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The matrix elements of various products of two currents between states of equal energy-momentum
are studied. Use of the axioms of local field theory leads to an integral representation for the Fourier trans-
form of matrix elements of the retarded commutator in terms of two invariant momentum parameters.
Further restriction on the class of allowed functions permits explicit incorporation of the mass restrictions
as support conditions on the weight function. The “bound-state’’ term is separated off and related to the
vertex functions. As a simple application, forward-scattering dispersion relations are derived by specialization
of the Green’s function. In particular, these can be obtained for nucleon-nucleon and K-meson-nucleon

scattering.

I. INTRODUCTION

N this paper we study the matrix elements of various
products of two field operators between two states

with the same eigenvalue of the energy-momentum
operator. The structure of these matrix elements is
analyzed using the general postulates of local field
theory: local commutativity, Lorentz invariance, and
the existence of a complete set of physical states with
positive energies. The asymptotic conditions are im-
plicitly invoked to relate certain matrix elements to
the forward scattering amplitude in the physical region.
The consequences of-these postulates are embodied in
an integral representation for the Fourier transforms
of these functions in terms of the two invariant mo-
mentum parameters. The representation found is not a
completely general one, that is, the class of functions
so described does not exhaust these postulates. It is,
however, significantly wider than that arising in usual
perturbation theory.

The basic technique has already been used in a
previous paper! (hereafter referred to as I) dealing with
the structure of the vertex function. For the Fourier
transform of the matrix element of the retarded
commutator of two currents we find a representation
of the form
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where N(M1,M»,8) is a definite function, specified in
the text, and M, M, are the masses of the lowest
intermediate states occurring in the decomposition of
the matrix element. (We take Z=c¢=1 throughout.)
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The arbitrariness in the definition of the functional
forms in the unphysical region in the (k%pk) plane is
exploited in writing this representation, since the
functions are defined for unphysical as well as physical
values of k% and pk by the representation. The weight
function H(u,8) is determined by the values of the
Fourier transform of the matrix element in the physical
region only. H (u,8) depends implicitly on #?, but this
dependence is not analyzed ; the information contained
in the lower limits (M1,M5) of the mass spectra of the
intermediate states is explicitly incorporated in the
representation through the structure of the lower limit
of the u integration as a function of 8.

We shall find that the integral representation of the
time-ordered Green’s function everywhere in the
physical region can be deduced from that of the com-
mutator matrix element, provided certain “stability”
criteria are satisfied. In this case, the commutator
matrix element contains all the relevant physical
information about the bilinear operator products for
the state considered; in the unphysical region of real
invariants the representation defines a suitable con-
tinuation of these matrix elements. However, if these
stability criteria are not satisfied, there is a restricted
region of physical values of the (k%,pk) plane where the
values of the time-ordered Green’s function cannot be
deduced from the commutator matrix element. The
stability criteria essentially require that a state whose
wave function is the direct product of two wave
functions corresponding to the state | p) cannot, through
virtual interactions via the field represented by the
currents, go into a state of lower rest mass.

It is interesting to notice that these circumstances
find a parallel in the propagation characteristics of a
wave in a medium (rather than vacuum). If the
medium is stable against small perturbations, the
“propagation function” which describes the spatio-
temporal dependence of a wave propagating inside the
medium can be deduced in terms of the “influence
function” which describes the wave generated at one
point due to the influence of the wave (at a previous
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time) at another point. If, on the other hand, the
medium is unstable against small perturbations (of
suitable wavelengths and frequencies) its spontaneous
emission characteristics constitute additional physical
properties of the system, not contained in the influence
function. Provided we are considering that part of the
propagation where there is no net transfer of energy or
momentum between the medium and the wave, the
modification of the propagation characteristics due to
this critical instability would be confined to a definite
region of frequencies and wavelengths. It is precisely
this phenomenon that we encounter in the relation
between the commutator matrix element (“influence
function”) and the Green’s function (“propagation
function”).

