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Synchronization of networks
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Abstract. We study the synchronization of coupled dynamical systems on networks.
The dynamics is governed by a local nonlinear oscillator for each node of the network
and interactions connecting different nodes via the links of the network. We consider
existence and stability conditions for both single- and multi-cluster synchronization. For
networks with time-varying topology we compare the synchronization properties of these
networks with the corresponding time-average network. We find that if the different
coupling matrices corresponding to the time-varying networks commute with each other
then the stability of the synchronized state for both the time-varying and the time-average
topologies are approximately the same. On the other hand, for non-commuting coupling
matrices the stability of the synchronized state for the time-varying topology is in general
better than the time-average topology.
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1. Introduction

Several complex systems have underlying structures that are described by networks
or graphs [1,2]. Recent interest in networks is due to the discovery that several
naturally occurring networks come under some universal classes and they can be
simulated with simple mathematical models, viz. small-world networks [3], scale-
free networks [4] etc. These models are based on simple physical considerations
and have attracted a lot of attention from physics community as they give simple
algorithms to generate graphs which resemble several actual networks found in
many diverse systems [2].

Several networks in the real world consist of dynamical elements interacting with
each other and the interactions define the links of the network. Several of these net-
works have a large number of degrees of freedom and it is important to understand
their dynamical behaviour. Here, we study the synchronization and cluster forma-
tion in networks consisting of interacting dynamical elements. A general model of
coupled dynamical systems on networks will consist of the following three elements:
(a) The evolution of uncoupled elements, (b) the nature of couplings and (c) the
topology of the network.
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Synchronization of coupled dynamical systems [5–7] is manifested by the appear-
ance of some relation between the functionals of different dynamical variables and
is known as generalized synchronization. The exact synchronization corresponds to
the situation where the dynamical variables for different nodes have identical val-
ues. The phase synchronization corresponds to the situation where the dynamical
variables for different nodes have some definite relation between their phases [8].
In this paper we will consider only exact synchronization. However, several results
are also valid for other forms of synchronization.

Depending on the network topology and the coupling, we can get both single-
cluster or multi-cluster synchronization. These conditions are discussed in the next
section. Several natural networks are not static in time and the structure of nodes
and links changes with time. We will discuss some interesting aspects of the syn-
chronization of such time-varying networks.

2. Coupled dynamical systems and synchronized clusters

Let us first consider the conditions for the occurrence and stability of the single
cluster synchronization where all the nodes synchronize together. We denote an
n-cluster synchronization by nCS and thus a single-cluster synchronization by 1CS.
Consider a network of N nodes of interacting dynamical systems or oscillators. Let
xi(t) ∈ Rm be the m-dimensional variable of the ith node. Let the uncoupled
dynamics of each node be defined by the function f(xi(t)) and the coupling by the
function u: Rm → Rm. Let G be the N ×N coupling matrix of the network. We
allow the possibility of directed networks and also links with different weights. The
dynamics of ith node is given by

ẋi(t) = f(xi(t)) +
∑

j

Giju(xj(t)). (1)

A single-cluster synchronization (1CS) is defined by x1 = · · · = xN = x. The
1CS is a solution of eq. (1) provided the coupling matrix satisfies the condition
that

∑

j

Gij = g, ∀i, (2)

where g is a constant independent of i. We note that this condition is a gener-
alization of the synchronization condition which is normally used and is the most
general one possible [9]. The synchronized state is a solution of

ẋ = f(x) + gu(x). (3)

If g = 0 (as in ref. [10]) then the synchronized state is a solution of the uncoupled
dynamics, ẋ = f(x).

The condition (2) ensures that G has one eigenvector of the type eR
1 = (1, . . . , 1)T

with eigenvalue γ1 = g. This eigenvector defines the synchronization manifold and
it has the dimension m. All the remaining eigenvectors belong to the transverse
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Figure 1. A schematic diagram of synchronization and transverse manifolds.
For the synchronized state to be stable, all Lyapunov exponents in the trans-
verse manifold must be negative, i.e. all the neighbouring trajectories in the
transverse directions must converge to the synchronized state. There is no
restriction on the Lyapunov exponents in the synchronization manifold.

manifold. Accordingly, the Lyapunov exponents can be separated into two sets,
corresponding to the synchronization and transverse manifolds. The 1CS is stable
provided all the transverse Lyapunov exponents are negative. Figure 1 shows a
schematic diagram of the stability condition for synchronization.

