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ACCRETION OF MATTER BY A SATELLITE
By PRABHU L. BHATNAGAR anp FRED L. WHIPPLE

Abstract. The changes in the motion of a satellite resulting from encounter with interplanetary material are investi-
gated. Solutions are derived when the material moves in the plane of the circular satellite orbit and when the material at

great distances approaches normally to the orbit.

In this paper we discuss changes in the mean
motion of a planetary satellite arising from its
encounter with gaseous or dust particles in space.
We assume that the particles do not interact
with one another and have, at infinity, a uniform
density, p, and a uniform velocity, V., relative
to the planet.

If the gravitational effects of the planet and
satellite were neglected, the capture cross-section
of the satellite would be simply the geometrical
cross-section wR?, where R is the radius. The
gravitational attraction of the planet, however,
modifies the density and velocity of particles in
its neighborhood and so modifies also the effec-
tive capture cross-section and rate of accretion.
We shall neglect the gravitational effect of the
satellite on the particles.

In Sections (@) to (d) we consider the case
where the direction of V,, is parallel to the plane
of the satellite orbit and calculate:

(@) The rate of accretion of particles by the
planet;

(b) The rate of accretion by the satellite;

(¢) The rate of change of mean motion of the
satellite; and

(@) The numerical value of the rate for Jupiter V.

In Section (¢) we discuss the case where V, is
perpendicular to the plane of the satellite orbit.

In the following paper, F. Kerr and F. L.
Whipple apply the theory developed here in
order to find out whether the reported accelera-
tions of Phobos and Jupiter V can be explained
as the effects of a resisting medium or of tidal
friction.

(a). As reference line we choose the one from
the planet in the direction of — V. In the gravi-
tational field of the planet of mass M, the orbit
of a particle is an hyperbola confined to some
plane through the reference line. Any particular
orbit in a given plane can be specified by the
perpendicular distance, p, of the planet from
either asymptote of the hyperbola; equivalently
the orbit may be specified by the angle 28 be-
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tween the asymptotes. Then

s (P2

where u =
tion.

In such an orbital plane, let us introduce polar
coordinates (7, ¢) with the planet as origin and
with the reference line as initial line. The equa-
tion of a particle orbit with parameter p (or §) is
then

MG and G is the constant of gravita-

7

PV
X ‘I + [1 + (¥)TCOS (6 — sa)}. (1)

Vot .

At distance 7 from the planet, the speed V of a

particle, from conservation of energy, is given
by:

=42k (3)

Let P be the value of p for which the hyperbola
just touches the planet of radius 4. Then, from
(1) with ¢ =4,

pP= A( +AV2)§. (4)

All particles whose orbits have p < P will
strike, and hence be captured by, the planet.
Neglecting the effects of motion of the planet
round the sun, and integrating over all orienta-
tions of the orbital plane, we find that the rate
of increase of planetary mass is

aM
— = TP Wap = 7d*Vep (I +av. 2) (5)

From now on, except for Section (e), we con-
sider explicitly the case where V, is parallel to
the plane of the satellite orbit. If the satellite
orbit be taken to be a circle of radius a, the hyper-
bola with parameter P in its plane will intersect
the orbit in two points (a,¢:) and (a,¢s), with
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Figure 1. Geometry of particle, satellite and planet.

o1 < @2, given by

24  A?V.?
- + -
a au

AV,2 !
+1

— I

cos (8; — 1) =

g2 = 201 — o1,
where
—1
AV,2
© +I

COs 51 =

Here two cases must be distinguished: (i) o2
> m, and (ii) ¢2 < 7. These are characterized by
the relation of V,, to a critical value

N R

b =

N R

P¢1,2 =
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If Vo, < V,* then ¢; > 7 and the satellite
receives material from both sides of the initial
line so long as (27 — ¢2) < 0 < 2. If Vi, >
V.*, then @5 < mand the planet shields the satel-
lite from accretion when ¢ < ¢ < (27 — ¢2).

(0). Let py, Po, Do, refer, respectively, to
hyperbolas passing through the center of the
satellite (a,¢), and touching its disc on the sides
near and farther from the initial line. Since the
satellite radius R is very small compared to a,
the hyperbolas touch the satellite at the points
whose Cartesian coordinates are very nearly

(@ cos ¢ F R cosy, a sin ¢ F R siny),

the upper and lower signs referring, respectively,
to the p,,, p,, hyperbolas. Here ¢ is the angle
between the initial line and the normal at (a,¢)
to the hyperbola p,, (Fig. 1):

V? .
p“’T + sin ¢
= -y =
Y = tan coseo—1 /) (7)
Defining
_ o _R
w_an” and h—a,

we have by (2), after some manipulation,

{sin ¢ + [sin’¢ + 2w(1 — cos ¢) Ji}, (8)

+ 2w(I F 2 hcos(¥y — ¢) + ) — 2w(cos ¢ F h cosy) ). (9)

All particles with trajectories in the orbital
plane of the satellite and with parameter p in
the range p,, < p < p,, will strike the satellite.

