
SLAC-PUB-4292 
April 1987 

w 

Two Loop Dilaton Tadpole Induced by Fayet-Iliopoulos 
D-Terms In Compactified Heterotic String Theories* 

JOSEPH J. ATICK~ AND ASHOKE SEN 

Stanford Linear Accelerator Center 

Stanford University, Stanford, California, 94 305 

ABSTRACT 

We calculate the two loop dilaton tadpole induced by Fayet-Iliopoulos D- 

terms in heterotic string theories compactified on arbitrary supersymmetry pre- 

serving backgrounds. The result turns out to be a total derivative in the moduli 

and hence receives contribution solely from the boundary of the moduli space. 

This contribution is shown to be proportional to the square of the coefficient of 

the one loop Fayet-Iliopoulos D-term in agreement with what is expected from 

effective lagrangian considerations. 

Submitted to Nucl. Phys. B 

* Work supported in part by the Department of Energy, contract DE-AC03-76SF00515 and 
the National Science Foundation grant, PHYS-83-10654. 

+ Address after Sept. 1, 1987: Institute for Advanced Study, Princeton, NJ 08540 



1. Introduction 

It has recently been demonstrated, both through effective lagrangian con- 

siderations [l] as well as through explicit string calculations [2, 31, that Fayet- 

Iliopoulos D-terms [4] can be generated at one loop level in string perturbation 

although they are absent at tree level! These terms arise if the unbroken gauge 

group of the theory contains one or more U(1) factors whose generators have 

a nonzero trace over the tree level massless chiral fermions. One consequence 

of the presence of these terms is that massless scalars charged under the U(1) 

develop a mass at one loop. In fact this is how the Fayet-Iliopoulos D-terms were 

calculated in ref. [2,3] in the first place, i.e. via the one loop scalar masses they 

generate. 

The Fayet-Iliopoulos D-terms are also expected to destabilize the vacuum by 

inducing a dilaton tadpole at two loops. This may be seen by examining the 

effective lagrangian involving the auxiliary D fields. This takes the following 

form 

Lo = iD(a)D(a) + e-3+c(a)D(a) + e-+Dta) c qi(a)XfXi, 
i 

(1.1) 

where D(“) is the suitably normalized auxiliary field associated with the a’th 

abelian factor UC”) (1)) xi are the charged scalars and C$ is the dilaton. The 

coefficients cc”) in the one loop term c(~)D(~) are those computed in ref. [2] 

and they only depend on properties of the massless spectrum. It is now easy 

to see that the above structure for the auxiliary field lagrangian yields, among 

other things, a two loop dilaton tadpole proportional to Ca(~a)2 in the effective 

potential. 

It is important to verify the validity of the above picture through explicit 

two loop string calculation. This would confirm our understanding of Fayet- 

Iliopoulos D-terms in string theories and would give new insights into string loop 

$ An indirect calculation of the D-term coefficient was also given in ref. [5] 
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amplitudes. In fact this is the main objective of this work. More specifically, 

in this paper we shall carry out a two loop calculation of the dilaton tadpole 

induced by the Fayet-Iliopoulos D-terms in heterotic string theories compactified 

on arbitrary backgrounds that preserve tree level supersymmetry. As we shall see 

below, our results are in full agreement with what is expected from the effective 

lagrangian considerations given above. 

In carrying out this work, we were also motivated by the need for a better 

understanding of the structure of fermionic string perturbation beyond one loop. 

As is well known, loop calculations beyond the torus in fermionic string theories 

involve several new complexities over and above those encountered in bosonic 

string loop amplitudes. The most prominent of these, of course, is the presence 

of supermoduli [6] and the associated problem of non-zero background charge for 

the superconformal ghosts. Recently, there has been several attempts at handling 

these subtleties [7-151. The main approach adopted in almost all of these attempts 

has been to integrate over the supermoduli in advance. This has the effect of 

introducing insertions of certain operators involving matter as well as ghost fields, 

in any correlator in addition to the vertex operators whose correlation is to be 

computed. This operation has been rendered well defined through a recent work 

of Verlinde and Verlinde [ 131, who have succeeded in globally defining correlators 

involving the superconformal ghosts. In the present calculation we shall adopt 

the above approach for handling the supermoduli and shall use some of the results 

of ref.[13] pertaining to the superconformal ghost system. A brief review of all 

relevant facts needed is given in the next section. 

One of the interesting aspects of this calculation is the fact that the dilaton 

tadpole at two loops in an arbitrary supersymmetry preserving background turns 

out to be a total derivative in the moduli space. Thus the only contribution to the 

dilaton tadpole comes from the boundary of the moduli space. More specifically 

it comes from the region in moduli space where nr2 + 0, where nr2 is the off- 

diagonal component of the genus two period matrix. In such a limit the two loop 

diagram degenerates into two separate handles (tori) connected by an infinitely 
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long neck (Fig. la). We explicitly verify that this boundary term is proportional 

to Ca(daq2, where c(“) are the coefficients of the auxiliary D field in the one- 

loop Fayet-Iliopoulos D-terms calculated in ref. [2]. Needless to say this means 

that the contribution to the dilaton tadpole could be interpreted as coming from 

a diagram with two seperate tori and with an auxiliary D field propagating in 

between as in ( Fig. lb). 

Our work also sheds light on why the general arguments of ref. [16] break 

down at the two loop level. In [16] the dilaton vertex operator was written as 

the contour integral of the space-time supersymmetry current around a fermionic 

vertex oparator (dilatino). It was then argued that the integration contour may 

be deformed away from the fermionic vertex operator and shrunk to zero, since 

the GSO projection ensures that the supersymmetry current is periodic on the 

Riemann surface. The more detailed analysis of ref. [13] showed that the su- 

persymmetry current develops unphysical poles on the Riemann surface which 

prevents the contour from being deformed and shrunk to zero. It was also shown 

the residue at these poles may be expressed as total derivatives in the moduli 

space. What our analysis shows is that these total derivative terms are not quite 

harmless, since they may give non-zero contribution from the boundary of the 

moduli space. 

At this point it is also appropriate to ask if our analysis throws any light on 

higher loop ( > 2) dilaton tadpole or cosmological constant in uncompactified 

heterotic string theory. The general analysis of ref. [13] shows that the ampli- 

tudes under consideration may in general be expressed as a total derivative in 

the moduli space. But as we have seen, this is not enough to show the vanishing 

of the corresponding amplitude. One may try to study the behaviour of the total 

derivative terms and try to show they vanish. Another alternative is to try to use 

general factorization properties which must be satisfied by the amplitude at the 

boundary of the moduli space, and try to see how this constrains the amplitude 

under consideration. This approach was pursued in ref. [lo] (see also [17]) to 

show the vanishing of the cosmological constant in heterotic string theory. But 
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this approach presupposes a possible choice of basis of the Beltrami differentials 

which makes the amplitude manifestly modular invariant, and factorize only on 

the physical states of the theory. It is not quite clear whether such a choice is 

possible in actual practice. One might also try to bypass the integration over the 

supermoduli by postulating a suitable ansatz for screening the background ghost 

charge, which gives sensible answers for all the amplitudes, consistent with the 

symmetry properties of the theory. In ref. [l2] we proposed an ansatz for screen- 

ing the background ghost charge which ensures the vanishing of all amplitudes 

with three or less external legs, but a derivation of the ansatz from first princi- 

ples by integrating over the supermoduli is still lacking. Similar ansatz has also 

been discussed in refs.[ll,l5] F inally there are general arguments for the non- 

renormalization of the superpotential based on effective four dimensional field 

theory [18]. These arguments are based on the decoupling of the axion at zero 

momentum, which was proved by showing the decoupling of the zero momen- 

tum component of the vertex operator. However as has become clear from the 

calculation of refs. [2, 31, the decoupling of the zero momentum component of a 

scalar vertex operator does not always imply the decoupling of the corresponding 

scalar field at zero momentun, since the integration over the world sheet coor- 

dinates can produce inverse powers of momentum, thus allowing the part of the 

vertex operator linear in momentum to cointribute in the zero momentum limit. 

