities. In the unique case of a mode-pure illumi-
nation!®?° in which # takes only one value it is a
simple multiple of it. The nonpositive definiteness
is a reflection of the corresponding behavior of
the Wigner -Moyal densities.

There are essential limitations on the validity
of the ray picture of wave fields. In geometric
optics, as well as in radiative transfer theory,
there can be arbitrarily narrow pencils and arbi-
trary variations in the specific intensity with both
direction and location. But in wave optics arbi-
trarily narrow pencils diffract and rapid varia-
tions in space are inconsistent with the fixed-fre-
quency wave equations (3.3) and (3.4). Assoéjated
with such unphysical geometrical optics idealiza~
tions the W function becomes nonpositive. .

It is to be emphasized that the ray bundles are
linear in the second-order correlation tensors
and, as such, incoherent beam mixing corresponds
to addition of the rays. A simple example is the
mixture of the eigenmodes in the correlation ten-
sors discussed above in relation to the Wigner-
Moyal distribution. But iz any phase -coherent
superposition of light waves the vesultant set of
genevalized rvays of light is not just the sum of the
set of rays: there is an interference term. Else-
where® I have analyzed a number of wave optical
phenomena on this basis. In the particular case of
a two-slit interference pattern one sees that the
rays consist of three pencils, one from each of the
slits with positive-definite W functions and a ficti-

tious central pencil with intensity varying from
positive to negative values as the angles change.
The set of the three pencils reproduces the geome-
try of the interference pattern; but the important
point is that the superposition of the amplitudes
from the two slits generates a third pencil of rays.
It is worth noting that in most discussions of the
two -slit intevfevence phenomenon in terms of tra-
jectories of photons this crucial fact is not vecog-
nized.

It is possible to trace the behavior of the rays
in the elementary processes of reflection and
refraction. As expected, asymptotically we have
parallel rays of light along the geometric direc-
tions of incidence, reflection, and refraction. In
addition we have a number of interference contri-
butions which alter the W function in the neighbor-
hood of the interface between the two media. It
would be interesting to study reflection and refrac-
tion using curved mirrors and lenses, and study,
in particular, the path of rays in the context of
focusing and image formation.

The rays of light in the present theory are en-
dowed with polarization. To the extent that the
illumination is slowly varying the polarization
is at right angles to the direction of the ray. But
this simple picture of transverse polarization
cases to be valid in regions where the illumina-
tion is rapidly varying. This is only to be expected
since under these circumstances wavelike behavior
is going to be pronounced and the rays are bend-
ing to accommodate Eq. (3.4).

The importance of radiative transfer theory is
in the context of propagation of light in a medium.
The problem is definitely more complex than the
one treated here. We have made a beginning in
this direction. A more systematic effort is in
progress in the work of Zubairy and Wolf.2! 1t is
appropriate that at this time when astrophysics
and particle physics have joined hands, quantum
electrodynamics and radiative transfer theory
should do likewise.
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