The specialization of the retarded Green’s function
to the mass shell of the projectile leads to an integral
representation for the forward scattering amplitude.
The functions so obtained are not e prior: analytic in
the upper half-plane of the invariant energy variable;
there are possible singularities in the upper half-plane
which are, however, confined to the unphysical region.
This latter circumstance enables us to define a new
function which is analytic in the upper half-plane and
which coincides with the physical scattering amplitude
in the physical region. It is then trivial to derive dis-
persion relations for forward scattering. This derivation
of forward scattering dispersion relations is applicable
in all cases if certain stability criteria are satisfied,
including in particular K-meson-nucleon scattering and
nucleon-nucleon scattering.

It is customary to remark on the relation between
the existence of dispersion relations and classical notions
of causal propagation. We shall indulge in this only to
the extent of pointing out that the usual connections
assume that the medium in which propagation is studied
is “passive” and does not act as a (fluctuating) source.
The on-the-mass-shell stability criteria (which are
different from the stability criteria discussed before)
are symmetric in the projectile and target masses, and
imply that there is no possibility of de-excitation of the
“medium” with the emission of a pair of physical
“quanta’” (i.e., waves satisfying a definite frequency-
wave number relation). The causal property requisite
to the derivation of analyticity for the wave propagation
amplitude (sometimes called “the principle of limiting
distance”) is not satisfied if these stability conditions
are violated and we would not expect to find dispersion
relations for the wave propagation in such a medium.
These qualitative ideas are in fact borne out by the
forward scattering amplitude which we deduce by the
specialization of our representation.

The domain of validity of the stability criteria is
significantly extended by separating, from the integral
representations for the operator matrix elements, the
contributions from any discrete intermediate states.
The mass spectrum of the intermediate states often
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consists of a discrete line together with a continuum
starting at a higher threshold. Methods of separating
this contribution are given and the relation between
this term and “the coupling constant” term (“renor-
malized Born approximation”) is briefly discussed.

It may be stressed at this point that the problem
itself is not new, nor is the idea of constructing suitable
integral representations. However, our approach to the
problem is somewhat different and the elementary
fashion in which mass spectrum restrictions are incorpo-
rated is instructive. This result is due in part to the
narrower class of functions here considered. Also, we
fix the mass of the state |p) at a real positive value
throughout the analysis and manipulate the physical
function so defined. The dependence on * is not
analyzed further and no analyticity in $? is claimed for
either the function represented by the integral or the
weight function H (u,8). In general, the physical mass
(p?* is outside the domain of analyticity, a point
which was discussed briefly in I.

At this point, one might consider the extension
of this analysis to nondiagonal matrix elements
(p1|[J1,72]] p2) and to the dependence of the weight
functions on the “external” momenta. However, these
investigations are of a somewhat different type and are
best treated separately. They form the subject of a
subsequent paper, where the generalization of the
present techniques is outlined.

Section II deals with the derivation of the integral
representation with the restrictions imposed by the
lower limits of the mass spectra explicitly incorporated.
In Sec. ITI, the contribution from discrete intermediate
states is separated and the connection of this contri-
bution with the vertex function exhibited. The analytic
continuation of this contribution, necessary for the
existence of dispersion relations, is shown to follow
naturally. Dispersion relations for forward scattering
are discussed in Sec. IV, while in Sec. V some general
comments are made on further properties of the
representation.