It is possible to cast the stability conditions into a master stability equation as
[10]

φ̇ = [Df + αDu]φ, (4)

where α is a parameter and φ is an m-dimensional vector. We can determine the
master stability function λmax, which is the largest Lyapunov exponent for eq. (4),
as a surface over the complex plane defined by α. The 1CS is stable if the master
stability function is negative at each of the transverse eigenvalues of the coupling
matrix G with α = γk (k 6= 1) [10].

Let us now consider the conditions for the existence of the 2CS. The results can
be easily extended to the n-cluster synchronization (nCS). In general, we assume
that the nodes of the two clusters are governed by different dynamical systems and
denote the variables by xi, i = 1, . . . , N1 and yj , j = 1, . . . , N2 of dimension m
and N1 and N2 = N −N1 are the number of nodes of the two clusters. Thus, the
dynamics can be written as

ẋi = f1(xi) +
N1∑

l=1

Ailg1(xl) +
N2∑

n=1

Bing2(yn), (5a)

ẏj = f2(yj) +
N1∑

l=1

Cjlg1(xl) +
N2∑

n=1

Djng2(yn), (5b)

where the coupling matrix G is split into four blocks A,B, C, D.
We define the 2CS state by x1 = · · · = xN1 = x and y1 = · · · = yN2 = y.

Existence of the 2CS requires that it should be a solution of the dynamics (eq. (5)).
This implies that G should have eigenvectors of the form eR = (µ, . . . , µ, ν, . . . , ν)T .
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There will be two such linearly independent eigenvectors and they lead to the
synchronization manifold. Using these considerations it is easy to show that

∑

j

Aij = a,
∑

j

Bij = b,
∑

j

Cij = c,
∑

j

Dij = d, ∀i, (6)

where a, b, c, d are constants. The condition (2) for the existence of 1CS will be
satisfied if a + b = c + d. We note that the synchronization manifold for 2CS has
dimension 2m while the transverse manifold has dimension (N − 2)m. The 2CS is
stable provided all the transverse Lyapunov exponents are negative (figure 1).

Using eqs (5) and (6), the synchronized variables of 2CS are seen to satisfy the
equations

ẋ = f1(x) + ag1(x) + bg2(y), (7a)

ẏ = f1(y) + cg1(x) + dg2(y). (7b)

A master stability analysis for the multi-cluster synchronization is possible for
the separable case where the transverse eigenvectors split into two independent
subspaces corresponding to the two clusters. The complete bipartite network is an
example [11,12]. For this separable class of networks, we get a set of two master
stability equations [9]

φ̇ = [Df1 + αDg1]φ, (8a)

ψ̇ = [Df2 + αDg2]ψ. (8b)

These are 2m equations and can be solved using the 2CS solution obtained from
eqs (7). Thus, we can determine the cluster master stability functions (CMSFs)
which are given by the largest Lyapunov exponents for the two equations in (8), as
two surfaces over the complex plane defined by α. The stability condition for 2CS
is that at the transverse eigenvalues the CMSF for the respective clusters must be
negative [12].

3. Time-varying networks

Several natural networks are not static in time and their topology changes with
time. Both the number of nodes and the edges connecting the nodes can vary
with time. Such a time-varying topology can occur in social networks, computer
networks, WWW, biological systems, spread of epidemics etc. Here, we investigate
the synchronization properties of networks with time-varying structure and compare
it with the synchronization in static time-average networks.

