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ABSTRACT

The aim of the present paper is to discuss systematically the discrete
symmetry operations on a quantized field in interaction; and to basc
the introduction of the new quantum number ° chirality” for spinor
fields on these symmetry properties. In the course of this investigation,
several general results on the group of symmetry operations are proved
and relation between certain sets of discrete symmetry opcrations and
the spinor representation of the rotation group in 3 and 4 dimensions
is established. An attempt has been made to present clearly the con-
nection between additive and multiplicative quantum numbers, gauge
transformations, unitary transformations and invariance laws. The
chirality invariance of spinor fields in interaction is discussed in some
detail. The emphasis throughout is on the systematic development
rather than on details of application. The paper is divided into two
parts, the first dealing with the general theory of discrete symmetry
operations and the second concerned with chirality invariance for spinor
fields.

I. GENERAL PRINCIPLES

(1) Additive and Multiplicative Operators.—We wish to discuss briefly the
two types of quantum nambers associated with symmetry operations. On
the one hand, we have unitary operators U acting on many particle states
yielding an eigenvalue which is the product of the eigenvalues of the corres-
ponding operator acting on the single particle states from which the many
particle states may be supposed to be constituted. For example, since

Uay*ag™ i 0) = Uoa* U Uag* Ut U ] 0)
introducing the eigenvalues A, Ap, Ag
Uay*ag™ [ 0) = Arsar*ag™® |0) Uoy* | 0) = Myap* | 0),
Uag* | 0) = Asag* | 0),
66
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one has the multiplicative relation
A'TS == )\"'As.

On the other hand, additive quantum numbers like the number operator
N = ¥ ap*ay has eigenvalues Nyg, Ny, Ns which satisfy the additive relation

Nys = Ny -+ N;.

It is the latter group of operators which illustrate most directly the
particle properties of a quantised field; and the familiar dynamical quan-
tities like energy momentum and electric charge all belong to this class.

In practice, the multiplicative operators of physical significance are
always unitary and hence have eigenvalues of modulus unity. While in
general all unimodular eigenvalues are permissible, we shall find it con-
venient to confine our attention at the outset to those cases where U? = - 1.
Here we point out an important elementary connection between such multi-
plicative unitary operators and additive operators with integral eigenvalues.

Operating on one particle states the ecigenvalues of operators U are
always 4 1 and may hence be replaced by a matrix w with eigenvalues + 1.
Since the transformation is unitary, it maps creation operators into creation
operators and we restrict ourselves to those cases where the mapping takes
one particle states into one particle states. One can hence always put

U [0)=[0)
without introducing any inconsistency. We note that the effect of the
operator U on a product of field operators A.B.C. ...... is given by the

rule:
A —UAU = (wA)
A.B.C..... - UAU-L. UBU-L. UCU. ...
(wA) (wB) WC).... =2, A.B.C....
By the definition U |0) == |0), acting on any state £, becomes iden-
tical to U.
On the 6ther hand, we may define an additive operator £, by the relation
Q,A.B.C.... =(wA).B.C.... - A.(wB).C....
-+ A.B.(wC).... 4+ ....

Such an operator satisfies the equation
QA = AQ, +wA or [&; A] = wA.
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The solution of this equation can be constructed as follows: diago-
nalise w. The creation operators separate into two classes corresponding
to the eigenvalues = 1. The destruction operators also possess the samc
eigenvalue for w as the corresponding creation operators. For every creation
operator Cp* construct the number operator C,*C,. The additive operator
Q, is then defined by the relation:

Qy= 3 N Cp*Cp — I O Cp*Cpy

2™ running over positive eigenvalues and 2 over negative cigenvalues
for w. Direct calculation shows that the operator so defined satisfies the
requirements imposed on it.

With suitable modification of the steps, the restriction to the eigenvalues
+ 1 may be relaxed.

(2) Discontinuous Symmetry Operations on a Spinor Field—The follow-
ing discontinuous operations on the field operator are standard:

by —> Up‘ﬁ(m) Up—l = B (— x)
iy — & (— x) B Space reflection

by = Uezy U™ = Clffiy) = Cl/r @ Charge conjugation

‘Z(:n) — $T c-

In each of these cases, U is a unitary operator acting on the Hilbert space
which can be constructed explicitly. Notice that in all cases U2 = =1
and hence the eigenvalues of U operating on any state are 4~ I and thus
define “ parities ™.