To study the encounters of particles not in the
orbital plane of the satellite, let us consider a
plane passing through the initial line and a point
H of the satellite most distant from its orbital
plane. If the dihedral angle between these planes

Doy = g (sin? ¢ + h2)%{ I+ [I+ 2w

is x, then
tan x = h/sin o.

The rectangular coordinates of H in the in-
clined plane are now a cos ¢ and a(h? + sin?e)}
so that the hyperbola passing through H will
correspond to p = p,,, which can be derived,
as before, from (2) to give

(1 4+ h)t —cos o |
sin? ¢ + A2 S"] l (10)

The distance, 8, of the asymptote to this hyperbola from the orbital plane will be p,, sin x, or

(1 4+ 2 — cos ¢ |}
sinp + h? ) (1)

_El [
=3 I+1]14 2w
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Evidently the distance from the orbital plane
of the asymptote of any hyperbola intersecting
the satellite will be less than @. Therefore, the
area at infinity through which the material
passes normally to reach the satellite can be
taken approximately as an ellipse whose semi-
axes are a = (p,, — p,,)/2 and B.

The velocity V., relative to the satellite, of the
material approaching the center of the satellite
can be seen from Figure 1 to be

Ve=[V24 Vg + 2VVscos(¥y — o),

b2 V. T
7rj; a,8p7 Vw21rd<p+1rﬁ

on the assumption that the encounters are in-
elastic.

(¢). The mean angular motion of the satellite
about the planet is

n = (MG)i/ai,

(12)

so that, differentiating logarithmiéally, we find

1dn _11dM _ 31de

ndt 2Mdt  2adt
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where Vg = (u/a)t is the orbital velocity of the
satellite and V = (V,?+ 2up/a)t is the total
velocity of the material.

To take account of the material approaching
the satellite from the opposite side of the initial
line, we measure ¢ in the reverse direction from
the initial line. Then the expressions for « and 8
remain unchanged, but the relative velocity, V5,
now becomes

Vi =[V2+ Vg4 2VVscos(y — o) 2. (13)

The total mass gained by the satellite during
one orbital period, T = 27at i—%, then becomes

T ToV, [
= £ (Ve Ve

(14)

Py )

In the case of a circular motion with radius a,
a tangential acceleration changes the motion as
follows:
tda T o
adt Ta
where T is the period and S is the forward com-
ponent of external acceleration perpendicular
to the radius vector.
Hence, from (14), for a satellite of mass m, we
find for the rate of change of mean motion

Idn) _11dM . 3TV, fez v,
T(”E —2MdtT_47ram{ 0 aBVx COS('&//-—¢)—7 do

23 VS
- j; aBVr'[COS ¥~ o + 7]d¢=. (15)

(@). Since & = R/a < 1, we may neglect /* and higher powers in numerical calculations. There-

fore, except in the close neighborhood of ¢ = 0 and 7, we may calculate a, B, and ¢ from the following
expressions which are correct to this approximation :

R
sin ¢ +

o =

sin ¢ + w[cos (Y — ¢) — cosy]/sin ¢

2

B = i—a{l + (I + wsec“—:)z}, (17)

tan ¢y ~— cotf(l + ]—23%)

and
(18)

Near ¢ = 180°, but not precisely at ¢ = 180°,
the quantites within the integrals of (15) may
be approximated by constants except for 8,
which is given by

Rut
p= (& + m)¥

where e = |¢ — 7| and 2 = R/a < 1.

(19)
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(I +wsec2§)

(16)

Hence, in (15) the following integral may be
used over the range in ¢ from = — ¢ to 7 + €:

+eo0 .\ €0 e02 3
i Bde = 2Rw* In A + {1+ 7 . (20)

Although (20) is a satisfactory numerical ap-
proximation over a range of a degree or so in ¢, it
fails in a minute range (e ~ k) about ¢ = =.
We have derived the precise expression for 8 in
this range but the applicable range in ¢ is so
small that the integral (20) is not much affected
so long as €/h > 1.

In the numerical work applicable to Jupiter
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