II. THE INTEGRAL REPRESENTATION

Consider a matrix element of the form

C@)=(p|[71(x/2), jo(—x/2)1| p), @)

where ji(x), ja(x) are two local “current” operators,
which are not necessarily hermitian. From Lorentz
invariance it follows that this “diagonal” matrix ele-
ment is a function of x only through the invariants 2
and px, with the property that

Cx)=0 if a2<0,

since the commutator vanishes for spacelike points.
This condition, together with the axiom of completeness
of the positive energy states, is sufficient to assure a
representation for the Fourier transform of the matrix
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element of the form

1 00
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The derivation of this representation is very similar to
that presented in I for the vertex function.! The
essential point is to notice that the invariant function
f(k) depends only on one other (timelike) vector, p,
and hence admits a Jost-Lehmann representation? of
the type

f(B)= fu 2<p2d3u fo "4

¢1 (ll,tz)

a
el [, ()

ko
with a spherically symmetric weight function in u space.
We use the freedom, embodied in the Dyson identity,?
to convert this representation over a spacelike vector
parameter into a representation parametrized with a
timelike vector proportional to p,. The finite limits on
the @ integration in (3) directly reflect the integration
over the finite sphere in the u space. The representation
(3) includes explicitly only causality and the complete-
ness of the positive energy states. The weight function
H(u,8) is not, in general, a Schwartzian distribution;
to incorporate the mass restrictions below, we shall
confine H (u,0) to be a tempered distribution.*

We now employ the information contained in the
mass spectrum to further restrict the range of variation
of the parameters p and §. We expand the matrix
element (2) over the complete set of eigenstates of
energy-momentum vectors.

C ) =2 n{(p| j1(x/2) | )| j2(—/2) | P)
=l ja(—x/2) [ m)n| 1 (/2) | p)}. ()

If M1, M, are the lowest masses that give nonvanishing
contributions in each ordering in (5), it follows that for
real k, f(k) vanishes unless (p+k)2>M¢2 or (p—Fk)?

2 R. Jost and H. Lehmann, Nuovo cimento 5, 1598 (1957).

3F. J. Dyson, Phys. Rev. 111, 1717 (1958).

4This statement is equivalent to the following specialization of
the functions used here from those permitted by Jost and Lehmann :
In coordinate space, the general functions of the type they con-
sider have the form

o 2 sin{ul (p0)*/p2— ) rnd -
j:) dszj; w2 [,:‘(px)j;—p?;x’]i A2 ()@ (u2,s2).

Use of the Dyson identity brings this into the form
fld :ﬁ]wfﬂﬁzﬂdZI 2 (3252 2§fwd2A2x2¢. 2 o2
| dgefr | o di? Io{[a (B~} | d5® A2 (3)® (u2,57).

The class of functions that we are using are those for which the
function
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is expandable in the complete set A,2(x?), i.e., those functions
g(x?) which are sufficiently well-behaved for large values of «2.
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Case B

Case A

Fic. 1. The region ®, in which the Fourier transform
vanishes, in the (k2,2pk) plane.

>M22. For all real vectors k, (pk)?> p*#?, and so all
physical values of the invariants lie outside the parabola
@ in the (%%,2pk) plane. The mass conditions are that
f(B%,pk) vanishes in the region ®, that part of the
(k*pk) plane outside @ where £42pk<M2—p?;
BR—2pk< M2—p

Two distinct cases arise (see Fig. 1): Case 4 : M1+ M,
22, the two physical regions in which f(k%,pk) does
not vanish are disjoint and the region ® has part of
the parabola @ as its boundary. Case B: M+ M».< 2«
and the physical regions overlap.

Case A is the natural one and holds if, in particular,
the particle states are stable in a sense that we will
discuss later.

For every point in the (%%,pk) plane the function
SR, pk) receives contributions from the integral (3)
along a line in the (u,8) plane given by the equation

B4-2pk3—p=0. 6)

The parabola @ in the (%%,pk) plane generates a set of
lines in the (u,8) plane which have as their envelope
the parabola u=—g?p?. The part of the line k*+-2pk
=m*—? in the physical region generates a pencil of
lines through (p®—m? —1) lying between the tangent
of positive slope and the line 8=-1. All other points
in ® generate lines in the (u,8) plane which cover in
the strip —1<B< 1, p> —p%? only the region already
swept out by these two pencils. The set of points along
a line pk=25 generates a set of parallel lines. All the
lines generated by points in ® intersect the parabola
p=—p%?* (or at least touch it, in Case 4) and the
e-function in (3) changes sign inside the parabola (or
at the point of contact) where H (u,8) vanishes.

