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We define a new set of dependent variables 77, 7y, ..., 7, in terms of wy, w,, ..., w,by
duse) * .
S = v : : =12,..s). 3.8
; (dx) x+w; (¢ ,2,...,9) (3.8)

Substituting (3.8) in (2.25) we get

s 0 0 B 8 du,o\ *
2 K (’aﬁf“é&) ™. =& [E;"ir( o ) P

S s dgg) * ™ datgg) *
+j§1[Lﬁ+c“"ir§1Ki"<dx) Jﬂj—k Li’“(dx x. (3.9)

=1

Using the expressions for ;; and K;; we can write (3.9) in the form

s 0 ﬁ s (e B [s (du“’)*J
P (éz“ax) M+ 3 (b m = R| XK (g2 |

P=

s s du & n d’Ll, ES
()% o) _ * 0 .
+j§1 oy {rzl( §+1A i ) ( dw ) r:§+1Aw( d%) }ﬂ]

$ du,o\ * s du,\ * du;
W AVIES r0 70 50
+:’.§1(06“b] ) ( dx ) }x+ {rﬁlcwr ( dzx ) }A“ ( dx ) h (3'10)

In the neighbourhood of = 0, the steady equations corresponding to the first s
equations of (2.6a) give

s & L\ R L\
z{oc“bm*}(d”“’) {Elcw?(d;‘;“) }A;!;. (‘f{‘;’) = —RA} (‘%’Zﬂ) +R,  (3.11)

where B, =—o,+ Z . 01 CF - (3.12)
Jslk=s+1

i

Substituting (3.11) in (3.10) and rearranging some terms in the result we find that
the right-hand side of (3.10) can be written as
8 n dat,g\ * du, $
* plr %0 _ * kO
{ S ( 3 Aikbk)*> ( = ) S 4 ( o ) }{ 5 cwjﬂj+Rx}+Rix. (3.13)

r=1\k=s+1 k=s+1 J=1

If we use the expressions (3.2) of b{** and (3.4) for (du,o/dz)*, the coefficient of

2_, Cury T + Bz in (3.13) becomes

=1
& %
Y Afpi,CF.

7y k=s+1

Therefore, equation (3.10) finally reduces to

0 0 s .
2‘ K, (6—7;+ -ZT—) = Zlggrwﬁ-h;x (1=1,2,...,8) (3.14)
re

S
where c=Rx+ 3 Cuy T (3.15)
i=1
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Jik=s+1

g;lr = - [(O‘ijb(jr)*) =+ ( Z Azkpk] 7 ) Co J
n (3.16)
and h,=R,+R Y Azkpij*
i k=s+1

In the system (3.14) of s equations, the coefficients are independent of the particu-
larsteady solution passing through the singular point. Therefore, this system governs
the propagation of perturbations of any steady solution through the singular point.
Up to the first-order terms

w;—uf & (duge/dx)*x+v,. (3.17)
Substituting the expression (2.18) with f; = 0 we get for 2 < s
w—uf R (dug/dw)*e+w; = m;. (3.18)

Thus, up to the first-order terms the variables 77y, 7,, ..., 7 are equal to the deviations
of the first s dependent variables from their values at the singular point. When
w;, =00 =1,2,...,8),m;becomes equal to u;, — u; up to the first order. We have been
able to identify 7, with the first-order term in u;—u} (1 =1,2,...,s) due to a
proper ordering of the variables in such a way that the matrix M in (2.7a) is non-
singular. The system (3.14) governs not only the propagation of the perturbations
of a steady solution but also the steady solution in the neighbourhood of the singular
point. In fact, for the perturbations bounded in space and in a small neighbourhood
of the singular point, the system (3.14) is equivalent to the original system (2.6a).
The system (2.6a) need not be totally hyperbolic but the system (3.14) is totally
hyperbolic.
If the matrix [K,,] is non-singular, we can write equations (3.14) in the form
%’;~+ 8(,)7; Zg“.ﬂ the (G=1,2...9) (3.19)
where the constants ¢,, and &; can be expressed in terms of K, g;. and ;. To obtain
the coefficients g,,, &; it is not necessary to work out the complicated algebra of the
general theory given here. It is sufficient to eliminate the derivatives (du;o/dx)
(¢ =s+1,8+2,...,n) from the steady equations and solve for

dusfdze (2=1,2,...,8).