Anticipating our discussion in Chapter II, we shall now introduce an
additional operation valid only for a spinor field of vanishing mass:

iy = Ugth(y U™ = veli)

b — — P ¥s Chiral adjoint.

Again one no’Fices that Up,? = 4 1 and U, operating on a one particle
state yields its chiral number. A state possessing an even (odd) number
of negative chiral particles has the eigenvalue + 1 (— 1) for Uy.

(%) The Algebra of Symmetry Operators—The method of replacing
unitary transformation U by their associated matrix operators w gives a
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convenient method of studying the group of symmetry operations. Such a
group is completely defined by specifying the transformation properties of a
complete set of fundamental operators (i.e., the set of operators which cannot
be obtained by algebraic manipulations from other operators already con-
sidered).  Since the unitary transformations considered preserve adjoint re-
lations, such a complete set is provided by the 4 sets a,* (k), b,* (k) (r = 1, 2).
The matrix operators w perform linear transformations in the vector space of
the fundamental field operators a,* (k), b,* (k). From the definition of the
symmetry transformations one has the following results:

Charge conjugation C: a;, o* (k) by, o* (k) b*y, 5 (k) —a*, , (k)
Space reflection P: a*y, o (k) = a*y 1 (—k) b*, 5 (k) ——b*, | (—Fk)
Chiral adjoint X : ay* (k) - — ay* (k) by* (k) — b, * (k)

a* (k) — a;* (k) by* (k) — — by* (k)

The corresponding unitary operators Ug, Up, Uy can be constructed using
standard methods®® and yield the following expressions:

Ue =7 {l — a,* (k) a; (k) — by* (k) b, (k) + a,* (k) by (k)

+ be* () ay (00} {1 — ay* (K) @y () — by* () by (B)
+ ay* (B) by (]) + by* (R) ay (R)).
Up =7 {l — a* (&) 0y (6) — a;* (&) @y (B) + a1 (k) 2y (— )

+ ax* (= k) a ()} {1 — by* (k) by ()
— by* (— k) by (— k) — by* (k) by (— k)
— by* (—k) by (K)}.

Uz = m {1 — 2a,* (k) ay (K)} {L — 2by™ (k) by, (K)}.

One can also introduce a particle adjoint by the rule:

Particle adjoint v: @ * (k) - a,* (k) b, * (k) — — b, * (k)
= {1l — 2By,
k, r

Since fundamental field operators form a (closed) representation space
@ for the non-singular operators C, P, X, » one can consider new
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transformations generated by successive applications of these. Thus we are
led to the following transformations:

CP CX Cv
PX Pv Xy
and to products of more than two factors. In associating w; with the Uj so

generated, one has to see whether the eigenvalues, in &, of the product
operation is real or imaginary. Thus for example

(Cv) A(Cv)!=iwA w hermitian
since the w matrices for C and v anticommute.
By virtue of the fact that U;2 = + 1, the algebra generated by n opera-
tors Uj consists of #! distinct elements in general. However since the one

particle submatrices for G, C, P, X, v either commute or anticommute so
that in @ the number of distinct matrices one has to consider is reduced to

n+’L(§2“!—D+.’...=2n—1.

The following comments are generally valid:
(i) The bermitian w; have the composition property
WrWr, = ]C‘»/VR:LVVR2

where k = + 1 if R; and R, commute and k = — ; if they anticommute
(operating on &).

(#i) Any algebraically independent subset R;, R,, ..., Ry generates a
subgroup of order 2" including the identity.

(@ii) In particular, any two elements R,, R, generate a group of order
4 which is isomorphic to the Abelian group generated by o, and — | if R,,
R, commute and isomorphic to the Pauli group generated by o1, 03 if Ry, R,
anticommute. ~

The introduction of the hermitian w; enables us to define the additive

quantum numbers £, associated with U;. The following correspondences
may be directly verified:

X < total chiral number

v <> Number of particle—number of antiparticles.
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P < Number of positive parity particles—Number of negative parity
particles.