These properties are sufficient to enable us to use a
lemma of Jost and Lehmann? to conclude that the
representation is unique and that the support of the
weight function H (u,8) is in the region § consisting of
the part of the strip 8': u>—pg%?; 126> —1 not
covered by the lines generated by points in ®. The
regions for the two cases are

w2 N(M1,M5,8) =max{ (M1~ «)*+2x (M1~ «)B,
(My—x)*—2k(M2—x)B},
it < Mot Mo,

(74)
126> -1
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p2N(M1,M5,08) =max{3 (M >+ M) —*
+%(M12_M22)ﬁ: _BZ"2}y
lf 2K> M1+M2,

and are illustrated in Fig. 2.

It is to be emphasized at this stage that, to start with,
we know the Fourier transform of the function C(x)
only for real values of & and hence the function f(%%,pk)
only for the arguments outside the parabola (pk)?=k2p2.
The representation (1), however, uniquely defines an
extension of this function for all real values of the
invariants. In particular, for Case 4, the function so
defined vanishes in the unphysical segment sliced off
by the chord joining the points of intersection of the
two boundary lines with the parabolic boundary.

On the other hand, for extreme values of the masses
the contribution to the matrix element from a class of
intermediate states has to vanish in the physical
region: For example if Mi+xk<M;—«, the contribu-
tions of the class {(p|j1(x/2) |n)(n| j2(—x/2)|p) vanish
for all states which satisfy (M1+«)2<n2<(M2—«)2.

At this juncture we should remark that our repre-
sentation for the commutator matrix element as well
as for the Green’s function is incomplete since sufficient
attention has not been paid to the (improper) limit of
these expressions as x — 0. These singularities are of
the nature of é-functions or their derivatives of finite
order and correspond in general to structures for the
commutator of the form:

(7B)
1282-1

[ asan cCortaprae20m5 -1

x éﬂnu,ﬁ)@kwﬁ)n, ®

where the summation is finite.

That the weight function H (u,8) in our representation
is real, irrespective of the nature of the currents, can be
shown to follow from T'P, or equivalently C, invariance.
[ From the representation for the matrix element of
the commutator, one may immediately write down the
representation for the corresponding matrix element of
the retarded commutator in the form:

GuusB)=i [ 06| Lo/ 2), jul—/D]19)
H(u,B)

= f dBdu .

Y8 R2+2pkB—pt-i(pk-+Bp")e

On the other hand, the time-ordered Green’s function,
Go(B=i [ dx 6| Gula/ 2 s~/ D)e 1), (10)

is not so simplyfrelatedfto the expression for the
commutator. Nevertheless in the normalicase 4, it is
indeed possible to write down a representation for this
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Fic. 2. The region §, the support of the weight
function H (u,8), in the (u,8) plane.

Green’s function, since in the physical region the
contributions from the two orderings of the commutator
are quite distinct. Consequently the representation of
the Fourier transform of the refarded commutator is
identical to that for the time-ordered Green’s function
provided one drops the sign factor associated with the
infinitesimal imaginary term. One obtains

H(p,8)

_— (11)
B+2pkB— ptie

Golh)= fs By

(for case A only).

We cannot write the time-ordered Green’s function
for case B, however. In this case the two physical
regions in the (%%,2pk) plane cross. The mass condition
for this to happen is 2k> M-+ M,. Here, although the
single particle k may be stable, the assertion of non-
vanishing matrix elements connecting the particle to
the states M; and M, is the assertion that the quantum
numbers of the particles are such that two « particles
may spontaneously interact to form the combination
of states My and M, The commutator, and thus the
causal Green’s function, does not contain all the
information, since we cannot isolate from this commu-
tator the time-ordered product of the operators. This
is in close analogy to the scattering from excited or
unstable systems, in which the causal response does not
determine the free decay.