Whether such a phenomenon actually occurs for the axion vertex operator is not 

known at this stage. 

This paper is organized as follows: In the next section we shall discuss the 

background material needed for later developements in the paper. In section 

three we present the details of the calculation of the two loop dilaton tadpole. We 

also verify that this calculation yields the expected result. Section four contains 

our conclusions and some more discussion of the implication of the results of 

section three to string multiloop calculations in general. Appendix A contains 

some useful formulae describing the behaviour of various functions on a genus 

two surface in the degeneration limit niz 40. 
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2. Background Material 

This section is intended as a review of some of the background material needed 

for later developments in the paper. We shall mainly outline the scheme that we 

adopt following ref. [7,13] for handling the supermoduli and review some of the 

results of ref. [2] that we shall need here concerning the one loop Fayet-Iliopoulos 

D-terms. 

A. INTEGRATION OVER THE SUPERMODULI 

The supermoduli are zero modes of the gravitino that cannot be gauged away, 

(i.e. they provide an obstruction to the superconformal gauge choice ) much like 

the ordinary moduli or the zero modes of the 2d metric. As such, any string 

amplitude will involve an integration over the moduli space as well as the space 

of supermoduli. The latter can be shown to be a complex space of dimension 

2g - 2 for g > 1. As mentioned earlier the practice so far has been to carry 

out the integration over the supermoduli in advance i.e. before the calculation of 

correlation functions. Ultimately, it would be of great interest to have a formalism 

where the supermoduli would be treated more on equal footing to the moduli in 

some super-Riemann [19] surface representation. However the theory of super 

Riemann surfaces is just being developed [20] and although interesting progress 

has been achieved, at this point in time we do not yet possess a practical scheme 

along these directions within which calculations can be carried out. Therefore we 

shall resort here to the more common practice of integrating out the supermoduli 

in advance as we explain next. 

The gravitino (x) couples to the world-sheet string degrees of freedom through 

the term, 

J d2zxTF (24 

in the action, where TF is the total fermionic stress tensor. Integration over the 

supermoduli in string amplitudes has the effect of bringing down factors of TF 

folded with appropriate zero mode wave functions, i.e. brings down (~(“1 (z) ITF) = 
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s d2zx(a)(z)TF(z) where {x (a) (z) : a = 1,. . -2g - 2) is an appropriate basis for 

the 3/2 differentials. A convenient choice for this basis could be ~(~1 = 6t2)(z-z,) 

where { za : a = 1, . . -2g - 2) is some apriori arbitrary set of points on the Rie- 

mann surface. In this basis the effect of the supermoduli is to introduce insertions 

of the stress tensor TF at some set of points {za : a = 1,. . -2g - 2). 

An associated complexity is posed by the zero modes of the superconformal 

(/3,~) ghost system. Using an index theorem one can see that on genera g 2 2 /3 

develops 2g - 2 zero modes. The counting here being exactly the same as that for 

the supermoduli. To render correlation functions well defined integration over 

the zero modes of /3 has to be restricted in an appropriate way. Alternatively the 

presence of these zero modes could be thought of as signalling the presence of a 

background ghost charge [7], q back* = 2(1 - g). Correlation functions of charge 

neutral combination of operators can be shown to vanish. Only operators which 

soak up the background charge survive (i.e. operators with a ghost charge that 

adds up to 2g - 2 = -qback* ). In the bosonized representation of ref. [7] where 

the superconfromal ghosts p, 7 are represented by : 

y(z) = e4(f)rj(z), p(z) = e+(“)dE(z), P-2) 

one could insert 2g - 2 factors of the background charge operator e+ to soak 

up the ghost charge. However these operators have to be joined with {TF(z~) : 
a = I,... ,2g - 2) produced by the supermoduli integration in a BRST invariant 

fashion. As was first pointed out in ref. [7], the unique combination of edcza) and 

TF(z,) that does this is given by: 

Y (za) E: e4(za)TF(%a): 

= {QBRST, t(za)} 
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which is nothing but the picture changing operator. In this equation b, c stand 

for the reparametrization ghosts. 

To sum up, the combined effect of the supermoduli and the background 

ghost charge is to introduce a factor of J-J:=;” Y(z,) in any correlation function. 

The above prescription has been rederived from a path integral approach in 

ref. [13]. Also as pointed out in [13] modular invariance gives some restrictions 

on the apriori arbitrary positions za. The point here is that the space of moduli 

in general contains orbifold points which correspond to Riemann surfaces that 

possess a discrete group of automorphisms. Modular invariance would require 

the positions of Y(za) on these surfaces to be left fixed or permuted among 

themselves under the action of the automorphism. More specific discussion of 

this will be given in the next section. 

At this point we can write down the form of the correlator for any set of 

vertex operators with no net ghost charge. In heterotic string theories this is 

given by: 

(V(Zl> - - - v(w)) 

39-3 

= / 3fj3[dmidrrrij /- [ DXDtiDroDPDrDbD6DcDE]ewS n {(q~~b)(~~~6)}~(zO) 
i=l i=l 

29-2 

n y(za) fi v(G)t 
a=1 i=l 

where 5’ is the string action with x set to zero. Here Xj‘ and T,P (1 5 ,u 5 4) de- 

note the free bosonic fields and their right-handed fermionic partners associated 

with the four flat directions. {(pi} denote the set of all the other fields associ- 

ated with the internal degrees of freedom. For example, for the heterotic string 

compactified on Calabi-Yau manifolds or orbifolds,{&} include the six bosonic 

and the right-handed fermionic fields associated with the compact dimensions, 

as well as the thirty two left-handed fermions responsible for generating gauge 
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group. If we use a more general superconformal field theory to replace the in- 

ternal dimensions, the set {(pi} would represent the variables of the conformal 

field theory. mi,i = 1,m.s 3g - 3 stand for an appropriate set of moduli of the 

Riemann surface and { r]i : j = 1,. . . ,3g - 3) are the Beltrami differentials dual 

to { dmj}, satisfying 

arlj %)i o -s-c. 
&Y&i &Tbj 

P-5) 

(vjlb) = J d2wVj(w)b( -) w are inserted to absorb the zero modes of the b, c ghost 

system. Similarily the operator <(zo) h as b een inserted to soak up the zero mode 

of the &field. 