(4) Conjugate Symmetry Operations.—For a pair of anticommuting
operations R, S the associated hermitian matrices obey the law of
composition :

WRS - - WRWS‘
We shall say that such a pair of R and S are “ conjugate operations.®
Examples are (C, v), (C, iCv), (P, X), etc. One recalls that the @& matrices

Wi, Ws» Wgs are isomorphic to the Pauli matrices oy, oy, o;. We shall now
prove the following;

LemMMA I.—Under each transformation of a conjugate pair of symmetry
operators, the 4 sets of field operators a,* (k), b,* (k) are spanned by two
equal groups (of vectors in @) one corresponding to the eigenvalue - 1 and
the other to — 1.

The proof is immediate if one diagonalises the corresponding hermitian
wg.  Since Ug®s + 1, wy>= + 1 and hence its eigenvalues are -+ 1. But,

Tr {W}g = TI‘ 1ZW1\SWR} = “2 T’ {WRSWI\ + WRWRS} ==

and hence the eigenvalues should be -~ 1 in pairs.

Let the linear set in & corresponding to the eigenvalue + 1 of w be
labelled 7, (A = 1-2) so that

WrI\ = -+ N
It then follows that ¢, defined by
L = wgm
satisfy the relation
Wrin = WrWgnn = — WsWrmy = — &

and thus belongs to the eigenvalue — I. The operation of multiplication
by ws, which is equivalent to a unitary transformation by Usg, thus changes
the sign of the eigenvalues. We thus have:

LemMmA II.—The unitary transformations U associated with one of a
pair (R, S) of conjugate symmetry operations causes the elgensubspaces
(in @) of the other operator to be conjugated.

A2
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so that the particle number (“ charge ) eigenstates arc conjugated by the
charge conjugation operator and vice versa.

In passing we notice that if R and S are conjugate, so arc (/RS, R) and
(iRS, S8). Also if Q and R commute as well as Q and S, then (QR, S),
(R, QS) and (QR, QS) are also conjugate pairs. This implics that, given
an operator R, its conjugate S is not unique and to define S uniquely, addi-
tional requirements should be placed on it.

(5) Ope-ator Gauge Trassformations—Among the conscrved integer-
valued quantum numbers that we have considered, there are serveral
which are *absolutely ” conserved by any * physical” intcractions. By
physical, here we mean any existing interaction, however wecak, con-
sistent with our present knowledge. In such a case the states with different
values of this number are physically disjoint and the well-known irrelevance
of the absolute phase factor of state vectors gets extended into an arbitrary
phase assignment for each of the orthogonal subspaces of the Hilbert space
referring to different values for the absolutely conserved quantum number
considered.” This corresponds to a unitary transformation in the Hilbert
space of states and an associated unitary transformation on the ficld
operators which leaves the physical content of the theory unaltered. In case
the field operators have matrix elements connecting these different orthogonal
subspaces (and are, by definition, not observables), this unitary trans-

formation leads to an operator gauge transformation of the field operators.
We turn to a few special cases of the same.

Consider a familiar case: as far as we know, the clectric charge Q is
conserved absolutely. Hence different eigensubspaces of Q are
disjoint. Hence the phase transformation

| Q)—exp. A (Q)} | Q)

where A (Q)is a (numerical-valued) function of the operator Q, leaves physical

predictions unaltered. On the operators ¢ this lead to the operator gauge
transformation |

physically

> M) oA @ — oi N (@) @+ )} )
where

For the particular choice

AQ=1.Q
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A being a c-number, the operator gauge transformation degenerates into a
familiar c-number gauge transformation of the first kind:

l/l-—)-e"'i)\ql,b.
Similar results hold for other absolutely conserved operators.

The same concepts are applicable to the symmetry operators and related
additive operators 2,. Consider for example, the one particle eigenstates
of chirality. If the total Lagrangian absolutely conserves chirality, there
is no way of measuring the relative phase factors of the different eigenstates
and there is an essential arbitrariness of these phase factors. The chiral
conjugation operator is also arbitrary then to the extent that interchanging
states of opposite chirality with fixed (but arbitrary) phase factors is its
generic function. A phase transformation of the type discussed above on
the Hilbert space would then induce associated rotations of the chiral con-
jugation operator (in the abstract 3-space of the Pauli group generated by
these conjugate operators).

(6) Continuous Transformation Generated by Discrete Operators.—The
gauge transformations resulting from a conserved discrete operator form
a continuous group with the discrete operator acting as a generator. It
is the aim of this section to exploit this connection and develop the relation of
(discrete) conjugate symmetry operators to a continuous rotation group.

