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Raman study of temperature dependence of lattice modes in calcite
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Abstract. The temperature dependence of the line width and the peak position of
the E, librational mode (of nominal frequency 285 cm™) and the E, translational
mode (of nominal frequency 155 cm™) in calcite (CaCO;3) have been studied by laser-
Raman spectrometry. The role of orientational relaxation as a possible process con-
tributing to the line width has been evaluated. It is concluded that reorientations do
not play a major part in relation to the present observations. It is further shown that
the latter can be understood on the basis of cubic and quartic anharmonic processes.
The data also suggest that certain phonon interactions earlier considered insignificant
for peak shift in calcite, do contribute significantly.

Keywords. Laser Raman spectroscopy; external modes; librations; calclite; anhar-
monicity; line widths; temperature dependence; lattice modes.

1. Introduction

Calcite (CaCO;) has been the subject of varied spectroscopic investigations in the
past (Porto et al 1966 and references therein; Park 1966, 1967 and Sakurai and Sato
1971). From the work of Porto et al it has emerged that (i) the Raman spectrum
is fully consistent with the selection rules based on the point group symmetry of the
crystal, and (ii) there is no anomalous depolarisation of the A, internal mode of the
carbonate ion as was reported by earlier workers. Park, and Sakurai and Sato have
concentrated on the anharmonic aspects of the vibrations, and have reported the
temperature-dependence of the vibrational parameters for several modes. The
present work is of a similar nature, and addresses itself to a study of the temperature
dependence of two low-frequency Raman-active external modes not covered in earlier
studies, namely E, (~285 cm™1) and E, (~155 cm™). These modes are associated
predominantly with the librational and centre of mass motions respectively of the
carbonate ion (see figure 1), and the aim was to see if the line shapes of these modes
were in any way influenced by orientational relaxations of the CO%~ ion. It has
emerged from our studies that reorientations do not play an important role in
relation to line shapes, and that the latter are determined by anharmonicity associated
with multiphonon processes.

The plan of the paper is as follows: In § 2 we present briefly the experimental de-
tails. The processing of the data and the extraction of the line shape parameters are
considered in § 3 wherein the results are also presented. § 4 which constitutes the
main body of the paper is devoted to a discussion of the results. § 5 contains some
concluding remarks.
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Figure 1. (a) Unit cell of calcite. (b) Vibrational patterns for the Raman active
vibrational and translational modes studied in the present work. (¢) The 4,4 vibra-
tional mode. The large amplitude version of this would tend towards angular re-

orientation.

2. Experimental .

The samples used (size 10X 5x 5 mm) were obtained by cleaving naturally occurring
single crystals parallel to the thombohedral face. The Raman spectra were recorded
in a laser-Raman spectrometer built around a model 14018 SPEX double monochro-
mator. The laser employed was a 30 mW He-Ne laser. Detection of the scattered
light was done using a cooled ITT-FW130 photomultiplier tube, followed by a pho-
ton-counting system. The laser, the collection optics, the cooling arrangement for
the detector and the photon-counting system were all locally built. The dark current
achieved was ~2-5 CPS.

Measurements were made in the range 100-710 K. In the range 100-300 K, the
sample was mounted in a glass cryostat using liquid nitrogen as the refrigerant. An
electric heater on the cold finger of the cryostat was used to achieve the desired inter-
mediate temperatures. A small furnace was used to go beyond room temperature.
The constancy of the sample temperature was within 41 K, and the absolute accuracy
of temperatures quoted is estimated as 43 K.

All the spectra recorded were unpolarised. A slit-width of roughly 4 cm=! (in
terms of FWHM of the resolution function) was employed throughout. Preliminary
scans were made in the analogue mode, i.e., by using a rate meter followed by an
x-y recorder. The spectra recorded for detailed analysis were however obtained
digitally, with counts sampled at each wave number for about 100 sec, to give an

ordinate accuracy of ~1% in the wings.
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3. Results

Figures 2a and 2b show typical spectra at different temperatures. It is evident that
as temperature increases, the lines broaden significantly. The intensity in the wings
also increases, possibly due to multiphonon processes. By smoothly interpolating
between the two wings, the one-phonon part of the spectrum can be (approximately)
isolated and examined further.