It is clear from eqs (2.3) and (2.4) that to effectively calculate correlation 

functions we have to deal with correlators involving superconformal ghosts of the 

form (nr-+l’ E(Zi) ny=, q(Yj) nk eq*d(zk))g with xk qk = 2g-2, where 6 denotes 

the spin structure. An expression for this correlator was derived in ref. [13]. Here 

we shall only quote the answer refering the reader to [13] for its derivation: 

n+l 
( n t(G) fi rl(Yj) n eqk4("%5 

i=l j=l k 

j&<it E(zi, W) nj<j' E(Yj, Yj,) 
ni,j E(zi, Yj) nk<l E(Zk,ZIJqkq’ IIk(a(zk>)2qk 

In the above E(z, y) is the prime form defined by [21] 

44 cs," 4 
E(Z9y) = h[a](z)h[a](y)' 

(2.6) 

P-7) 

where wi,a’ = 1, . . . g are the canonical abelian differentials on the Riemann sur- 

face. CL! denotes an odd spin structure and h[a] is a holomorphic half differential 
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associated with the spin structure CII. & is the Riemann class characterizing the 

divisor of zeroes of the g-function. Furthermore, for each point x on the Riemann 

surface we have defined a vector 3, jc’ = J;O J, where PO is a fixed base point. 

a(z) is a g/2 differential representing the background charge in the theory and 

carries the conformal anomaly. Since ultimately we will be working with multi- 

plets of matter and ghost fields with no net conformal anomaly, only ratios of CT 

will appear in any of our final expressions. For those one could use, 

+) _ ‘C2’- Ci$i + A) ’ E(W,pi) 
44 rI 

‘(‘- xi& + A) i=l E(z,Pi) 
P-8) 

where {pi} is an arbitrary set of points. It is not difficult to verify that (2.8) is 

independent of the pi’s. Finally .Zi is an overall normalization factor given by, 

where ui and v are arbitrary points on the Riemann surface. 

Also useful for our analysis will be a general correlation function involving 

the reparametrization ghost fields [ 22-251: 

s 

39-3 
DbDceeS (‘pc) ~ b(zi) = z;‘fl i [ 1 f (C $-3A) r]: E(zi, zj) n(o(G))3(g-1) 

i=l 2 z i i<j 

s (2.10) 

In our actual calculations below it turns out that we only need the above 

formulae only on genus two Riemann surfaces in the limit of degeneration* into 

two genus one surfaces as shown in Fig.1. In this limit all of the above formulae 

become much more explicit. For convenience and later reference we list all the 

expressions describing the degeneration of various quantities in an appendix. 

* The problem of degeneration of Riemann surfaces in general in connection with string 
theory has been analysed by several authors [26-29, 23, 301. For a mathematical treatment 
see [21]. 
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At this point let us note that (2.6) h as ‘unphysical poles’ at the zeroes of 

IIj ‘[sl(Ci+j Zi - xi cj + xk q&k - 2&). Since these poles play a major role 

in our calculation, we shall give a physical interpretation of these ‘unphysical’ 

poles: In the presence of the operators ((xi) , q(yj) and eqk&tzk) the field 7 may 

develop singularities of the form: 

7(Z) - (Z - Xi)-l as 2 + Xi 

- tz - Yj) as .Z --) Yj (2.11) 

- (% - %k)-qk as % --) %k 

We shall now show that 7(z) develops a zero mode in the presence of these singu- 

larities whenever n, 19 [ 6]( CiZe Zi - xi gj + xk QkZtk - 2ii) vanishes, and hence 

the path integral diverges. A zero mode of 7(z) corresponds to an antianalytic 

-f differential with the singularities given in (2.11). There is however one sub- 

tlety: Since one of the c(zi) ‘s must be used to absorb the zero mode of t, 7(z) can 

develop poles only near n of the n+ 1 zi’s. Let us for the time being use [(xn+r) 

to absorb the 6 zero mode. We then can write down the following function as a 

zero mode of 7(z): 

IlfiT” E(z7 pl) lYI~=l E(z, Yi) 

7o(z) -IIk(E(z, zk))qk lJ:z: E(Z, Xi) 

(2.12) 

where Pi,... Pzg-2 and Qe are some arbitrary points on the Riemann surface. 

(2.12) has the right singularities except for an extra pole at Qe coming from the 

zero of 29(--Z+ Cf!!$, $l+ Zn + Qo - L). Thus in order for (2.12) to represent 

a zero mode of 7 the numerator must vanish at z = Qe, i.e. ti[s](ck q&k + 

Crl-1 Zi-CyI-1 y’i-2L) must vanish. Using the other E(zi)‘s to absorb the c zero 
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mode we see that 7 has a zero mode whenever ITj fi[6](ck q$& + cy’i i=l3c’; - 

xi”=, y’i - 2ii) vanishes, as advertised above. 

We should remind the reader at this point that these unphysical poles also 

appear in the correlator of ghost spin fields on genus one Riemann surface. For ex- 

ample (S,+(zr)Sgf(z2)S;(wr)S;(w2))6 is proportional to (6[S](Z1+z2;w1-wa))-1 

[31,32]. However as we showed in ref. [32] th ese poles are absent in the physical 

amplitudes. We should also note that in any correlator involving /?(= e-480 

and 7(= e4q), the arguments of ,O and 7 drop out of the product of 19 functions 

determining the positions of the unphysical poles. Thus the fields ,S and 7 do not 

have any unphysical poles. This, in turn, implies that the BRST current also 

does not have any unphysical poles, since it can be constructed entirely in terms 

of ,B and 7 without explicit reference to the fields t,q, and 4. 
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B. D-TADPOLE AT ONE LOOP 

We next turn our attention to some of the results of ref. [2] that we shall need 

here, pertaining to the one loop string calculation of Fayet-Iliopoulos D-terms. 

The basic observation that we will utilize is the fact that the coefficients c(“) of 

the one loop Fayet-Iliopoulos D-terms in any arbitrary compactification which 

preserves (2,0) world-sheet superconformal invariance and tree level space-time 

supersymmetry are given by* 

da) = (-;) / d2+(+/+) (a)), (2.13) 

In the above equation J(Z) is the U(1) current of the N = 2 superconformal alge- 

bra [33], while U(“)(X) is the gauge U( 1) current associated with the a’th abelian 

factor U(“) (1) in the gauge group. For the Spin(32)/& heterotic string theory 

[34] compactified on Calabi-Yau [35] manifolds for instance, U(a)(~) generates 

the U(1) factor of the unbroken SO(26) x U(1) gauge group. The subscript e in 

( )e above denotes a sum over even spin structures in the right-handed sector. 

The contribution of the periodic-periodic sector vanishes due to the zero modes 

of the free right-handed fermions $+, $J”, p= 4,5. It is worth mentioning at this 

point that cc”) in (2.13) b a ove may be interpreted as the expectation value of the 

auxiliary D field, where the vertex operator for the auxiliary DC”) field is simply 

-$J(Z)U(a) (a). 

A particularly useful representation for the correlator in (2.13) is given by: 

(J(z)U(a)(z))e = i(P+(Z)P-(W)U’(S)) (2.14) 

as demonstrated in [2]. In (2.14) P+ and P- are conformal fields of dimension 

(ho) and (O,O) respectively constructed out of the various spin fields in the 

* In writing down (2.13) we have removed the integration over t to take into account the 
translational invariance on the torus. Thus in calculating the correlator we should not 
divide by the volume of the group of translations on the torus. This notation difers from 
that of ref.[2]. 
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theory as follows: 

P+ = s,-i+s,‘s,’ 

P- = s,+$-s,-s, 
(2.15) 

where Sgf = e&+12 are the ghost spin fields, S& are the four dimensional spin 

fields while the operators ,!?* are precisely those fields that appear in the super- 

symmetry charges. In the free case (uncompactified internal space) S* reduces 
to eh$(#‘++2+‘h3) h w ere @  are related to the internal fermions through standard 

bosonization by q!~’ - ei@. Here we shall only need to use the operator product 

of P+ and P- given by 

p+w-(4 - (% : w) (2.16) 

without the need for any explicit representation of S*. 