Consider the rotation group in a 3-dimensional space and an arbitrary
representation by matrices S;, S,, S; of the infinitesimal generators of rota-
tions about 3 arbitrarily chosen (orthogonal) axes. Then the reflection
operators are distinct from the spin operators S; in all cases except for spin
3. In this unique case, the reflection and spin operators are identical. This
circumstance of the basic spinor rotation operators representing’ reflections
is fundamental in the geometric theory of spinors.

Given a 2-component spinor

e=(8)

the reflection with respect to a plane normal to the unit vector 7 s defined by
the linear transformation®:

f1) (7‘13 Hy — i"z) ( 1)
— . or - 0.1 &
&/ T \mp + ng — N3 £ 3 °

The rotation around the axis z through an angle 6 can be generated by two
successive reflections in planes passing through # and inclined at an angle
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0]2. The matrix operators o thus play a dual role. Any representation
of all three reflection operators automatically leads to a representation of
the continuous rotation group. This property is shared by no other repre-
sentation and singles out the fundamental spinor representation of the
rotation group. ‘

The discrete symmetry operations which we have considered so far have
the property that they have only two distinct eigenvalues -~1. They con-
sequently admit a 2-component representation. We know, further, that
two conjugate symmetry operations generate a group isomorphic to the
Pauli group. In view of the above identification of the rotation and reflec-
tion operations for two component representations, we are led to assert that
any two conjugate symmetry operations generate a group of continuous
rotations in an abstract 3-dimensional space and yield a spinor represen-
tation of this group.

Take for example charge conjugation (C) and chirality (X). Call the
operator iCX by Y. The creation operators of a positive chiral eigen-
state a* and its antiparticle 4* (of automatically the opposite chirality), or
equivalently, the one particle states a* |0) = | A), b* |0) = | B), yield
the following representation for C, Y, X:

c(15)=C (8 (-0 U
(18 =G5

If n is a unit vector the operations

()= G " =) ()7 o0 )

form the group of rotations of the states in this abstract space.

A related group has been discussed by Gursey® where one chooses v,
C, iCv to be the three operators generating the rotation group. They
identify the structure of this group with that of the internal symmetry asso-
ciated with the isotopic spin. We wish to re-emphasize here that the dis-
tinction between reflection operations and internal rotation symmetries of
spin 4 is one of terminology only.

(7) Three- and  Four-Dimensional Rotation Groups.—From the
earlier -sections it is quite clear that one can construct as many 3-dimen-
sional rotation groups as there are algebraically independent pair
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of conjugate  symmetry  operations.  The structure  of  the rotation
group in the distinet 3-dimensional  spaces constitute the complete  geo-
metrical group of rotations and reflections in a 4-dimensional space.  From
cach distinet couple of algebraically independent pairs of conjugate opera-
tions, one can construct w 4-dimensional rotation group. In the language
of the theory of group representations. the direct product of two spinor
representations is equivalent to the direct-sum of two spinor representations.

The most familiar example of this type is the composition of the spatial
rotation group « with the group generated by Poand X, This was employed
by Dirac' in the construction of the y matrices in the following, form:

v (e og ag) p (pry pan py)

pa Xope o Popy o iPX e, e Beope iBye py v
In terms of these the vector matrices (corresponding to reflection operators)
assume the form:

3
.

ol : R ‘ 4 a
A A 4 Pathy v Fatmy Y 1

/

where, for convenience, we have constructed the matrices applicable to
Euclidean space (all 3# hermitiany rather than for a Lorentz spacet A
similar method has been employed by Schwinger in his formulation of a
4-dimensional internal symmetry group.

In our case such @ group can be constructed, for example, by choosing,
a o A{r, CP, iCPy) poo (X, IXP, P).
The four vector matrices are:
yt o Pe 9t o iCe Wt X

with corresponding rotation operators

”J:u', i('"f)v “':;‘.3 Lop ”_:” e (!l)
g Xy alt P XPy at¥ o OX

and the set of disjoint operators o
a b b (D FIXPY o 1O iX) TR 1Cw (X 1+iP)
ol (L= iXP) o b C(P - iX) o8 f Cv (-~ X--iP)

g

from independent rotations.
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A physically more interesting case is got by wmhiui}lg a natural 3-
dimensional rotation group with a set of independent comugz,}m syz:nmuu:y
operations. Such a group is generated by combining the isotopic spin
symmetry with the operations X and P. We put

o = {7y, Ty, Tg) p = (iPX, X, P).
The four vector matrices and rotation operators are
y'=Pr, yP=Pr, =P y=iPX
and
o8 = 7, o3 == 7, Ay
ot = 7, X 04? == X oI, X

The rotation operators thus correspond (o ordinary and chiral isotopic
rotations. The independent rotations are:

ox' =30 L yg) mn op = F (b yg) T o ® o (L yp) 7y

and thus correspond to the rotation of either chiral state separately.  This
case exhibits the decomposition of the direct product into a direct sum most
clearly.