We see from figure 2 that the lines have typical resonance shapes, broadened of
course by instrumental resolution. Accordingly, we assume that the unmodified
line is described by

1 r
w) == o 1 w)]. 1
1@ = L M

Here w, is the resonance frequency, and I' the half-width at half maximum. The
quantity 142 (o) with

n(w) = [exp (b w/kpl) — 117,

describes the population factor.

Now the slit width, though small, produces a measurable contribution to the
broadening. Therefore, T" cannot be directly read off from the measured spectra.
As a prelude to making resolution corrections, we determined the resolution function
in the following way: We first scattered the He-Ne laser beam off a piece of card-
board and recorded the spectrum of the scattered beam using the same slit width as
employed in the Raman measurements. The natural line width of the laser beam
being very small (~1 MHz), the observed line profile corresponds entirely to the
instrument resolution function at the laser beam frequency, i.e., 15802 cm-1. We
then recorded the neon plasma line at 15665 cm! (this corresponds to a Raman shift
of 137 cm™') using once again the same slit width. Here too, the natural width
(~500 MHz) was much smaller than the slit width employed. As expected, both
profiles were reasonably consistent with a Gaussian shape, i.e., :

R (cu - wc) = (a/Tr)l/2 €Xp [_ a (w - wc)zls (2)
where w, is the centre frequency and a the resolution parameter. The values of a
for both the lines were found to be the same within experimental error. We have
therefore assumed that the resolution function is the same over the entire observed

range of frequencies, and further is given by (2).
When a Lorentzian is folded with (2), the modified line shape is described by

I, (@) =2 Re [(a)!"? e* exfc (pal/2)], 3)

where P =T —i(w — wy),

and erfc denotes the complimentary error function. Ideally, we should have fitted
our data to (3) (with, of course, correction for the population factor and the base line)
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for extracting T" and w,. Owing to the excessive computing time required to do this,
we adopted a somewhat simpler procedure. We first computed 7, (w) for various
assumed values of I' with w, fixed at some arbitrary value. Using this set of com-
puted modified spectra, we then established a curve of T, (half-width of the modified
spectrum) versus I'.  With this curve available, the I' appropriate to any measured
spectrum can be read off, treating the observed width ',  as equal to T',. For
obtaining T' ., we first corrected the observed readings for the population factor,
A graphical procedure was then employed to deduce T',,, using which [ was
obtained as described above.

Besides treating the data graphically, we have also used a computer to extract
[ ops @nd wo. For this, the observed points after correction for the population factor
were least-squares fitted to:

I b
1 w) = A;+4; (w—w,) + 4 038 . 4)
obs (@) 1 ( e (e wp)? Fgobs (

Here w,, is the lowest Raman shift in the experiment. The quantities 4;, Ay, 4, w"
and T, are adjustable parameters. Implicit in the use of the form (4) is the assump-
tion that resolution does not modify the functional form of the line shape but merely
‘fattens’ the Lorentzian, a not unreasonable assumption when [" a1/2> 1.

The values of w, obtained by graphical analysis were in good accord with those
deduced via (4). The results of the computer-aided analysis had a slightly greater
precision and were the ones finally adopted. As regards I yps> both methods gave

very similar values for the high-temperature data, but, for low temperatures, the
computer fit was of a slightly poorer quality. This is to be expected since the shape
fitted to is a Lorentzian whereas the shape emerging from experiment has a strong
Gaussian admixture, being resolution-dominated to some extent. The values of
I'yps We finally relied upon were essentially those obtained by the graphical analysis.
‘We should add that besides yielding values for wg, the computer analysis served the
added purpose of assessing the errors in the deduced quantities.

Figure 3 shows the line width as a function of temperature deduced vig above
analysis, and figure 4 shows the temperature dependence of the resonant frequencies.

4, Discussion .