The correlator in (2.14) can be computed in terms of &functions on any 

arbitrary background. In a given spin strucutre [S] the answer is given by 

(P+(z)P-(w)U(“)(z))s 

= k,L,lt9[6](; - s - A(a+9[G](; - f - B(a+9[6](; - 7 - C(“))6[6](; - 5) 

0 [!I (z - 4 

(2.17) 

where [6] = [g], [$I, [i] and [i] d eno e s in structures (P, P), (P, A), (A, A) and t P 

(A, P) with the corresponding c [J = exp(4kab). In the above k, Ata), B(a), C(“) 

are some parameters (functions of 7) characterizing the details of the model. We 

shall only need the fact that 

A(“) + &) + Cb) = 0 (2.18) 

Summing over spin structures on the torus and using a Riemann theta function 
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identity and (2.18) we finally get: 

c@) = -; / d2T(P+(z)P-(w)U(‘=)(z)) 

= -~/d2rt8[t](-A(1))9[f](Bi~)~~[t](C(D)) 
(2.19) 

which was shown in ref. [2] to be calculable solely in terms of the massless spec- 

trum of the theory. 

Also useful for our analysis will be the correlator, 

/ 
[DXD~D~]~e-S(X~~~~)~+(z)S4+(z)Ss+(z)S-(w)S,-(w)S~(w)U(a)(8) 

+l(~))-“(s(~))-“(~ i (0))“” [I 2 

g9[6](; - y - A(a))9[6](; - T - B(“))6[6](; - y - C(“))(+](; - y))” 

(29 [$I (2 - w))V 
2 

(2.20) 
where we have ignored an overall numerical factor. Eq. (2.20) is derived from 

eq. (2.17) by dividing the latter by the known expressions for [31] 

/ 
[dpdy]sS,-(z)S,+(w)e-S(P~r) 

(Qlb - 4): q(T) 
= 4h(4 - :I (eq!](o))t 

/ 
[DbDc]e-S(byc)b(zo)c(zo) = (~(7))~ 

(2.21) 

(2.22) 

and its complex conjugate. 
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3. Two Loop Dilaton Tadpole 

In this section we shall calculate the two loop dilaton tadpole in models 

where the auxiliary D-fields develop a vacuum expectation value at one loop in 

string perturbation. The analysis may be divided into two parts. First, using 

manipulations similar to those used in ref.[l3], we show that the dilaton tadpole 

may be written as a total derivative in the moduli space. Next we calculate the 

dilaton tadpole by examining the integrand near the boundary of the moduli 

space. In carrying out this analysis we shall not be careful about the overall 

numerical factor. 

We start by writing down the zero momentum vertex operator for the super- 

partner of the dilaton, i.e. the dilatino, in the -$ picture: 

Val -5 = aXp(7r)abS-S~e-f P-1) 

where S- has been defined in sec. 2. From this we can derive an expression for 

the dilatino vertex in the 3 picture, 

=aXr(r,)““[e~aX”(ry)~~~-S~ + a(cce-f%-Sg) + ief#qb2?-Sb 
(3.2) 

+ e$SB t.z(w - z)hTp*(w)2?-(z)] 

In the above, S,, Sb denote four dimensional spin operators of positive and 

negative chiralities. Note that this definition of V; differs from that of ref.[7 ] 

by a total derivative term. We choose not to drop the total derivative term so 

as to ensure that V_P is BRST invariant point by point on the Riemann surface 
a 

before integrating over the location of the vertex: 

[QBRsT,~+(z)] z 
f 

~JBRsT(W)V#)=O (3.3) 

The above definition of VL will prove to be more convenient for our manipulations a 
below. 
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Now we could write down the vertex operator VO for the dilaton field as a 

supersymmetry commutator with the vertex operator for the dilatino in (3.2). 

More precisely, 

(WY)& = 
f 

$(Jp(x)v;(Y)) 

where Jp(x) is the four dimensional space-time supersymmetry current in the 
-- : picture given by, 

For definiteness we shall from now on take p = (+, +) and CY = (-, -) so that 

b’$ = 1. Using eqs.(3.4) and (2.4) the two loop dilaton tadpole can be written 

=, 

b =~+]jd2q6 $/[fj dmidmi][DXD+DpDbD6DcDEDPD7]6 
6 Y i=l 

e-S fi{(Vj I b)(i’ii I WIE(zo){fi Y(za)}Jp(~)V:(y) 
j=l a=1 

(3.6) 

As a function of x the above correlator is periodic after the sum over spin 

structures [6] = [ii it] is performed. Thus we may deform the x contour on the 

Riemann surface and shrink it to a point if (3.6) has no other poles as a function 

of x. However, from eq.(2.6) we can see that the superconformal ghost correlator 

in (3.6) in a spin structure [6] contributes, among other things, to an excess factor 

of 9[6](++ +jj+ cE=, z’, - 2&) in the denominator. Therefore, as a function 

bf x the correlator in (3.6) in spin structure 6 has unphysical poles at the zeroes 

of the function 9[6](-iZ+ fy’+ CE=, z’, - 2i). Let re denote the set of zeroes 

of the function n, r9[6](-2 ‘Z+ $j’+ cf=, z’, - 2A). Then after deforming the x 

contour through these points and shrinking it to a point the expression in (3.6) 
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I 

may be written as, 

AD =-~~+]/d2yj6~/ fi [ dmid%][DXD$DpDbD6DcDEDPD7]s 
6 e rt i=l 

e-S fi{lVj I b)(qj I 6)~~~zO~~fi y(za))J/?(x)v~(Y) 
j=l a=1 

Let 21 be an arbitrary point. If we replace Y(z~) by Y(8i) in eq.(3.7) then 

the correlator (Jp(x)lr_P(y)E(.~)Y(Z~)Y(z2)j h as unphysical poles at the zeroes of 

n6 29[6] (- iS+ $j+ 6 + Z. - 2z). Choosing ,Ei properly we may ensure that none 

of the zeroes of this function coincide with any of the points re. As a consequence 

the contribution to (3.7) with Y (~1) replaced by Y (21) vanishes if the x contour 

is taken around the original points re, i.e. the zeroes of fl, 6[6] (- fZ + iy’ + 

c:=, z’, - 2i). Thus we may express (3.7) as, 

b =-~~,j6]/d2yf~/ fi [ dmidf&][DXD$JDpDbDT;DcDEDPD7]6 
6 e rt i=l 

ees fi{(Vj I b)(‘Tj I @)C(%O)(~(ZI) - Y(~I))Y(~~)J~(x)V~(Y) 
j=l 

(3.8) 
We can now use eq.(2.3) to express Y(Zr) - Y(Ir) as a contour integral of 

the BRST current, namely, 

Y(zl)-Y(&) = f ~JBRsT(~)(E(Z~) - EG4) (34 

a,& 

But since the correlator involving JBR~T(W) is periodic on the Riemann surface, 

the w contour may be deformed on the Riemann surface and shrunk to zero, 

picking up the residues at various poles. The pole at zo does not contribute, 

since the resulting correlator involving [QBRST, t(ze)]([(zr) - t(z”r))Y(zp) does 
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not involve any [ zero mode, and hence would vanish. Had we not subtracted 

the term involving Y(&) as in (3.8), we would have had to worry about the 

contribution of the residue at the pole at zo. Furthermore, BRST invariance of 

Jpk), V;(Y) and Y( z2 ) ensures that there are no poles at w = x, y or ~2. Thus 

the only poles are at the arguments of b in (vi I b). Using [19,7,8] 

[QBRsT,~(z)] = T(z) (3.10) 

and the fact that, 

&S = J d2wgi(w)T(w) 
i 

(3.11) 

for mi a set of complex moduli and vi a basis of Beltrami differentials satisfying 

eq.(2.5), we may express eq.(3.8) as, 

AD = 
/ 

[fi dmidm;] 2 &(&ZZBi) 
i=l i=l i 

where, 

(3.12) 

-Bi = - T C ~[6] / d2yf 2 [ /[DXDt,bDpDbD6DcDifD/3Dq]~ems 
e *c 

{ fJ (Vj 1 b) fi(Vj 1 @}[(~I)~(%I)Y(z~)JB(~)V~(I/)] 
j#i,j=l j=l 

(3.13) 

where we have set zo = .Zr since the expression is independent of so. Gij is a 

suitable metric in the moduli space. 