IIl. FURTHER SPECTRAL. INFORMATION :
THE “BOUND STATE” TERM

There is still another item of information in the
spectral decomposition that we can explicitly impose
upon our representation. If the state of least mass
occurring in an ordering of the commutator is a single-
particle state isolated by a finite gap from the states of
higher mass, which often is the case if we ignore the
electromagnetic interactions, we know that the Fourier
transform of the commutator, f(k2,pk), will vanish in
the physical region for all values of the invariants %2
and pk that lie between the single line in the (k2,2pk)
plane associated with the single-particle state and the
beginning of the continuum states. This additional
information cannot be simply expressed as the vanishing
of the weight function in a region larger than the one
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we have found. Our arguments lead us to the smallest
convex support for H (u,8) but no further. As we shall
see, this new information takes the form of an integra-
bility condition on the weight function and allows us
to integrate away the weight function in the region of
the (u,8) plane associated with this new region in the
(B*2pk) plane at the expense, in the Green’s function,
of a new denominator. To exploit this structure we
shall modify this term, write a new representation for
the modified functions, and then reinstate this contri-
bution.

As an example of such a structure, let us suppose
that, in the first ordering of the commutator, the mass
M is a single-particle mass and the continuum begins
with a mass M;>M. The term in the commutator
arising directly from the single-particle state is

J(#2,pk) =276 (p*+ pk)o ((p+R)*— M?)

XZ Lol gl el )+, (12)
where ¢=k%-p, and the sum is over the other quantum
numbers of the single-particle state. The other term
that makes up the expected e(p?+pk) structure arises
in the other order of the commutator from states
containing three particles, one of mass M and a particle
and antiparticle of mass k= (%)%, This é-function term
may be removed by defining a new function:

J(,pk) =L (k+p)*— M1 (k2 pF,). (13)

This f function will now vanish everywhere in the
physical region except in the regions defined by the
thresholds of the continua My and M,. The modified
function in coordinate space:

C (&) ={— DO+ 2ipu0*+p*— M*}C ()
is still a causal function. We write a new representation
for f:
500 = [ ds
g

X e(pk+Bp?)d (-+2pk8—m)H (u.8)  (14)
with the limits
8t u>ANMyMsB); 1282—1. 1s)

We turn now to the retarded Green’s function and
consider the action of our polynomial factor upon it.

{(B+p)2— M*}G (K, pk) = —-ifdx 0(x)C (x)et*=

+ fdx ekzh (xo) (2p0+k0+130)C(x) (16)

The first term is the retarded Green’s function associ-
ated with the modified commutator. The second term
arises from the boundary during the integration by
parts and is, by invariance, causality, and locality, at
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worst a polynomial in %% and pk whose structure can be
determined from the canonical commutation relations
and the field equations. We set

f dee €78 (x5) (2pot-ho+i00)C (x) = P(R, pk). (1)

Then evaluation of the retarded integral in (16) leads to

{k*+2pk+p*— M*)G (2, pk)

H (u,8)
= f dBdu
v RA2pkB—puti(pk+BpY)e

Since the right-hand side of (16) is analytic in the
upper half ¢ plane for all physical momenta, the left-
hand side is also analytic above the real %o axis and we
deduce:

tP(#,pk). (18)

P(k2,pk)
(k+p)*— M} +i(p*+pk)e
1
{(k+p)*— M2} +i(p*+pk)e
H(u,8)
X | dBdu .
8’ EB4-2pkB~ pt-i(pk+BpY)e

This representation makes explicit all of the information
we can deduce from the mass spectrum and embodies
the tightest restrictions on the range of u and 8 that
we have been able to draw. If the two denominators
were combined, this representation could be reduced to
the form (1) with a concomitant increase in the ranges
of the parameters in the weight function.