4.1 Line width

The carbonate ion in calcite is a well-bound unit, as is evident from the high values
of the internal mode frequencies. It is common for such well-bound molecular
groups to exhibit reorientations, and our aim, as already indicated, was to see if such
reorientation processes contributed to the line width of the vibrational mode, as
happens for example, in several ammonium salts.

Now the width T" arises essentially due to the interruption of the vibrations by
various physical processes. As in the case of nuclear resonances, one may suppose
that each of these processes makes an independent contribution to the width, so that
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Figure 4. Variation of the vibrational frequency with temperature.

we may set I' = 2 I"; where the index 7 runs over all the processes involved. In our
case, we would expect i to include reorientations and the usual cubic and quartic
anharmonic processes. For analysing the data, we need explicit expressions for

I‘reorient’ 1-‘cu‘bic and 1-‘quartic‘

At this stage, we would like to clarify what we mean by reorientations in the present
context. This is done in figure 5. The oxygen atoms of the CO2- ion move in a
potential well with three-fold angular symmetry as shown. Angular jumps occur
randomly taking the ion from one configuration to an equivalent one, where it re-
sumes all its normal vibrations over again. The phase interruptions to the vibration
make a contribution T reorient 1O the width (Rakov 1964; Sood et al 1978). An illumi-

nating analysis of the effect of phase interruptions on the width of a resonance line
has been given by Ben Reuven (1969) within a harmonic oscillator model. It turns
out that the quantity T reorient MaY be taken to have the form

Treorient = Yo €XP (—UlkgT), (5

where U is the activation energy and », the usual prefactor.

As regards the anharmonic contribution, i.e., that due to multiphonon processes,
formal analyses are available in many papers (e.g. Maradudin and Fein 1962; Cowley
1963, 1968; Klemens 1966; Wallis et al 1966, and Ipatova et al 1967). Many-body
techniques are used, and in effect the problem reduces to the calculation of the proper
self energy (denoted usually by the symbol X but represented by G by Maradudin
and Fein). Diagrams contributing to X are shown in figure 6. In passing we
remark that in the early work of Maradudin and Fein (1962), only contributions to
0 (A%) were considered i.e., those from diagrams in figures 6a and 6c. Subsequently,
Ipatova et al (1967) took account of contributions from diagrams in figures 6b and
6d. It is pertinent also to add that the diagram in figure 6e was not considered in
earlier work since it gives a zero contribution for Bravais crystals and for non-primi-
tive crystals in which every atom is at a centre of inversion (Maradudin and Fein
1962). This however does not apply to calcite; it turns out that the contribution is

of the same functional form as that arising from figure 6¢ but of a much smaller
magnitude. :
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Figure 5. (a) Schematic drawing of the three-fold potential. (b) Hlustrating the
interruption to a normal mode of vibration caused by the reorientation process. Such
interruptions can make a contribution to the line width as given by (5).
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Figure 6. Diagrams contributing to the proper self energy. The insets show whe-
ther the diagram contribute to peak shift (A) alone or peak shift and line width (T°).

The quantities of experimental interest, namely the line width function I" and the

frequency shift function Aw are obtained from the relation (Maradudin and Fein
1962).

fim ,;i-,_,-,z (s & 18) = Aw (kj; @) F 1 T (kj; @), 6)
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where k denotes the phonon wave vector and J the branch index.

Presently, we direct attention to I". The formal expressions are quite forbidding,
and rule out the possibility of explicit evaluation, especially for a crystal of the com-
plexity of calcite. Accordingly, we resort to a phenomenological formula which,
however, is based on the formal result both in spirit and in content. Thus, guided
by Park (1966, 1967) we suppose that cubic anharmonicity leads to the decay of a
phonon of frequency w, into two phonons each of frequency (wo/2), which then
results in an expression of the form.