This shows that the dilaton one point function may be expressed as a total 

derivative in the moduli space. If the field Bi defined in eq.(3.13) is a globally 

defined vector field in the moduli space, (this requirement constrains the choice 

of points ~1 and ~2, as we shall see later) the contribution to the dilaton tadpole 

comes solely from the boundary of the moduli space. In particular, we shall 
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parametrize the space of moduli by the period matrix Rij (1 5 i 2 j 5 2) and 

consider the boundary nr2 = 0. In this limit the genus two surface degenerates 

into two genus one surfaces as depicted in Fig.l(a). Near the boundary, the space 

of moduli may be characterized by three complex parameters nrr - 71, h222 = r2 

and nr2 = t. 71 and 72 may be interpreted as the Teichmuller parameters of the 

tori Tr and 2’2 respectively. As we shall see below, at the boundary nr2 = 0 

the contribution from each torus turns out to be proportional to the D-tadpole 

calculated at the one loop order [2]. Thus the net contribution to the two loop 

dilaton tadpole is given by the square of the D-tadpole, as expected from the low 

energy effective lagrangian considerations. 

To see how this works in detail, we have to analyse the behaviour of d=Bt, 

defined in eq.(3.13), near the boundary of nr2 - t + 0. Since nr2 is a complex 

parameter, the boundary n 12 = 0 is a manifold of real codimension two, and 

hence we would not get any contribution from this boundary unless the integrand 

becomes singular at the boundary. We can determine what sort of singularity 

is needed for a non-zero contribution by noting that the part of the measure 

involving t near the boundary is just dtdf. Let us define the real variables (r, 19) 

through, 

(3.14) 

Then AD is given by an integral of the form,* 

AD = lim 
a+0 J hE-$(t,t)) (3.15) 

ItI& 

where F is obtained from Bt by integrating over 71 and 72. Eq.(3.15) may be 

* In actual practice, when a genus two surface degenerates into two tori, there is a symmetry 
t -+ -t, and so we should only integrate over the upper half t plane. Alternatively, we 
can integrate over the whole t plane and divide the final result by two. 
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rewritten by doing an integration by parts as, 

2* 

AD = lim a+O J de(fF(t, q) Ir=a (3.16) 
0 

So in order to get a non-zero contribution in the a + 0 limit, F(t,f) should 

diverge as i as t + 0. As we shall see shortly, F(t,f) calculated from Bt defined 

in eq.(3.13) d oes indeed diverge in this way. 

Let 71, 5~. and qt be the Beltrami differentials associated with the moduli ~1, 

72 and t respectively. From eqs.(3.12) and (3.13) we see that the final contribution 

to the dilaton tadpole in (3.12) after doing the t integration is given by eq.(3.16) 

with, 

F(t,f) = lim (-i) 
z;-+za J a 

d2yd2r1d2r2(2- 
az2 

z2,4 + H(G) (3.17) 

where, 

H(t, f) = - J d2 yd2qd2r2 c c e[6] f 2 J[DXD$DpDbDii DcDEDfiD+ 
6 e ft 

e-%1 1 bh2 I b)(ql I7;>(+72 1 E)(qt 16) 
E(~1)~(z1)e4(z2)TFmatter(z2)Jp(S)VP(Y) 

2 

(3.18) 

and, 

G(z2, 2;) = - c c E[c~] f 2 /[DXD$DpDbD6DcDzD/3D+j 
6 e rt 

e-%1 1 bh2 I b)(ql 1 Q(q2 1 &)(vt 15) 
tWE(zMz2)e 2"(zi)b(z;).7p(z)v;(y) 

(3.19) 

where we have used eq.(2.3). N o t ice that we have thrown away terms for which 

the total power of e 4~ does not add up to 2, since these terms will vanish by 
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ghost number conservation. By the same token, we may, at this stage, ignore the 

c3(c(e2$-Sp) t erm from V_P in eq.(3.2). H owever, it was crucial to include such 

a term in V_P to start with’in order to ensure that one could go from eq.(3.6) 

to eq.(3.12) before integrating over y. The necessity for doing this will become 

clear later. 

We shall show later that the contribution to H at the boundary t = 0 van- 

ishes, so let us concentrate on the contribution from G(zg, z2/). The first step in 

calculating F from eq.(3.17-3.19). is to find the number of unphysical poles and 

their positions re. As mentioned earlier, these poles occur at the zeroes of the 

function, 

f(X) = nSjs](-iZ+ i$+ 2 z’, - 2A) 
6 a=1 

(3.20) 

in the x plane. To find their number, note that if we translate x along any 

of the homology cycles, ti[S] (- $5 + $J + Ci=, z’, - 2&) gets transformed up 

to a multiplicative factor into a theta function of the same argument but of a 

different spin structure 6. Since, however, n, in (3.20) involves product over all 

spin structures, f(x) just picks up a multilicative factor under translation. More 

specifically, 

f(x) + f(x) under translation along Ak cycle, 

+ exp[22g-‘(-i%flkr, + 27ri(i(f- 2) + 21 - $4 + 24 - 2ii)k}]f(x) 

under translations along Bk cycle 

(3.21) 

where g(= 2) is the genus of the Riemann surface. From this it is straightforward 

to calculate the number of zeroes of f(x) using Green’s theorem [21]. This number 

turns out to be, 

22g-2g = 8 for g = 2 (3.22) 

The next task is to locate the positions of these zeroes. Since we shall be 

interested in the behavior of (3.19) near the boundary of the moduli space (nr2 = 
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0), it is sufficient to study the positions of the unphysical poles in this limit. As 

mentioned before, in this limit, the genus two surface breaks up into two tori 

Tr and T2 connected by a thin tube, the axis of the tube meeting the torus Ti 

at a point pr and T2 at ~2. The radius of the tube and the twist angle may be 

identified with the variables r and 6 introduced in eq.(3.14). We shall choose the 

points zr and z2 to lie on the tori Tr and T2 respectively in this limit. The point 

Zr will be taken to lie on the torus 2’2. Also, for the time being, we shall take 

the point y on the torus 7’1. Ultimately we are to integrate over y over the whole 

Riemann surface, and hence must also include regions of integration where y is 

on T2. We shall see later that the contribution to G(z2, zi) from the region where 

y lies on the torus T2 may be brought into the same form as the contribution 

when y lies on the torus 7’1 by suitable manipulation. 

We are now ready to evaluate the dilaton tadpole through eqs.(3.16)-(3.19). 

We start with the correlator of the superconformal ghosts appearing in eq.(3.19). 

In a given spin structure 6 the latter can be written down using eq.(2.6). The 

answer is given by, 

qz1, qqx, 4)(JqY, 4) i QCX) 
JqZl, Z2)Jqh Z2)JqY, 4 4Y)(+a>>4 

(3.23) 

The unphysical poles come from the zeroes of the first theta-function in the 

denominator. If x lies on the torus Tr in the t + 0 limit, this theta function 

decomposes as, 

19 (3.24) 

where [t:] and [::I d enote spin structures on the tori 7’1 and 2’2 respectively. 
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Note that the position of the zero of (3.24) as a function of x does not depend 

on the spin structure [::I in this limit. Depending on the precise location of 

the position of the points zr and y relative to the point pl only one of the four 

functions r9 [ii] (zr + +y - fZ - pr I rr) (f or f our different spin structures) has a 

zero in the fundamental region of integration in the x plane. Since the zero is 

repeated four times in n, 29[6]($g- +Z- Zr - z’s + 2Zi - A) due to four different 

spin structures [::I on T2, this accounts for four of the eight zeroes of the function 

predicted from Green’s theorem. 