II. CHIRALITY INVARIANCE IN SPINOR FIuLD DYNAMICS

(1) Structure of Spinor Field Dynamics and Chirality Invariance. - The
field theory of elementary particles is patterned after the dynamics of systems
with a finite number of degrees of freedom and, likewise, can be given a sys-
tematic development based on the fundamental action principle. Naturally
the enumeration of the independent degrees of freedom, i.c.. the kinematic
characterization of the dynamical system, should in turn decide the structure
of its equations of motion, though the actual temporal development depends
on the details of the dynamics. In a covariant ficld theory, where space
and time derivatives appear on an equal footing, this intrinsic property of
dynamical systems is nevertheless preserved. The complete  specification
of the system is contained in the action principle; and this in particular
implies the generators of changes in the field operators and, from these, the
commutation relations.l

. The spinor field is the simplest dynamical system from this view-point
in the sense that all the field components are independent dynamical varia-
bles. In the present paper we shall be mainly concerned with the chiral sym-
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metry of spinor fields and a natural starting point for a systematic develop-
ment of this is to write down the Lagrangian density:

L) =3[ B ] + HE)

where H () does not involve any derivatives of J and is called the dynamical
term. The generator of changes in the field operators is

Gy =1 [ d*xf* g, Oty [ty Gyl = i8¢z,
and, consequently, the commutation relations assume the form
¥, b+ = 83 (x — x').

It is to be explicitly noticed that these commutation relations do not depend
upon the structure of H (4) as long as no derivatives of J are involved in
H ($). We have taken ¢ to be non-hermitian and hence we have 2 X 4
independent sets of dynamical variables and consequently, for each value
of x, 4 independent degrees of freedom.

We now notice that the two projection operators

1+ 9
2

have the property of preserving adjoint relations and lead to uncoupled degrees
of freedom, when operating on the field operators 4, J*. Define:

b () =151000) gty =g lE
Then the adjoint relations and commutation relations become:
Pa¥ = @e)* Pr*®), d3 DL =0.
¥, Pz ()} =8® (x — x)

where, as above, we have suppressed the indices. We shall call 4 as the
two chiral fields and, by convention, call s 4 the positive (and .. the
negative) chiral field.>® This possibility of exhibiting the two degrees of
freedom separately is closely connected with the Chirality invariance of the
kinematic part

Liin = % [, iByo,]
of the Lagrangian. By this we mean that the chiral transformation

‘/’(x) —> '}’5‘/‘(3:) 'l‘*(x) —> (Vs‘ﬁ(:c))* = ‘/'*(.1:) Y5
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“of -the field operator #, leaves Ly, invariant. Itis essential to recognize,
that no specific assumption about the invariance of H () has been made
so far. The structure of the kinematic term alone makes it legitimate to
talk about the chiral label (just like the spin label) though before it can be
identified with a quantum number, the properties of the dynamical term
H () must be ascertained.

In fact, the kinematic independence of the chiral degrees of freedom
ceases to be a dynamic independence if H () is not invariant under the
chiral transformation, the two chiral modes become coupled in such a case.
The best example is the mass term 3m [J*, B¢]. Consequently, to identify
the quantum number associated with the kinematic independence, it is
necessary to take a system where it becomes a dynamic independence, i.e.,
one in which H () = H (y). A trivial case of this type is got by putting
H () = 0 obtaining a spinor field with zero mass. In this case the con-
served gquantum number associated with chirality invariance is simply the
sign of the polarisation in the direction of its momentum (sometimes called
“ helicity ). But we employ the term chirality in its fundamental dynamical
significance as a covariant label for two classes of independent modes, even
in those cases where the corresponding quantum number is not conserved.
Thus chirality invariance and chiral transformation are concepts independent
of whether or not the corresponding quantum number is conserved or not.