Leuvic = 4 {[exp (B wy/2 kg T) — 1]t + %}: 7

where A is a constant. Similarly, for the quartic process, we may suppose that w,
decays into three other phonons each of frequency (wy/3) which then gives (Sakurai
and Sato 1971)

1

I quartic = B {[(exp" (B wy/3kpT)— 1)t 4 £]2 4 =

)i
S ’ (8)

where B is a constant. It is worth noting that in the high-temperature limit,
T cubic ~ T and I quartic ~ .
Turning now to our data, our first attempt was to fit the corrected widths assuming
I' = Treorient T Lcubics | ®

the individual contributions being as in (5) and (7). In writing (9) it is assumed that
the quartic process is not as significant as reorientations. A fairly good fit to the data

- could be made with parameters as in table 1. In making the fit, the values assumed

for w, were 285 cm™ and 156 cm! for the librational and translational modes
respectively. Now if the fit is meaningful, then the value deduced for the activation
energy must be in reasonable accord with an independent estimate. One way of

Table 1. Fit to model in (9) with parameters as in (5) and (7).

L4 U A
(cmo‘l) (kcal/mole) (cm™) . Remarks
Librational
mode 110 413 i 3-39 4 015 263 + 0:06
Translational 58 +5 3-39 0:84 4 0:04 U was fixed to be
mode 3-39 kcal/mole
Translational 43 4+ 5 2:96 4+ 0-15 0-84 4+ 0-04 U was also an ad-

mode justable parameter
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obtaining the latter is to consider the dynamics of the COZ ion in the three-fold
potential well. The Schrodinger equation is

he d2¥ |, Vo o

T To + 5 (1 —cos 3a) ¥ EW, (10)
where I is the moment of inertia about the Cy-axis and E the eigenvalue. The libra-
tional frequency v is identified as usual with the frequency difference between the
lowest and the next higher eigenvalues. By 2 suitable transformation (see, for ex-
ample, Venkataraman et al 1966), the Schrodinger equation is readily cast in the
form of Mathieu’s equation from which we get

V, (cal/mole) = 0-0114 +> I'*, (1)

where v is expressed in cm-! and I* =102 X I (g cm?). It is to be noted that librations
here refer to the mode Ay, illustrated in figure 1, and have a frequency ~165 cm™
(Plihal 1973). Using this value for » and taking /*= 1245, we deduce

V, ~386k cal/mole, (12)

which clearly is very much higher than the activation energy emerging from the fit
discussed earlier. If instead of reorientations about the Cs axis we consider a
rotation of = about the x-axis, we obtain V,=1603 +* cal/mole. The librational
mode now pertinent is the R, mode of frequency 285 cm—! which then leads to ¥,
—130-2 k cal/mole, a value much higher than that in (12). We believe (12) is more
representative of the barrier and therefore conclude that the fit achieved is not physic-
ally significant. It is obvious that had we inserted the value (12) as an estimate for U
in (5), we would directly have inferred that reorientations would not make significant
contributions to the observed width. However, we approached the data without bias
to see what emerged. The exercise is not without value since, on occasion, width
data is directly fitted to a reorientation model (Wang and Wright 1973). The present
experience shows clearly the need for caution.

Having ruled out reorientations as a contributing factor to the width, we now ana-
lyse the latter in terms of anharmonic processes alone, taking

T = " guvic T T quartic” (13)

with the individual contributions as given by (7) and (8) . The fit achieved is shown in
figure 3, and the relevant parameters are summarised in table 2. Attention is drawn

Table 2. Fit to the model in (13) with parameters as in (7) and (8).

Alem™) - B (em™)

Librational mode 1-50 & 0-07 0-46 + 0-002
Translational mode 050 &+ 0-03 0-08 4 0-004
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to thé fact that (B/4) ~0-16 for the translational mode and = 0-71 for the librdtional
mode. This is not unexpected since dissipation of vibrational energy via a four-
phonon process will be more important for a mode of higher frequency.

4.2 Frequency shift

We now turn to the temperature-induced frequency shift of the vibrational modes.
As is well known, part of the observed shift can be understood in terms of thermal
expansion and the resulting change of (the harmonic) force constants. This is the so-
called quasi-harmonic contribution. The remaining part arises due to relaxational
processes which, in our case, we attribute (as already explained) to cubic and quartic
anharmonicity.