Approximating the equations thus obtained in the neighbourhood of the singular
point and comparing with

Co d.’l) = 2 gw(ur() )+hix3
we can easily determine the constants. The system of characteristic equations for
(3.19) are dr,

% g“.ﬂ +hx (t=1,2,...,8) (3.20a)
IS U
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and de = E] Cpp Ty + L. (3.200)
de r=1

The equations (3.19) and (3.20) remain unchanged under the transformation
my =m0 and « =28
and, therefore, the variables 7, (¢ = 1, 2, ..., s) and « can be taken to be of the order of
unity.

It is well known that any linear approximation in the neighbourhood of the sonic
point (a singular point of the steady equations) breaks down. But the system (3.19)
is quasi-linear and the nonlinear effects of the system (1.1) will be fully taken into
account by this approximate system.

4, GENERAL DISCUSSION ABOUT THE STABILITY
OF STEADY SOLUTIONS

A solution of the characteristic equations (3.20) in the form m; = m,(f), ® =(¢)
gives a steady solution of the equation (3.19) in the parametric form and represents
a curve in (s + 1)-dimensional space (y, 7, ..., 7, x). (A detailed discussion of the
results in this paragraph can be found in part I and in the paper of Kulikovskii
& S’lobodkina for s = 1.) Any integral curve of (3.20) which is single-valued in x
(i.e. for which no two values of ¢ give the same value for x(f)) can be taken to be a
physically realistic steady solution. Any integral curve which crosses the hyperplane

s
c= Yo, m+Rr=0
r=1

will cease to be single valued in x except when it crosses the plane at the singular
point which, is the origin here (figure 1). A perturbation of a steady solution

My = Tyo()
at any fixed time will be represented by a curve
;= o) + Amry(x). (4.1a)

If the perturbation is bounded in space it can be geometrically visualized as a
deformation of an integral curve of (3.20) between its intersection by two planes
x = x; and & = x,. For a steady solution, the space rate of change of the variable
7;, is given by dar 1T s

2R g, )

d.%' CO Lz-llgwﬂro_}'kzx] > (4‘16)
and the equation (3.19) tells us that in any unsteady solution the space rate of
change of 7; as we move with velocity c is again the same as (4.18). Thus, as time
increases, the two end-points at * = x, and x = x, of the deformation will move along
the integral curve. The various points of the deformation (4.1a) betweenz, < x < x,
will move along the integral curves of (3.20). Thus the propagation of any perturba-
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tion of a steady solution can be geometrically visualized in the phase-space of the
autonomous system of equations (3.20) as the movement of a curve (4.1a) whose
different points move along the integral curves. The sense of propagation of the
disturbance can be shown by arrows indicating time increasing direction along the
integral curves. In the domain ¢ > 0 the arrows will point in the a-increasing
direction and in the x-decreasing direction where ¢ < 0. If an arbitrary small
deformation of an integral curve tends to coincide with it or remains in an arbitrary
small neighbourhood of it, as ¢ tends to infinity, the corresponding steady solution

<
S
I
S 070
c”0
c<0

Ficure 1. For the integral curves crossing the plane ¢ = 0, m; ceases to be
a single-valued function of x.

is stable, otherwise it is unstable. In the case of s = 1 and s = 2, it is easier to visualize
the propagation of perturbations, since the phase-space of the system (3.20) coin-
cides with two- and three-dimensional spaces respectively. The case s = 1 has been
discussed completely by Kulikovskii & Slobodkina. If we go through every minute
detail, then in the case of s = 2, the singular point (7, = 7, = £ = 0) of the system
(3.20) can be any one of the 49 types of singularities discussed by Reyn (1964). Reyn
has drawn the three-dimensional phase-space for each of these 49 cases. The dis-
cussion of Kulikovskii & Slobodkina can be easily extended to each. of those 49 cases
where a physically realistic steady solution is possible and, therefore, we shall not go
into the detailed discussion of individual particular cases.