In fact, it is meaningful to consider the kinematic part alone as the
“free field ” Lagrangian and consider all the rest to be interactions. The
mass terms in H () would then become a ““true” interaction: and the
free field would correspond to quanta of zero mass. Such a separation
into “ free ” and “ interaction ” parts is best suited for discussions of chira-
lity invariance; and is not inconsistent with the point of view that the
“mass ”’ 1s the phenomenological expression for the modification of space-
time behaviour at very short separations.

The linear transformation of the field operator which we have called
the chiral transformation can be generated by a unitary transformation on
the field operator. The interaction representation corresponding to the
above-discussed separation into free and interaction parts Lyin, and H ()
respectively permits one to write down this unitary operator Upg:

Uz =m {1 — 2a,* (k) ay (k)} {1 — 2b,* (k) by (K)}.
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Here the ay, by, a,*, b* are creation and destruction operators satisfying
usual commutation rules in terms of which the field operators may be
expanded :

f ) . L%y %,
Ay, dg }1 = Opg; ‘Lb'rn bs 4 = Opg;

all other anticommutators = 0
P = 3 {ay (k) uy (k) &% + b* (k) v, (k) e7te-%)
13

po = I {ay (k) uy (k) € 4 b¥, (k) v, (k) e=1k-7),
I
Notice that the labels 1, 2 here refer to chiral eigenstates (and not to spin
eigenstates). To verify that the expression for U, is the correct one, one
simply writes down the relations :

ysuy (k) = + uy (k) ysv1 (k) = — vy (k)

sty (K) = — uy (k) 5Lz (k) = + v; (K),
and recognises that

Upa,Up = + o UghUyp™ = — by

Uza,Up™ = — a, UrboUg™ = + b,.

In passing we also notice the result:.
UzH (U™ = H (vs).

It is nstructive to write down the expressions for a few related operators
in this representation. The familiar space reflection operation (parity) has
the corresponding unitary operator Up®l:

Upel =7 {l — ay* (k) a; (k) — a* (— k) ay (— k)

+ a* (k) @ (— k) + ay* (— k) a (k)}
{1 — by* (k) by (k) — by* (— k) by (— k)
— by* (k) by (— k) — bu* (— k) by (K)}.

We also introduce two integral valued additive operators

No =2 {ay* (k) a, (k) — by* (k) by (k)

No= 3 {@* () ¢, (k) — by* (k) by (K))
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which represent the number operators for the positive and negative chiral
modes of the ficld operator . They are the space integrated 4th components
of conserved chiral currents:

Lt = § [h*, Byl Jo# = R [P*, Byt ]
Alternatively one may define the chiral current and the total current:
J# = jIM — Jﬁ.u J# j}ll . j.&u
and the operators of chiral number and fermion number:
Ng == Ny — N,

In particular the one particle state a,.* | 0y, bp* [ 0) have the following chirul
numbers:

Naa,* [ 0) = — ay* | 0) Naby* [0) - by* [O).
Particles and antiparticles have thus opposite chiral numbers.

The conservation (or lack of it) of these dynamical quantities would
depend upon the nature of the dynamical term.  Our programme in the
succeeding sections is to see to what extent various interactions permit the
invariance under the chiral transformation. The point of view of first
looking for invariance properties of the kinematic Lagrangian and then
studying the transformation propertics of the dynamic term under the cor-
responding transformations is perfectly general and very fruitful in the
systematic study of symmetry propertics and conservation laws. We hope
to come back to this point of view clsewhere.

(2) Electromagnetic Interaction—-A non-trivial example of the chirality
invariance of the dynamical term is the coupling of a (zero mauss) spinor
field to the clectromagnetic field. The interaction term is obtained by
replacing 3, by — ieA, in the kinematic Lagrangian:

HD) = deAp [f*, Byl H () == Ugll () U™t HE (),
Thus chirality invariance now becomes a dynamical invariance
associated quantum number like chiral number are constants of
this is most clearly seen by rewriting H () in terms of Py
HW) = eAp{lh* Brip] + %, By )]
=3 e AW ]+ BLX 6] 4 A (%, oy,
+ [, oR ],

and the
1 mMolen:
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Thus 1, and ¢ act as completely independent fields and their number opera-
tors are separately comserved. Thus the electromagnetic interaction is
chirality invariant, but both chiral components are coupled (with definite
phase factors).