It is easy to see, however, that the residue of (3.23) at each of these poles 

vanishes identically. To see this let us note that the g-function in the numerator 

decomposes in the t + 0 limit as, 

19 (3.25) 

This function has zeroes precisely at the same points as those of the function 

(3.24). Thus th e residues of the poles of (3.23) at these points vanish identically. 

Next we look for the remaining four zeroes of the function & r9[6]($j’ - 

~z-&-z2+2zl;- A). They happen to lie on the torus 2’2. To see this let 

us take x to lie on the torus 2’2 and note that in the t + 0 limit the function 

9[6]($- +Z - z’r - & + 22. - A) decomposes as, 

19 [ 1 i: (zl + + - $1 1 rl)g [tj (-+ + 24 - ~2 - ip2 I 72) (3.26) 

Now the position of the zero is independent of the spin structure [::I. Again, 

depending on the positions of z2 and zi relative to ~2, only one of the four 

functions 29 [ii] (-ix + 2 zi - z2 - 3~2 I 72) will have a zero. This contributes four 

zeroes in & r9[6](+y’- z - ’ Z Zr - Z2 + 22’,’ - A), due to four different spin structures 

[::I. If [iz] denotes the spin structure for which 6 [!:I (-ix + 22,’ - z2 - $p2 I 72) 
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has a zero, then the position of x at this zero is given by, 

1 1 
-2x = -22; + z2 - i&r2 - 82 + zp2 (3.27) 

where r2 is the Teichmuller parameter for the torus 2’2. The residue of this pole 

in the t * 0 limit takes the form, 

r1h)rl(r2) 

“[ !] (32; - 222 - p2 1 72) 

t9 [;:I ($Y - +Pl I n)fi rf] (42; - 222 - 2p2 1 r2) 

29 [g] (42; - 2z2 - 2p2 I r2P[il (Y - PI I 71)) ’ (@I cz; _ p2 1 r2)j3 

(3.28) 

G[k](z2 -p2 172) tQ 

where we have also used the fact that (2,) 3 factorizes to q(rr)q(r2) in the t -+ 0 

limit. 

At this point we see that all dependence on the spurious points zr and 51 

has dropped out from eq.(3.28). A s can be seen from eq.(3.19), the correlator 

involving the other fields X, $J, cp, b, c, 6 and E do not have any dependence on 

zr and HI, and hence the final expression for the dilaton tadpole is completely 

independent of these points. The story, however, is different for the point z2 

(and zi, which needs to be set equal to z2 at the end of the calculation). (3.28) 

certainly depends on z~(z;). There is a dependence on zi from the correlator 

involving the b fields, since (3.19) involves an explicit factor of b(zi). There is 

also a dependence on zq(zi) coming from the correlator involving Jp(x), since the 

correlator has to be evaluated at a value of x given in eq.(3.27), which depends 

on z2 and zi. As we shall see, even after combining these results together, and 

setting z2/ = z2, the final expression has explicit dependence on ~2. Hence we 

must use some guideline to determine the position of the point zz. These have 

already been discussed in ref. [13], and are as follows, 
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i) The positions of the points zi must be independent of the moduli {mi}. 

This was shown to be a necessary condition for the validity of eq.(2.4). The 

implementation of this condition of course requires assigning a definite metric 

on the surface for a fixed point in the Teichmuller space,i.e. a choice of gauge. 

(Otherwise we can always shift the position of the points zi on the surface by 

a reparametrization of the surface, changing the metric in this process). The 

choice of metric is restricted by the second condition: 

ii) In order that (3.12) contributes only from the boundary of the moduli 

space, Bj defined in eq.(3.13) must be a globally defined vector field in the 

moduli space. Since the expression involves correlators of the fields at the points 

zi, a necessary condition is that the points zi are either left fixed, or permuted 

among themselves under the global diffeomorphism which generates the modular 

transformation for the specific choice of metric. More specifically, if we consider 

an orbifold point in the moduli space (a point in the Teichmuller space left fixed 

by a subgroup of modular transformations), the metric associated with this point 

is invariant under a global diffeomorphism. This diffeomorphism must leave the 

positions of the points zr and z2 fixed. 

Since the above condition has to be satisfied for all possible modular trans- 

formations, it is not clear if there is a global obstruction to such a choice. What 

we shall show is that if such a choice is possible at all, the nodes pr and p2 must 

approach the points zr and z2 respectively in the degeneration limit. For defi- 

niteness, let us discuss the location of ~2, the location of zr may be found in the 

same way. We choose the reference metric in such a way that it reduces to the 

standard form eP( u$“) I du + r2dv I2 on the torus 7’2 in the t + 0 limit, where the 

torus is parametrized by 0 5 u 5 1, 0 5 v 5 1, and p is a conformal factor. In 

the t + 0 limit, a subgroup of the full modular group on the genus two surface 

is the modular group of the torus T2 with a marked point ~2. Taking the origin 

as the point ~2, these transformations are generated by u --+ u + v, v -+ v, and 

u + v, v + -u. The only point on the torus which is left invariant under these 

operations is the point ~2. Thus for consistency, we must set the point z~(z;) 
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at pp. Since individual terms are not well-defined in the zz(zi) --) p2 limit, we 

shall carry out the computation keeping zz(z,J away from ~2. At the end of the 

calculation we shall first set z2 = zi, and then take the limit z2 + ~2. As we 

shall see, the limit is finite and well defined. Also, at the intermediate stages of 

calculation we may set z2 and zi to be equal to p2 in terms which are finite in 

this limit. 

We now can put together all other factors that appear in expression (3.19) 

in the t + 0 limit. The integration over the ghost fields 6, E produces the anti- 

holomorphic ghost determinant, which decomposes into two ghost determinants 

on 2’1 and T2, together with a factor of EU2[26-29,231, i.e. 

i=l 
- - 

- fm2(5+1))2(rl(r2))2 

(3.29) 

where q(r) is the deDekind 7 function. The integration over the fields b and c 

gives a correlator of the form[23], 

,lFo J DbDce-S(b9c)(vl I b)(r/2 I b)b(zl) 

- M71))2w21)2 

W[$] (0 I r2N2 

cS[$](;--p2 1 m))2t-’ 
2 

(3.30) 

In deriving (3.30) we have set zi = 

singular. 