Let us consider anelement of volume V in (s + 1)-dimensional space (7, s, ..., 7, )
bounded by a closed simple s-dimensional hypersurface S whose points move in
accordance with equations (3.20). Using Gauss-divergence theorem in (s+1)-
dimensional space we can show that

1dv .. (dm dm, dm, dz\ i
yar = (@G G = R S 2
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which gives the rate at which elementary volumes change if the motion of the
boundary points is governed by the equations (3.20). Since the system (3.20) is
linear, by superposing the results for volume elements, we find that it remains
valid even for finite volumes. In the case of s = 1, V becomes an area in a plane
whose boundary may be taken to be the curve (4.1a) and if V, given by (4.2), tends
to zero as ¢ tends to infinity, it is found that any perturbation will die out and all
steady solutions are stable (Kulikovskii & S’lobodkina 1967). Fors > 2, if V tends to
zero as ¢ tends to infinity, we cannot say definitely that the deformation ultimately
coincides with the steady solution.

The theory of stability of solutions of ordinary differential equations has been
studied extensively during the last few years (Hahn 1963; Cesari 1963; Lefschetz
1957; Brauer & Nohel 1969). Asolutionn, = #%(t),x = «°(t) of (3.20)issaid to be stable
in the sense of Liapunov if for every ¢ > 0 and every £, > 0 there exists a § > Osuch

that whenever

[i:il {mto) —s)* +{2°(t) — y}zJ : <9,

a solution 7, = mi(¢), = x(f) exists satisfying the condition 7i(t,) = 7;, 2X(f,) = ¥

and satisfies s 1
| 5 o -mop+ eo-20p| <o
i=1

for all ¢ > ¢,. Thus the stability of a solution of (3.20) in the sense of Liapunov

implies the stability of the corresponding steady solution. The following example

from Kulikovskii & Slobodkina shows that the converse is not necessarily true:
For s = 1, the equation (3.19) can be written in the form

dc  oc

37+c%=ac+ﬂx (4.3)
with characteristic equations de/dt = ac+ fx (4.4a)
and da/dt = c. (4.4b)

If & > 0 and the two roots of the equation A2—ad—f = 0 satisfy A, < 0 < Ay,
then the steady solution ¢ = A;x of (4.3) is stable since any perturbation of this
solution ultimately coincides with it (figure 2).

The solution ¢ = A, x of (4.3) corresponds to the solution

c=Aeht, g =elt (4.5)

of (4.4) and all solutions of (4.4) are unstable in Liapunov sense, since one of the
eigenvalues of the matrix of the coefficients on the right-hand side of (4.4) is positive.

The system (3.20) is linear, homogeneous and with constant coefficients and for
such systems we have a complete theory of Liapunov stability. In fact, we have the
important theorem:

If all the eigenvalues of the (s+ 1)th order matrix J of the coefficients on the
right-hand side of (3.20) have negative real part, any solution of (3.20) is stable
in the sense of Liapunov and, in turn, this implies the stability of all steady solutions

of (3.19).
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When the system (1.1) is linear, the coefficients 4;;, Bj;, O are functions of « only.
In this case gij=0, ¢ =0 and R=m (4.6)
and the system (3.20) reduces to

dﬁ?:kix (1=1,2,...,8); ggfzmyc. (4.7)

Ficure 2. 0 = 1, § = 2.

The general integral of (4.7) is

ﬂl-alzwz“.:fi;%:fc_:%emt (4:8)
hy hy hy m ’

where a,,as, ..., a4, @, are arbitrary constants. The integral curves (4.8) form a
family of parallel straight lines with direction ratios (hy, ks, ..., k,, m) in (7, x)-space
and passing through. an arbitrary point (a,, a,, ..., a, 0) of the x = 0 plane. Thus the
steady solutions of (3.19) are

Ty = a’i+ (hz/m)a’ (7/ = 1> 2> "~78)' (4:9)

Any perturbation lying within a cylinder (a s-manifold of points) of radius ¢
with the straight line (4.9) as its axis remains within the cylinder. For m > 0, the
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perturbations move away from the singular point # = 0 with increasing velocity,
and they spread over larger regions but the amplitude

S
> (m;—1m)?
i=1

x remains constant. For m < 0, the perturbations tend to approach the point x = 0
from either side as ¢ tends to infinity and ultimately die at z = 0. As the amplitude
of a disturbance remains constant, all steady solutions (4.9) are stable.