We now consider the time-varying topology where the network periodically
switches between networks with coupling matrices G1, G2, . . . , Gg with periods
τ1, τ2, . . . , τg respectively and the total period T =

∑
i τi. Thus,
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G(t) =
g∑

i=1

Giχ[ti−1,ti], (9)

where χ[ti−1,ti] is the indicator function with support [ti−1, ti) and ti = ti−1 + τi.
The time-averaged G(t) is

Ḡ =
1
T

g∑

i=1

Giτi. (10)

In ref. [13] it is shown that if the network synchronizes for the static time-average of
the topology, i.e. with Ḡ, then the network will synchronize with the time-varying
topology if the time-variation is done sufficiently fast.

3.1 Commuting matrices

Let us first consider the case when the different coupling matrices commute with
each other, i.e.

[Gi, Gj ] = 0, for i, j = 1, . . . , g. (11)

Thus all the Gi and Ḡ will have the same eigenvectors, though different eigenval-
ues. Hence, the expanding and contracting directions in the synchronization and
transverse manifolds will not change with time. Hence, to a first approximation
the time-varying and time-average evolutions will be similar and we can write a
relation between the time-varying and time-average Lyapunov exponents as [14]

λ̄k ≈ 1
T

g∑

i=1

λi
kτi. (12)

We thus see that the stability range for the time-varying and commuting case should
be approximately the same as that for the time-average case.

3.2 Non-commuting matrices

We now consider the case when the different time-varying coupling matrices do not
satisfy condition (11). In this case the eigenvectors corresponding to the different
coupling matrices are in general not the same. Note that the largest eigenvalue
(γ0 = 0) and the corresponding eigenvector (1, . . . , 1) which define the synchroniza-
tion manifold are the same for all the coupling matrices. However, in the transverse
manifold the action of different coupling matrices Gi is to cause a rotation of the
different eigenvectors and an evolution of the rotated eigenvectors. The effect of
this periodic rotation is to take projections of different expansions and contrac-
tions along different directions. This has the effect of reducing the spread of the
transverse Lyapunov exponents and in particular the larger exponents will decrease.
This should in general enhance the stability of the synchronized state. Hence for
non-commuting matrices, the time-varying case will have in general a better stabil-
ity than a time-average case. We demonstrate this by using an example of coupled
Rössler systems.
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Figure 2. The figure shows the six different networks used to demonstrate
the synchronization in time-varying networks.

3.3 Illustration

As an illustration we consider a system of coupled Rössler oscillators.

ẋi(t) = −yi(t)− zi(t)− σ

N∑

j=1

(G(t))ijxj(t),

ẏi(t) = xi(t) + ayi(t),
żi(t) = b + zi(t)(xi(t)− c), (13)

where G(t) is given by eq. (9), i = 1, . . . , N , a = 0.2, b = 0.2, c = 7.0. We consider
several networks with N = 10 as shown in figure 2. For simplicity we report here
the results for the combination of two graphs each (g = 2).

(a) The combination (G1, G2) represents commuting coupling matrices. Both the
time-varying and time-average cases show a stable synchronized state in the range
σ ∈ (0.75, 2.30).

(b) The combination (G3, G4) represents non-commuting coupling matrices. The
time-varying case is stable in the range σ ∈ (0.70, 2.30) while the time-average case
is stable in the range σ ∈ (0.75, 2.30). Thus the lower limit which corresponds to
the long-wavelength instability [10] gets extended for the time-varying case.

(c) The combination (G5, G6) again represents non-commuting coupling matrices.
The time-varying case is stable in the range σ ∈ (0.75, 2.45) while the time-average
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case is stable in the range σ ∈ (0.75, 2.30). Thus the upper limit which corresponds
to the short-wavelength instability gets extended for the time-varying case.

4. Conclusion

In this paper we have discussed the existence and stability conditions for single-
and multi-cluster synchronization. We find that the coupling matrices must satisfy
certain conditions (eqs (6)) in order to obtain multi-cluster synchronization.

For networks with time-varying topology we find that for commuting coupling
matrices, the stability of the synchronized state for the time-varying case is mostly
unaffected and is almost the same as that for the average case. On the other hand,
the non-commuting coupling matrices, in general, lead to better stability of the
synchronized state for the time-varying case than the time-average case.
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