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Abstract

The exact spectrum of dyons in a class of N = 4 supersymmetric string theories gives us
information about dyon spectrum in N = 4 supersymmetric gauge theories. This in turn can be
translated into prediction about the BPS spectrum of three string junctions on a configuration
of three parallel D3-branes. We show that this prediction agrees with the known spectrum of
three string junction in different domains in the moduli space separated by walls of marginal
stability.
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We now have a good understanding of the exact spectrum of a class of quarter BPS dyons

in a variety of N = 4 supersymmetric string theories [1–18]. Since by going to the appropriate

region in the moduli space of these string theories and taking a decoupling limit we can recover

N = 4 supersymmetric gauge theories [19, 20], the spectrum of quarter BPS dyons in N = 4

supersymmetric string theories provides us information about the spectrum of quarter BPS

dyons in N = 4 supersymmetric gauge theories. The latter, in turn, can be related to the BPS

spectrum of string junctions on a set of parallel D3 branes [21]. Thus the known dyon spectrum

in N = 4 supersymmetric string theories gives us prediction about the BPS spectrum of string

junctions on a set of parallel D3-branes. Our goal is to verify if this prediction is consistent

with the known properties of string junctions.

We shall work with heterotic string theory on T 4 × T 2 and focus on the four U(1) gauge

fields associated with the components of the metric and 2-form field along the T 2 directions.

The electric charges associated with these gauge fields are the momenta n̂ and n′ and the

fundamental string winding charges −ŵ and −w′ along the two circles of T 2, and the magnetic

charges associated with these gauge fields are the H-monopole charges −Ŵ and −W ′ and the

Kaluza-Klein monopole charges N̂ and N ′ along the same two circles. Following the notations

and conventions of [18] we define the electric and magnetic charge vectors as:

Q =




n̂
n′

ŵ
w′


 , P =




Ŵ
W ′

N̂
N ′


 . (1)

The complex structure and the (complexified) Kahler moduli of the torus T 2 are encoded in a

4 × 4 matrix M satisfying

MT LM = L, MT = M , (2)

where

L =

(
0 I2

I2 0

)
. (3)

Ik is the k × k identity matrix. The other complex modulus relevant for our discussion is the

axion-dilaton modulus τ = a + iS, where a is the field obtained by dualizing the 2-form field

in four dimensions and S = e−2φ, φ being the dilaton field.

The T-duality transformations associated with T 2 are generated by 4 × 4 matrices Ω with

integer entries and satisfying ΩLΩT = L. They act on the charges and the moduli as

Q → (ΩT )−1Q, P → (ΩT )−1P, M → ΩMΩT , τ → τ . (4)
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Thus the combinations

Q2 = QT LQ, P 2 = P T LP, Q · P = QT LP (5)

are T-duality invariant. On the other hand the S-duality transformations are generated by

SL(2, ZZ) matrices

(
â b̂
ĉ d̂

)
with â, b̂, ĉ, d̂ ∈ ZZ, âd̂ − b̂ĉ = 1, and act on the charges and the

moduli as

Q → âQ + b̂P, P → ĉQ + d̂P , τ →
âτ + b̂

ĉτ + d̂
, M → M . (6)

As was reviewed in [18], for all charge vectors (Q, P ) which are related to the charge vectors

Q =




k3

k4

k5

−1


 , P =




l3
l4
l5
0


 , ki, li ∈ ZZ , g.c.d.(l3, l5) = 1 , (7)

by a T-duality transformation, we have a simple formula for the degeneracy (more precisely the

number of bosonic supermultiplets minus the number of fermionic supermultiplets) of quarter

BPS states:

d(Q, P ) = (−1)Q·P+1 g

(
1

2
Q2,

1

2
P 2, Q · P

)
, (8)

where g(m, n, p) are defined as the coefficients of Fourier expansion of a known function 1/Φ̃:

1

Φ̃(ρ̃, σ̃, ṽ)
=

∑

m,n,p∈zz
m≥−1,n≥−1

g(m, n, p) e2πi(meρ+neσ+pev) . (9)

In the particular theory under consideration, Φ̃ is the well known Igusa cusp form of weight

10 [22–25] on the moduli space of genus two Riemann surfaces, parametrized by the period

matrix

(
ρ̃ ṽ
ṽ σ̃

)
[1]. From (8), (9) we see that d(Q, P ) = 0 unless Q2 ≥ −2 and P 2 ≥ −2.