5. EXAMPLES
BExample 1

Let us consider the following system of three equations

Ay A, Ay U 0% cA,; cd,, cAyg O, [0
Agy Agy Ay Ouy[Ot| + Ay, €Agy CAgg 6u2/8xJ

Az Az Ay a0k By, By, By Oy 0z
%113 Gp O3 Uy
T % Agg| |Usf =0, (5.1)
0 o 0 Uy
where C = My Uy + My Uy + Mg Usg (5.2)

and 4, B;; and m, are constants. The matrix M of (2.7a) is of order one:
M = [Bg] (5.3)
and | M| # 0 implies Byg + 0.
¢ is a double characteristic velocity so that s = 2.
The system (3.19) reduces to

omy  omy
T T = Tt i s (5.4)
omy Oy
ot +C‘3}E = J2171+ G227, (5.5)
where
| B B B B |
Ay -5 4 ) & -2 { A, -32A4 , 0 — 82,
g = 1 B, W BT oo = 1 u=p 1w ST p %
A B B C IR TA B B
!AZI_F:A%’ 0621~§:?;—;a23! AZI_‘BTZ';Azm 0‘22“1—3230623
B B B B
1 0011~Fua13, AIZ_B—szA13 1 0‘12”“373‘2‘0‘13, A12—E3—2A13
Goy = — 33 33 PO 25 a3 (5.6)
21T A By, B, » =g B, B,,
e E;a%’ A22~EA23 a22_B—330‘23> Azz“ﬁ?;’Azs
and
B B
All_EiAlti A12*§Z§A13
A= .
Ay By 4, Bry
21 B33 23 22 B33 23 J
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The characteristic velocity c is given by
'E 31 ) ( ‘B 32 )
C = |\ My— 7= Mg | T+ | Mg— 5 Mg | Ty. 5.7
( 1 B33 3 1 2 B33 3 2 ( )

In order to show clearly the use of the theory presented in the previous section, we
consider a very simple case. The total number of constants in (5.1) and (5.2) is 21
with only restriction that By, + 0. Therefore we can choose these constants in such a
manner that

Ju=1 012=3, gn=3, gau=1 (5.8)
and ¢ =T+, (5.9)

The system of characteristic equations (3.20) reduces to

dm,[dt = 7, + 3, (5.10)

dm,/dt = 3w, +m, (5.11)

and do/dt = m + 5, (5.12)
with general integral X1 = Ty + Ty = ayet, (5.13)
Xo = Ty — Ty = age™ %, (5.14)

and Xy =Ty +Ty— 4 = ay, (5.15)

where a,, a,, @, are arbitrary constants. In this case theline 7, = 0,7, = 0 (or y, = 0,
Xo = 01in (3, X2» X3)-SPace) is a line of saddle points (figure 3). The integral curves are
plane curves and they lie in the planes parallel to the (y;, x,)-plane, i.e.

T +me—4x = 0.
For any integral curve which crosses the plane
M+ =0, (5.16)

m, and 7, cease to be single-valued functions of # and hence such integral curves do
not represent a physically realistic steady solution. Fortunately in this particular
problem no integral curve intersects the plane (5.16) but all integral curves obtained
by putting @, = 0in (5.13) to (5.15) lie in this plane. These integral curves (for a, = 0)
do not represent any steady solution as dr, /dz and dm,/dx do not exist (or are infinite)
for them and they are excluded from any discussion in the following paragraphs.