A way of re-isolating the “bound-state” term is to
extract from (19) the imaginary part, that is, the
commutator:

C(#,pk) = e(p+pk)o((k+p)*— M) {A(F)

G(#,pk) =
{

1
}-

+ P, $(M2— p— )} o——
R ) R e

X | e(pk+B2)0(k+2pkB—p)H (u,8)dBdp.  (20)
¢

Here I_I( 8
£,
A@ =0 | dsd
) - —wts(r—p)
® 3¢ (a)do ,
_@fm P (20°)
where
H 76 - MZ“ 2
50(0) = f P )5(0'— “—f—-@), (207
1—-8 1-8
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and
co=min{c: p,8 in 8}
(M=) (My— M o)+ 2k (M1— k) (M 2—x)
- —M2+2«
for Mi>M>2k—M,
=3(M2H+-MPH— for 2x—M:>M.

(21.1)
(21.2)

The value of oo represents two things. It is the point at
which, as k® increases from spacelike values, A(%?)
ceases to be an analytic function of %2, and it is the
point along the line k*4-2pk+p?=M? at which the
second § function in (20) begins to be satisfied. In the
case corresponding to (21.1), oo lies in the nonphysical
region of the (k%,pk) plane, in (21.2) it lies in the
physical region. In the physical region, for values of
the invariants that satisfy only the first §-function in
(20) and not the second, A (k%)+ P[k?, (M2—Fk2—p?) /2]
is the product of matrix elements corresponding to the
product of two vertices in (12). Thus we have shown
that this product is real and analytic as a function of
k* for k*<co. Using the representation of I for the
vertex we could show that this product of vertices was,
in general, analytic beyond ¢ up to some ¢;. Therefore,
between oo and oy, the weight function 3C(¢) in the
representation for A(k?) vanishes, since the latter is
defined everywhere as a principal part integral.

Since we shall, in the next section, explore the
analytic properties of this representation for the re-
tarded Green’s function as a function of pk, we rewrite
the representation by adding and subtracting from the
integrand the term ®[H (u,8)]/[k2(1—B)+ (M>—p*)B
— ] to obtain

AR+ P(k*,pk)
G(R,pk) =
C(k+p)2— M2 +i(p*+ph)e
BH (1,8)
—o | dgd . (22
f A { (B+-2pk8— ) +i(pk+Bp% €} )

X{B(1—=B)+ (M*—p*)B—u}

IV. FORWARD DISPERSION RELATIONS

Simple applications of our integral representations
are the dispersion relations for the forward scattering
amplitude.’ The physical values of this amplitude are
obtained directly from the representation by putting
the projectile momentum on the mass shell, taking
k?=m?. As an example of the behavior of the bound
state term, consider (22). The first term in (22) then
has the form of a simple pole in the variable pk, the
pole occurring in general outside the physical region of
pk: (pk)22 p*m?. The residue of this pole is simply
related, as we have seen, to the analytic continuation

5 M. L. Goldberger, Phys. Rev. 97, 508 (1955).
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of the vertex function and can be used in the usual
way to define the coupling constant.
The rest of the T-matrix function has the form

H(u,B)
| asan . @)
© (R 2pkB— ) F-i(pk-Bp)e

where 8 is given by (15).
This has the form

f ‘ hl(o') hg(O‘) }
do 4 R
pk—otie pk—o—ie

her=f 3 d"‘Hg;B)s("’ (Zrr)aan
IR

xe(— -1;; —p2). (24.2)

(24)

If m?2> max{(M1—«)? (M,—«)?}, then both %4y and ks
are in general not zero and no analytic information can
be deduced. In the special case of symmetrical masses
(pion-nucleon scattering), if m?= (M1—«)?= (M2—«)?,
then h2(0c)=0 and 7i(c) vanishes if |o| <wm. This is
then directly the form embodied in the dispersion
relation and we can deduce that T'(pk) is analytic in
the upper half plane.