Let us now turn our attention 

P2 

to 

whenever the limit zi + pa is not zero or 

the integral over the bosons, the Lorentz 

fermions, and the gauge fermions. The relevant correlator appearing in (3.19) is, 

J DXDt,bD~e-S~+(x)Sp(x),i?-(y)SQ(y)~X~(y)i3Xv(y) (3.31) 

The correlator (dX@aXV) on the torus Tr gives a factor proportional to &. 
1 

The leading t behaviour of the rest of the correlator may be obtained by using 
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the factorization theorem,[29] 

(Al(zdA4z2)) - ~~‘~(zI)~(PI))T~ ($+(p2)Az(z2))T2th@~ 
4 

(3.32) 

where AI and Az(z2) are any two local operators on the tori Tr and T2 

respectively. ( )T~ denotes correlator calculated on the torus Tie The sum over C$ 

runs over all the conformal fields in the theory with (h4, FL,+) being the conformal 

dimension of the field 4. In our problem, the relevant operator on the torus Tl 

is S-(y)SO(y) and the operator Az(z2) on the torus T2 is $+(x)Sp(x), where 

CY = (--) and p = (++) in the four dimensional helicity basis. Then the field 

q5(pl) which contributes to the most singular part in (3.32) in the t + 0 limit 

is @-(PI)~$(PI)~~(PI) of d’ lmension (i, 0). The corresponding net contribution 

from the torus Tl may be identified to (P-(y)P+(pr))~~,(with P* as defined in 

sec.2) if we note that the rr dependent contribution from (3.28) may be identified 

to (s,+(Y)s,-(Pl)h- Using the same manipulations as in ref.[2] which led to 

eq.(2.14), (P-(y)P+(pl)) may be shown to be equal to (J(y)),. Since J(y) is 

an operator of conformal dimension (l,O), (Im r)2(J(y))e ? f(r,r) transforms 

to T-‘f(r, 7) under the modular transformation r + -$, and remains invariant 

under r + r + 1.” On the other hand, using manipulations similar to those in 

ref. [2], we may relate (P-(y)P+(pl)) to ((I)),,, where ((I)),, denotes the 

contribution to the partition function from the interacting fields & with periodic 

boundary condition on the right-handed fermions along both cycles of the torus. 

We do not integrate over the free fields XI”, $+ or the ghost fields in calculating 

0 0 I PP. This, in turn, may be used to show that f(r,F) receives contribution 

only from the Lpt = $ (Lpt = 0) states, and hence is independent of r. In order 

to determine the 7 dependence of f(r,T), we may compute the contribution to 

(( 0 I PP from the Lo int = i,Eint = 0, and LFt = 3 Lint = 1 states explicitly. 8’ 
There are two states at the Lpt = 0 level, those created by the operators g+ and 

* The fact that (J(z))~ N Mw2(w)pp transforms as a modular form of weight -1 has 
been shown by Schellekens and Warner[37]. 
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,$-. They give equal and opposite contribution to ((I)).,. The contribution 

from the Let = 1 states, on the other hand, may be shown to be equal to 

Ci n;hi, where Iti is the number of massless fermions carrying helicity hi in the 

four dimensional theory at tree level. Since a fermion and its CPT conjugate 

state always carry opposite helicities, this sum vanishes identically. Thus the 

leading contribution to f(r, S) in the Im r --) 00 limit comes from the zFt = 2 

states, which, in turn, implies that f(r,?) is bounded by e-2K1m ’ as Im r + co. 

Putting all the facts together, we see that f is an anti-holomorphic function 

of r in the upper half plane, vanishes in the limit Im r + 00, and is a modular 

form of weight -1. This, in turn, shows that f vanishes on the real axis [21]. 

Such a function can easily be seen to vanish identically using complex function 

theory. 

The next to leading contribution comes from operators r$ of dimension (I, 1) 

of the form, 

(3.33) 

where U(“) (z) is the dimension (0,l) conformal field associated with the a’th 

U(1) gauge group! Thus the net contribution from the internal bosonic and the 

fermionic determinant in the spin structure [6] = [6r, 621 is given by, 

(3.34) 

t One could try to construct other dimension ($,l) operators by combining the product 
SiSt with some internal field 3 of dimension (i,l), which is not of the form S+lJ(“l. It 
will turn out that when we take the z2 3 p2 limit at the end, only operators r$t(z)(r$(z)) 
which have leading singularity of the form (Z-W)- EM near S+(w) (S- (w)) have non- 
vanishing contribution to G(z2, z2/) (See eq.(3.36), (3.39) and (3.40)). From dimensional 
counting we see that M(w) above is an operator of dimension (O,l), hence it must be a 
linear combination of the gauge currents Uf”) (z). It follows from this that any operator C$ 
of dimension (5, 1) may be written as a linear combination of S+U(“l, plus an operator 
which does not have (z - ,)-a singularity near s-(w). Thus the final contribution to 
the dilaton tadpole comes only from the operators displayed in eq.(3.33). 
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where ( ) si is defined as, 

(n Vk)si = / [DXD$Dp]6; e-s(x9rlr*p) n Vk (3.35) 
k k 

on the i’th torus. Using the results of sec.2 we may write down the answer for 

this correlator in the form, 

-- 
11 =t%fk(rl)rj(rl)-3v(r1) 2(29’ 

H 
f (0 1 rl))ik(r2)*k)q(r2)2(ti’[i] (0 I ,))a 
2 2 

fi[b](ly - ip, - Ala) 2 2 I ~~)~[JI](‘Y - 1~~ - Bta)(rl) I 71) 2 2 

8[S1](~y - !p~ - Cca)(rl) 2 2 

fi[62](iP~ - ix - Acal 1 r2)9[6a](ip2 - ix - B(“)(r2) 1 r2) 

6(621(iP2 - ix - C(“)(r2) ( r2)(*[62]($2 - ix 1 r2))‘(19 [i] (p2 - x 1 r2))-s 
2 

(3.36) 

We are now ready to put together all the factors given in (3.28-30) and 

(3.36). Let us first examine the contributions from the torus TX. For a given spin 

structure [6r] this contribution is proportional to, 

(Im rl)-‘K(rl)rI61]19I61](~y - fpl - Ata) 1 rl)d[bl](iy - ip~ - Bta)(rl) I 71) 

191611C~Y - fP1 - C(“)(n) I r&W+4 - fP1 I rl)ti i (y - pl I rl) [I 2 

(3.37) 

The sum over spin structures may be performed with the help of a Riemann 

theta identity to yield, 

-2(Im rr)-lk(rr)29 (Ata) I r1)0 (da)(q) I rl)lj) [i] (C(“)(n) 
P 

I 71) 
(3.38) 
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using eq.(2.18). Th e contribution from the torus T2, on the other hand, comes 

from one specific spin structure [iz] as the residue of the pole at -fx = -22,’ + 

z2 - &2r2 - i2 + ip2. The final contribution, however, is independent of ii2 and 

62, and is, 

k(e)9 [i] (A(“)(r2) ) n)8 [i] (B(“)(n) 1 n)g [i] (Cta)(r2) I 72) 
2 2 2 

24 - z2 - p2 I r2))"" [I] (324 - 222 - p2 1 72) 
(3.39) 

where we have set z2 = zi = p2 wherever permitted. 

This gives, 

a 
lim lim (2- - 

zz-+p2z;-4z2 dZ2 
+ ,azl)c( I z2,4 

- (Im rr)-‘i;-(rr)k(r2)t=’ 

c [1 

19; 

a 

L (Ata) ( +J i (Bta)(rl) I r&J [!I (C(a)(d I 71) 
2 [I 2 2 

(3.40) 

29 [fj (Aca)(n) 1 r&o] (B(a)(72) 
2 2 

1 r2)d [ !] (C(“)(r2) 1 72) 
2 

The contribution from H(t,f’) defined in eq.(3.18) may be analyzed in the 

same way. It turns out that after summing over spin structures using Riemann 

theta identity, and the result ((I)),, = 0, and taking the limit zr + pl, z2 + 

~2, H (t, Z) does not have the necessary singularity in the t --) 0 limit so as to 

contribute to (3.16). The origin of this may be traced to the fact that the relevant 

part of V+ (Y) in the calculation has a factor of 3X“(y), which must be contracted 

with a aX(z2) coming from TFatter (~2). S ince y and z2 lie on different tori, the 

intermediate operator 4 in eq.(3.32) must carry a factor of c~X or 3X, which is 
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accompanied by a factor of t or F. Thus (3.17) gets contribution only from the 

term involving G(z2, Z.-J. The y integral in (3.17) produces a factor of Im rr. 