As is well known, the electromagnetié interaction is also space reflec-
tion (parity) invariant. The parity operation has the unitary operator Up
with the properties:

Uptey Up™ =B (—x)  UpA, (x) Up™ = A*(— x)
gv=1 -1, -1, —1
and since Byt B = v, it follows that
UpH () Up_l = H ($-a) Ukain () U'p":l = Liin (— X)

which verifies the space reflection invariance. This possibility of the same
interaction being chirality and parity invariant [despite the anticommuta-
tion of the corresponding linear operators ys and B, when acting on the
field operator ] stems from the fact that one of the interactions occurs in
both the chiral eigenstates with a definite phase factor. In fact, if the phase
factor is altered or the coupling constants altered in any fashion, the space
reflection invariance would be destroyed.

Another conjugate operation to chirality is the well-known charge
conjugation operator. [Two symmetry operations, whose squares are the
identity and whose representative matrices on the field operators anticom-
mute, are called conjugate operations.] Charge-conjugation invariance ex-
presses the basic symmetry of the theory under the interchange of positive
and negative electric charges. The corresponding unitary operator in our
notation is:*: 5

Ue = Uget. U Pl UcpheAM (x) UPh1 = — eA, (x).
Ull=n {1 — a* (k) ay (k) — by* (k) by (k)
+ ¥ (k) by (k) + by* (k) ay (K)}
X {1 — a* (k) ay (k) — by* (K) by (k) + ay* (k) b, (k)
+ by * (k) a, (k).
The invariance may now be explicitly verified. But we also notice that
Uca*y, » (k) Uc™ = 3, 2 (k) Uchy, o* U™ = ay, o* (k)
and hence under charge conjugation, the chiral numbers change sign:
NmUc l L= — UchI -
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Again, the possibility of invariance under the two conjugate operations
follows from the fact that both the particle and antiparticle states are coupled
symmetrically (for each chiral component of ).

Since the spinor field in interaction with the electromagnetic field
possesses invariance under chirality (X), parity (P) and charge conjugation
(©), it is invariant under the compound operations built from these,
namely, second chirality (XP), conjugate chirality (XC), combined inversion
(CP) and third chirality (CPX). The explicit construction of the unitary
operators U; can be carried out using standard methods but we shall omit
further discussion of these. But suffices it to note that the electromagnetic
interaction manifests a remarkable degree of symmetry.

So far, we have had no need to specify whether Ap was a quantized
dynamical field, or a prescribed external field. In all cases the chiral number
was a constant of motion. But if Ax is a quantized field, while leaving the
chiral number unaltered, it alters the * composition > of the state and this
makes itself felt in the enhancement (or damping) of chirality destroying
couplings. For example, if one introduces a mass term this can be thought
of as a (chirality destroying) coupling to a uniform external field of zero
frequency. The amplification of this “ coupling” by the electromagnetic
interaction exhibits itself as an electromagnetic contribution to the mass.

(3) V-A Fourfermion Interaction.—Among the interactions of spinor
fields which are chirality invariant, the Fourfermion interactions, which
are the weakest of all elementary particle interactions, is most notable.?
The remarkable near equality of this effective weak coupling constant in
various weak interactions led several authors to postulate a Universal inter-
action of definite pairs of charged and neutral fields. The maximal parity
violations associated with minimal chiral couplings were instrumental in
bringing order into the structure of these interactions. Our present know-
ledge is consistent with a coupling of only the positive chiral states of the
pairs of fields np, uv, ev (and possibly pairs like Ap, = p involving strange
particles). The interaction is such as to conserve the number of leptons.
For a review of the experimental data and the success of the predictions of
the theory, reference may be made to two earlier papers.'?