All other integral curves represent a possible continuous steady solution given by

my = 3[(a; + 42) + agfay/(a, + 42)}], (5.17)

and Ty = $[(a, + 42) — as{ay/(a, + 42)}3]. (5.18)
Let us consider the integral curves in a plane given by a constant value of a, in
(4.15) and passing through the point 7'(0, 0, @,) in (y;, Xs, X3)-Space as shown in the

figure 3. In this plane there is only one steady solution aZ'b with a continuous
transition through the singular point 7'. This steady solution is given by (5.17) and
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(5.18) for a; = 0. All other integral curves (except 17'f) represent steady solutions
for which the characteristic velocity does not change sign. If a, > 0, they extend
from z = — }a, to x = co and if @, < 0 they extend from = — oo to x = — 1a,. In the
parametric form (5.13) to (5.15) of the steady solution, the end = — }a, is attained
as t tends to —co. When the parameter ¢ tends to + o0, all integral curves tend to
coincide with aZ'b: = g = My + ). (5.19)

A perturbation of a steady solution can be specified by its three independent
components Ay,, Ay, and Ay,. Ay, being a component perpendicular to the plane

Ficure 3. The y; axis is a line of saddle points.

s = constant in (), ¥s, ¥3)-Space, it remains constant in magnitude. The com-
ponents Ay, and Ay, give the deformation of the steady solution in the plane
¥3 = constant. An area § bounded by a deformation in this plane changes according
to the law § = S, e%, but looking at the phase-space we find that any two integral
curves on the same side of 17'f ultimately coincide with aZ'b as ¢ tends to infinity.
Therefore, if we consider a small perturbation of any steady solution such that the
initial deformation due to the perturbation lies completely on the same side of the
plane 7y +m, = 0, then the deformation tends to coincide with the steady solution
and therefore all steady solutions are stable.
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Example 2

We consider magnetohydrodynamic flow of a perfect gas through a channel of
slowly varying cross-section so that the flow can be assumed to be one dimensional.
Assuming the conductivity to be infinite and that the direction of the magnetic field
is perpendicular to the axis of the channel, we can write the equations of motion in

the form
Wy 0P\ P (B, 2B) pudd 5.20
o “ox) Bl\ot ' Tox) Adx 7 (5.20)
op . op op  Op
—a2 | Ly TP o
a (3t+u3x)+(8t+uax 0, (5.21)
0B 0B ou
it T By =0 (5.22)
ou ou\ Op BoB
and p(5+u—é§)+%+;~a—x— =0, (5.23)

where p is mass density, p gas pressure, » particle velocity, B intensity of magnetic
field, 4 cross-section of the channel, 4 magnetic permeability and a is isentropic
velocity of sound = 4/(rp/p). We set

Uy =P, Ug=7P, Ug=7u, Uy=2D, (5.24)
1 0 0 —p/B vw 0 0 —pu/B
—-a* 1 0 0 —ua® w0 0
sothat A4 = o 0 0 1 , B= 0 o B w (5.25)
0 0 p O 0 1

The characteristic velocities given by | B — /\A| = 0 are

w, u, wtlat+ (Blop)), u—ylat+ (BEop)}.

Thusu is a double characteristic velocity so that s = 2 and we take ¢ = w.The vanish-
ing of u at any point in a steady flow implies that the mass flux is zero everywhere
and hence u = 0. Thus % can be zero only in a state of equilibrium given by

uy = 0, p, = arbitrary function of x}

and Po-+ B3/2u, = constant (5.26)

in the channel. Therefore, we can study local stability of a gas at rest in a channel
with respect to disturbances in the direction of the axis. We can choose the origin of
at any point and denote the value of the quantities at origin by a superscript “*’.
Here o;; = 0 for i = 1,2;j = 1, 2, 3, 4 except a3 which is given by

Ed dA E3
a13=%(a—x—) . (5.27)
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In this case we find that

Ky =1, Kyjp=—p*u/B*?, K, =—-a* Ky=1,
Jiy =0, Cp=h;=0 for i=1,2;j=12, (5.28)
R=0,
so that the equations (3.19) reduce to

om ot = 0, omyot =0,

showing that whatever disturbances are created in 77, and 7., they remain stationary
and as time passes they do not increase or decrease in magnitude.

The above result can be explained in the following manner: 7, and 7, are two
Riemann invariants corresponding to the characteristic velocity ¢. They represent
deviations in density and pressure. Any perturbation in these two quantities leaves
the particle velocity unchanged. Therefore, if we wish to study the propagation of
disturbances only in p and p due to waves moving with velocity % we find that these

disturbances neither propagate nor grow or decay.

The authors express their sincere thanks to Mr S.G.Tagare for checking the

calculations.
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