The other important special case arises when the
particle can react exothermically in one order. Then
mP= (M1—«)?2> (Ms—«)? and we have the following

structure: »
h Km h
T(pk)= f PR f PR
wm  DPk—otie Jin—w phk—o-tie
+fK(M1—K)dUI hl(a) { hz(o’) }
0 pk—o+tie pk~a——ie

+ f (25)
pk o+
Although the function T'(pk) is not an analytlc function
of pk, it is only in the nonphysical region that the cut
lines lie on both sides of the real axis in the p& plane. -
For physical values of pk, the denominator of the term
in 4, never vanishes. Changing the sign of ie in this term
defines a new function, T'(pk), analytlc in pk in the
upper half plane. This representation is again directly
a dispersion relation, in this case for nucleon-nucleon
scattering and K-nucleon scattering. These relations
differ from those that have been suggested® in that the
6 Goldberger, Oechme, and Nambu, Ann. Phys. 2, 226 (1957);
P. T. Matthews and A. Salam, Phys. Rev. 110, 565 (1958);

C. J. Goebel, Phys. Rev. 110, 572 (1958); K. Igi, Progr. Theoret.
Phys. (Kyoto) 19, 238 (1958).
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weight function does not vanish in part of the non-
physical region.

Other cases can easily be derived from the form of 8.
Dispersion relations for the spin-flip amplitude” or for
the derivatives of the amplitude with respect to the
angle evaluated in the forward direction may be
obtained by using representations of this type to exhibit
their structure as Fourier transforms of causal functions
with specified mass spectra.

V. CONCLUDING REMARKS

In the previous sections we have shown how the
information contained in the mass spectrum can be
used to construct an integral representation with real
weight functions for diagonal matrix elements of various
products of two field operators. We have throughout
worked with manifestly covariant expressions, and this
applies in particular to the method of imposition of the
lowest mass limits. The symmetric point-to-line corre-
spondence between the (k%,pk) plane and the (u,8)
plane affords a rapid graphical method of defining the
support of the weight function H (u,8), carried through
in Sec. ITII. The weight function as obtained is unique
and no further support conditions can be imposed on it
from our axioms alone. The representation does not
necessarily exhaust the contents of these axioms.

One has the freedom of redefining the continuation
to the unphysical region of any physical function, and,
depending upon the specific application, the continu-
ation could be taken differently. For any continuation
other than that here used, however, a representation of
the form of Eq. (1) would require an unbounded range

7A. Salam and W. Gilbert, Nuovo cimento 3, 607 (1956);
R. Oehme, Phys. Rev. 100, 1503 (1955).
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in 8; in that case, our method of incorporating the mass
restrictions as support conditions on the weight function
could not be carried through. We have exploited the
freedom in the continuation to the unphysical region in
the construction of the forward dispersion relations by
“moving” the cut lines in the unphysical region to effect
a trivial analytic continuation. This method enables us
to construct dispersion relations for nucleon-nucleon
and K-meson—nucleon scattering. Unlike the situation
in the dispersion relations which have been conjectured
before,® the analytic scattering amplitudes in our rela-
tions are nonvanishing throughout the unphysical
region —xm<pk<wm. For the amplitude to vanish in
certain parts of the unphysical region, additional speci-
fication seems necessary. As far as the general theory
is concerned, symmetric mass restrictions (say, pion
scattering) are, in this sense, essentially distinct from
unsymmetric mass restrictions (say, nucleon-nucleon
scattering).

It is to be noticed that, after specialization of the
projectile to the mass shell, one should expect the
structure of the amplitude to be symmetric between
the two particles; and this is in fact true of both the
specialized function 7'(pk) and the modified function
T (pk).

If the state |p) is a one-particle state, further
analytic information may be obtained: the possibility
of associating a local field with a one-particle state |p)
implies information on the dependence of the matrix
element, and consequently of the weight function, on 2.
Similarly, the fact that, after separation of the bound
states, the contributing intermediate states contain
two or more particles may impose further restrictions
on H (u,8). These matters will be treated elsewhere.