Substitution of (3.40) into (3.17) and (3.16) gives the contribution to the dilaton 

tadpole AD from the region of y integration on the torus TI: 

c 
,(a),(a) (3.41) 

a 

up to an overall numerical factor. c(“) has been defined in eq.(2.19). 

Let us now turn to the contribution to AD from the region where y lies on 

the torus T2. We start from the expression of G(z2, zi) defined in eq.(3.19), and 

take zr on the torus Tl and z2 on the torus T2 as before. The first result to 

notice is that for any value of t, G(z~,z~) is independent of the position of the 

point ,Zr [13]. This may be proved by first noting that the positions of the poles 

re are independent of 21, and the residue at any of these points re, considered as 

a function of 21 is periodic, and has at most g - 1 poles. As a result it must be 

independent of 21. Thus we can shift the positions of .Zr without affecting the 

value of G(z2, zi). We shall use this freedom to choose Hr in such a way that if 

in the t + 0 limit y goes over to the torus T2, then the point & goes over to the 

torus Tl. 

Next we write 

I3 
lim (2- - 

z;-+z2 (3Z2 
+ ,azz)c( ? z2,zJ 

(3.42) 

where we have used eq.(2.3) t o express Y (~2) as a BRST contour integral around 

E(zp). We may now deform the BRST contour integral on the Riemann surface, 
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picking up residues at various poles. As before, there is no contribution from the 

points x or y. the contribution from the arguments in b in (qi I b) (i = 1,2) may 

be expressed as, 

-$&~~.‘“‘f 2 J [DXDt,bDpDbDiiDcDEDPD+ 
e rt 

e-S ( fi (rli I b)) (4% I 5>(42 1 @(Vt 15) 
j#i,j=l 

WWE(Z2)Jd4V_P(Y) 

(3.43) 

This contribution vanishes identically, since the number of t’s minus the number 

of r]‘s in a correlator must be equal to unity in order to get a non-zero answer. 

There are two more terms, coming from the residues of the poles at zr and 21 

respectively. The contribution from the residue of the pole at zr is given by, 

e-% 1 b)(m 1 b)(ql 1 Z)(Q 1 6)(qt 16) 
~(Hl)J(Z2)Y(Zl)JP(X)V~(Y) 

The residue at the pole at 21 is given by eq.(3.44) with zr and ,Zr interchanged. 

But by explicit calculation we can see that this term does not have any pole in 

the x plane at the points re, and hence vanishes after the x contour integral. 

Thus we are left with the contribution (3.44). But this expression now has the 

same structure as the original contribution (3.17-19), when y and zr lie on the 

torus TI and 51 and z2 lie on the torus T2; except that the roles of the tori TI and 

T2, as well as the points zr and z2 have been interchanged here. In this form the 

contribution to the dilaton tadpole from the region of integration where y lies on 

the torus T2 is also given by eq.(3.41). Note that since during the manipulations 

described above, the deformation of the BRST contour is carried out for a fixed 
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value of y, it is important that V+(y) is BRST invariant before integrating over 

Y- 

In carrying out the above analysis we have investigated the integration region 

where y lies on either the torus Tl or the torus T2. The formulae we have used 

in our analysis may need to be modified when y is within a distance of order 

] t ]i from the nodes. One might then ask if the contribution from this region 

of integration should be investigated separately. Since (3.40) does not have any 

singularity in the y + pl limit, one might expect the contribution from the 

region ] y - pl I-1 t 1; to b e suppressed by powers of t due to the smallness of 

the integration volume. A more careful study of F’ in the region ] y - pl I-1 t Jf 

using the degeneration formulae of ref.[23] verifies this result. 

To sum up, the final answer for the dilaton tadpole at two loops is given by eq. 

(X41), where c(“) are the coefficients of the Fayet-Iliopoulos D-terms generated 

at one loop. 
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4. Conclusion 

In this paper we have calculated the two loop dilaton tadpole in compacti- 

fied heterotic string theories with unbroken tree level space-time supersymmetry. 

In some of these theories, one loop radiative corrections may generate a Fayet- 

Iliopoulos D term. Precisely in these theories we find a non-vanishing contribu- 

tion to the dilaton tadpole at the two loop order. Furthermore, the contribution 

is shown to be proportional to the square of the coefficient of the D term gen- 

erated at the one loop order, as expected from the analysis in the low energy 

effective field theory [l]. 

Besides providing an explicit verification of the effective lagrangian argu- 

ments, our analysis also throws some light on the structure of the general fermionic 

string perturbation theory. One of the major obstacles in developing the fermionic 

string perturbation theory is the integration over the supermoduli. In a recent 

paper Verlinde and Verlinde [13] h ave given a general prescription for carrying 

out integration over the supermoduli. Using their prescription we have shown 

that the two loop dilaton tadpole is a total derivative in the moduli space and 

hence receives contribution only from the boundary terms. The final contribu- 

tion to the dilaton tadpole induced by the Fayet-Iliopoulos D term comes from 

the particular boundary where the genus two surface degenerates into two tori. 

This analysis shows that total derivative terms may not always be ignored. Since 

gauge transformations in string theories generate total derivative terms in the 

moduli space [7,29], this may provide a mechanism for breakdown of some gauge 

symmetries by higher loop corrections in string theory. 

Finally, we should point out that in our analysis we have ignored a global 

issue; which is that there may be an obstruction to choosing the super-Beltrami 

differentials in a way such that they are independent of the moduli, and at the 

same time are either invariant or get transformed into each other under modular 

transformations. In our analysis we proceed by assuming that such a choice is 

possible, and make use of the restrictions imposed by these criteria near the 
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boundary of the moduli space. A global obstruction to such a choice of basis for 

the super-Beltrami differentials may generate new contributions to the dilaton 

tadpole, and provide a new source of breakdown of space-time supersymmetry. 
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Appendix 

Degeneration Formulae 

In this appendix we list the formulae describing the behaviour of various 

functions in the limit of degeneration of the genus two Riemann surface to two 

genus one surfaces (Fig. la). We parametrize the moduli space of genus two 

by the period matrix h2ii, 1 5 i < j 5 2. The degeneration in question is then 

described by t = nr2 + 0. Degeneration formulae for arbitrary genera appear in 

several references, see for instance [21,23,30]. 

Let x E Ti and y E 7’2 be points on the first and second tori respectively. Then 

the degeneration formulae that we need are: 

E(x, y) + t-k ( 8 [$I (x - m)n) 

)( 

29 [g] (P2 - YIQl) 

@[iI (W 6’ ry (0172) > 

E(x,x’) + ( 8 [iI (x - 44 

@[~I (Wl) ) 

i=l j=l 

+29 zf (eXi- 
[ I 

mpl - i(m - n)(l + r))fl 
i=l [I it (nP2-~Yj-~(m--n)(1+7)1 

j=l 

(A-4) 

(A4 

(A-2) 
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wl(slt) -+ 
1 + 0(t) 2 E Tl 

o(t) z IZ T2 

w2(zlt) + 0(t) z E Tl 
1 + 0(t) .z E T2 

(A-5) 

(A-6) 

(A.7) 

(A**) 

where pl, p2 are nodes on Tl, T2 wi are the abelian differentials and r] (7) is the 

deDekind Q function. We should also mention that there is an ambiguity in the 

degeneration of the &function given in (A.4); th e arguments of the &functions on 

the right hand side of this equation may be shifted by integral multiples of 1 and 

71 (or 1 and 72 ). This corresponds to an ambiguity in defining the arguments Zi 

and cof the original G-function. This is the ambiguity in the choice of path from 

the base point Po to the point x in defining d = J:O w’. In physical correlation 

functions, however this ambiguity may be resolved by demanding the correct 

periodicity properties. 
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