If (A;, B;) refer to the various pairs of charged and neutral fields taking
part in the interaction, the interaction Lagrangian has the form:

Ly=2G2 [Ai, 7 (14 v) Bl [A5, 7, (1 + y5) Bj] + h.c.
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An alternative way of rewriting this interaction is in the form:

Lo 0 Gr I e VAL () By

G coupling constant with the dimensions of (length).®

The tollowing properties of this interaction can be noticed immediately.
Freste only one chiral eigenstate is coupled. This has the consequences of
Cnastmal) violiion of space reflection invariance [ef. the clectromagnetic
micraction] and of having for all practical purposes a neutrino with only
pesitive chirahity tand an antineutrino with only negative chirality).  For
other particles, the miass terms ™ ereate ™ negative chiral states from positive
chirad states and vice vessae so that, for example, the electron from fdecay
exhibits s full set of states. Scecond, since the interaction was so chosen
an o he Bilinear inospinor fickds and their adjoints, the total fermion number,
stmmed over Gl the fickds, iy conserved and this is unaltered even by the
prosence o {vhirality nonsconserving) mass terms i the dvnamical term.
(hine of Copservation of Leptons) Third, the form we have adopled for
the Pourfermion mteractions leads to a self-coupling of a pair ot ficlds with
hadt the strength, the experimental effects, say on electron-neutrino  seat-
tering, are quite small and not mconsistent with our present knowledpe.
Fioally, for any two pairs of ficlds (say g, en) the present form exhibits i
wiithietry on mterchanging charged and neutral fields:  (Equivalence of
¢ harge-Bachange and Charge-Retention orders:)

TENE RS Y S (ISP IO D
RS BTN L) R R OR § BT FTA N

From the remuark made in tln: carlier seetion regarding the connection
between helicity and chirality for a ** free ™ zero mass spinor field, we expect
the neutrinos {rom the weak interactions o possess acgative helicity.  In
the vise of partivles ke the muon and clectron which are * free ™ but have
finite msses, the churad number iy pot conserved but there will result a finite
degree of polarisation [with the same sign as the chira number of the prob-
uhtlit% for sero mass case is finite and opposite otherwise ¢f. the polarisation
of electrons from Audecay and muons from a-decayl].

since both the clectromagnetic field and the Fourfermion teraction
are chirality invariant, the conservation laws of chiral number, cte., are
unaltered.  From  the general connection between  conserved  quantum
number and gauge transformations, we are led o expect associated gauge
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transformations under which the theory is invariant. The most general
gauge transformation for the present case is

by —>€XD. (lay) Yy ey = Ay (1 — y5) + 6, (1 + v5)
+ 92%7) + 055,

where A, 6, 0,, 0; are arbitrary real numbers (and A, may be different for
different fields). ¢, and b, are the electric charge and baryon number
of the field 3. It is trivial to verify that the currents generated by the
4 parts of this gauge transformations are, respectively, the (individual)
current of negative chiral particles, the (total) current of positive chiral
particles, the (total) electric current and the (total) baryon current. We
emphasise the fact that only the transformation iy —> €Y @715 o may be
applied to each field separately while all other transformations should be
applied to all the fields in interaction simultaneously.

The conservation laws are maintained if vector or axial vector couplings
with boson fields are included. In particular, since the chiral transforma-
tions affect only the spinor fields, only the coupling matrix (and not the
structure of the boson fields'®) is relevant. In particular, a pseudovector
coupling of pseudoscalar mesons with “ nucleons > of zero mass leaves the
abovementioned symmetries in tact.

4. Mesic Couplings and Internal Symmetries.—We briefly remarked in
an earlier section that chirality invariances of spinor fields coupled to boson
fields depended only on the covariant structure of the dynamical (coupling)
term and not on the kinematic structure of the boson field. It then follows
thata spin O meson field can be coupled to the spinor field in a chirality
invariant fashion. Such a coupling of the pion and nucleon fields is the
pseudovector interaction:

g yavur - Pl =g (F* — JH) . 4,

where J,* and J,* are the chiral isotopic spin currents. The minus sign
is due to the occurrence of y; in the coupling. Clearly, in spite of the isotopic
spin structure, the basic chirality invariance is preserved and the number
of chiral particles (summed over protons and neutrons) is conserved.* In
addition, the isotopic spin symmetry leads to conservation of the fotal iso-
topic spin current J* -+ Jy* but not of the two currents separately. How-
ever, if the pion mass is zero, the sum of the chiral current J,* — J,* and
ig1d,¢ is conserved by virtue of the equations of motion of the pion field.

* Despite these advantages, the role of the pion as the dynamical agency defining the
* nucleonic charge’ no longer obtains with a pseudovector coupling.
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When the pion nucleon coupling is extended to include the various
baryons and mesons, similar relation hold. If one sums over the various
baryons, the number of positive and negative chiral particles are conserved ;
as well as the total isotopic spin current.
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