Let wq (T) denote the frequency of the mode under consideration at temperature
T. Interms of the various shifts mentioned above (Leibfried 1965),

@y (T) = wy (0) + Awqh (T) + Awah (1), (14)

where w, (0) is the frequency at 0° K, and A“’qh and Aw,y are the quasi-harmonic

and anharmonic contributions respectively to the shift. Our aim now is to extract
Aw,y from the experimental data and then subject it to analysis.

The first step in the above process is to estimate Aw qh (T). This is possible from a

consideration of the Griineisen constant G which is related to the manner in which
the frequency changes with volume (consequent to expansion). Following Born and
Huang (1954) we write

T
wy (T) = wq (0) exp (—~ f G (I") ap, (T") dT"). (15)
0

Here ay, is the volume expansion coefficient. In our experiments, the lowest tempera-
ture attained was 103 K. We therefore approximate (15) as

T

Awgy (T) ~ w, (103) exp (— f G(T) ay, (T) di). (16)
103

As far as the mode frequency is concerned, we estimate from figure 3 that the error
made in replacing w,(0) by w,(103) is about a few percent. We similarly believe
that it is reasonable to neglect the contribution to the integral from 0 K to 103 K.
For a uniaxial crystal like calcite,

ay=a, + 2aJ_, ‘ amn

where a and a | are the expansion coefficients parallel and perpendicular to the
unique axis of the crystal,




12 A K Sood et al

Rao et al (1968) have studied the expansion of calcite between 300 K and 700 K and
represent their results via the equations

oy = 24670 X 1078 - 174 X 108 £ — 5141 X 102 12,

' 4 =-— 34660 X 106 — 7-112 x 10710 f — 3:339 x 1012 ¢2, (18)
where ¢ is the temperature in degree centigrade.
Below 300 K, information about ay is scant, and the only data we have come across

is an old one due to Adenstat (1936). This author gives data points for ay, from 300 K

downwards. Unfortunately, at 300 K where the measurements of Adenstat and of
Rao et al overlap, the absolute values of a;, do not quite match. However, a smooth

curve drawn through the data of Adenstat when spliced to the curve of Rao et al,
appears quite continuous. Such a composite curve, may therefore well be repre-
sentative of thermal expansion over the entire temperature range of present interest.
Accordingly, we have made a fit to the data of Adenstat, obtaining for the functional
form,

ap = (1699 -+ 0:027 ¢ —2-853 x 107 £*) X 107, (19)

where, as in (18), ¢ is the temperature in degree centigrade. The composite curve
obtained by combining (18) and (19) over the temperature of present interest is
shown in figure 7. It may be noted that this matching procedure essentially implies
a. vertical shift of the data points of Adenstat by roughly two units on the scale of
figure 7.

The Griineisen constant G was calculated from the relation

G = (e VulxCyp, ‘ (20)

o, x 105K

00 : L 1 ! | L g
100 200 300 400 500 600 700
T(K)

Figure 7, Temperature variation of o, and the Gruneisen constant,
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where ¥, =molar volume (=342 cm? for calcite), y is the compressibility and Cy, the

specific heat at constant volume. The values of y for T > 300 K were taken from
Dandekar (1968); values below room temperature were obtained from this data by
extrapolation. Specific heat data were taken from the work of Plihal (1973).

The temperature variation of G as calculated above is shown in figure 7. The quasi-
harmonic shifts computed using this data are shown in figure 8. With all this infor-
mation available, (14) can now be used to extract Aw,,. In doing so, we have made
the approximation wy(7T)—wy(0) 22 wy(T) —wy(103), as in (16). The shifts thus obtain-
ed for the two modes are shown in figure 9.

It now remains to explain the magnitude and trend of these shifts. Ipatova er a/
(1967) have shown (see also Sakurai and Sato 1971), that Aw,, can be written as

Awah(T ) =A'(T) + Ao"(T), 2D
16— s
‘ Librational mode ~ e
bvad
P '
.:." 1.2 = -
£ -

Eil -
< 08+

04 — Translational mode

00 I ! | ! | l

100 v 200 300 400 500 600 700 .

T(K)
Figure 8. Quasi-harmonic shift estimated as discussed in the text.
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Figure 9. The points denote anharmonic shifts estimated from our data in con-
junction with those of figure 8. The solid lines indicate shifts based on (23).
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where Aw’ and Aw” are the frequency-independent and frequency dependent
contributions. Using an approximate model as earlier for the phonon decay, one
has (Sakurai and Sato 1971),

Aw'(T) = C'Hexp (hoo/2epT) — 1} + 11—
D[ {exp hoyf3igT) — 12 3¢+ 1] (220)
Aw"(T) =— C"[{exp (hwy/2kgT) — 1}1 + 1] —
o] {Cexp hoyfsigT) = y* 4]+ L], (220)

where C’, C", D" and D" are all positive constants. Referring back to figure 6, the
two diagrams contributing to Aw’ are (a) and (b), and lead respectively to the terms -
with coefficients C” and D’. Similarly, diagrams associated with terms in (22b) above
are those in (c) and (d). Experiment does not permit a separate determination of the
frequency-independent and frequency-dependent parts. Accordingly, we combine
the two expressions in (22) into

— Aung(I) = BL{exp (ho26,T) — 1)+ 41 +
| g(exp (honf3iesT) — 1) 43} + L]+, @3

where E=(C"—C’) and F = (D'-+D"). The constant
H =—[(C" — C)[2 + (D'+D")[3] ensures Aw,; (0) =0

We have fitted our results for the anharmonic shifts to this equation with values
for the various parameters as given in table 3. The quality of the fit may be assessed
from figure 9.

Sakurai and Sato (1971) have carried out a similar analysis for the IR-active modes

u(3 (305 cm™Y), AZu(a) (886 cm™'), and E u(b) (1416 cm™'). Their data are for

300 X and above, in which range, terms in (22) with coefficients C’ and C” do not
contribute much. Sakurai and Sato further argue that the frequency-independent
contribution alone is important, so that Awy~Aw’. Their arguments do not

appear to be convincing to us. In our case, terms with coefficients C’ and C”’ are not

Table 3. Fit to the model in (23).

E(cm™) F(em™) H(cm™Y)
Librational mode 4-30 4+ 0-30 0-34 4- 0-04 —31+ 03

Translational mode 177 £ 0-17 0-05 & 0-01 —1-8 4- 02
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negligible as is evident from the non-zero value of E. (cf. equation (2b) and table 3).
Further since E> 0, it implies C'> C” which in turn means that the contribution
from the frequency-dependent processes outweigh those from the frequency-inde-
pendent processes. Our findings in this respect are at variance with those of Sakurai
and Sato, although it is to be admitted that the modes they have studied are diffe-
rent from those we have.

Finally, we note that as in the case of the line width, the ratio of the contributions
from the quartic to the cubic terms i.e. (F/E) is greater for the librational mode than
that for the translational mode.

5. Concluding remarks

Our experiments have shown that reorientations do not contribute significantly to
the phonon line widths in calcite, unlike the case of many other complex crystals.
Of course, this is not to say that reorientations do not occur in calcite. What trans-
pires is that they are not rapid enough to make an impact on the line shape. This in
turn is a consequence of the somewhat large barrier heights, as compared to ammo-
nium salts, for example. We have also demonstrated that it is risky to merely fit
width data to a reorientation model without counterchecks. It is possible, of course,
that some other activation process other than reorientation is present. In the case of
calcite we do not conceive of such a possibility and we therefore attribute the observed
width entirely to multiphonon processes. Using this approach, the observed data
can be reasonably well explained on the basis of simplified models for cubic and
quartic anharmonic processes. Further, the frequency shift data strongly indicate
that certain processes, namely those associated with diagrams (6¢) and (6d) (which
were earlier considered to be insignificant for the peak shift in calcite) do contribute
to this quantity.
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