The formula for the degeneracy given above is not complete unless we specify the region

of the moduli space in which the formula is valid. As we vary the asymptotic moduli the

degeneracy can actually jump across walls of marginal stability, – codimension one subspaces

of the moduli space on which the original quarter BPS dyon can decay into a pair of half-BPS

dyons [13, 14, 16, 17, 26, 27]. As has been reviewed in detail in [18], a very useful way to label

a given wall of marginal stability is to specify the relation between the charges of the decay

products and the charges of the original state. In particular the possible decays of a quarter

BPS state with charge (Q, P ) are into half BPS states carrying charges (adQ−abP, cdQ−cbP )
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Figure 1: The domains R and L.

and (−bcQ+abP,−cdQ+adP ) with a, b, c, d ∈ ZZ, ad− bc = 1. For fixed values of the moduli

M , the corresponding wall is either a circle in the τ plane intersecting the real axis at a/c

and b/d, or – for c = 0 or d = 0 – a straight line passing through b/d or a/c. The radii of

the circles and the slopes of the straight lines depend on Q, P and the other moduli M . The

degeneracy formula given in (8), (9) is valid inside two separate domains bounded by walls of

marginal stability. The first domain, called R, is bounded by three different walls, – a straight

line through 0, a circle connecting 0 and 1 and a straight line through 1 (see fig. 1). From the

decay rules given above it is clear that these three domain walls correspond to the decays:

(Q, P ) → (Q, 0)+(0, P ), (Q, P ) → (0,−Q+P )+(Q, Q), (Q, P ) → (P, P )+(Q−P, 0) .

(10)

The other domain L inside which the degeneracy formula is valid is bounded by a straight line

through 0, a circle through −1 to 0 and a straight line through −1. By following the same

rules we see that these walls correspond to the possible decays:

(Q, P ) → (Q, 0)+(0, P ), (Q, P ) → (0, Q+P )+(Q,−Q), (Q, P ) → (−P, P )+(Q+P, 0) .

(11)

Even though the degeneracy formula (8) hold in both domains R and L, there is a subtle

difference between the ways we extract g(m, n, p) from (9) in the two cases. When we are

computing the formula in the domain R, we need to expand 1/Φ̃ in such a way that for a fixed

m, n, the sum over p is bounded from above. On the other hand inside the domain L we have

to expand 1/Φ̃ so that for fixed m, n the sum over p is bounded from below.

We shall first focus on the degeneracy of states with Q2 = P 2 = −2 and later consider

states related to these by S-duality transformation. For this we only need to examine terms in
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1/Φ̃ whose σ̃, ρ̃ dependence is of the form e−2πieρ−2πieσ. The relevant part of 1/Φ̃ is

1

Φ̃
≃ e−2πieρ−2πieσ e−2πiev

(1 − e−2πiev)
2 . (12)

According to the rule given above we need to expand this in power of e−2πiev for calculating the

degeneracy in the domain R. This gives, in the domain R,

d(Q, P ) =

{
0 for Q2 = P 2 = −2, Q · P ≥ 0
j(−1)j−1 for Q2 = P 2 = −2, Q · P = −j, j > 0

. (13)

On the other hand in the domain L we have to expand 1/Φ̃ in powers of e2πiev by expressing

the ṽ dependent factor as e2πiev/(1 − e2πiev)2. This gives, in the domain L,

d(Q, P ) =

{
0 for Q2 = P 2 = −2, Q · P ≤ 0
j(−1)j+1 for Q2 = P 2 = −2, Q · P = j, j > 0

. (14)

Let us now focus on a particular state carrying charge vectors

Q0 =




0
1
0
−1


 , P0 =




−1
1
1
0


 . (15)

This is of the form given in (7), and has

Q2
0 = −2, P 2

0 = −2, Q0 · P0 = −1 . (16)

Thus according to (13), (14), this state will have degeneracy 1 in the domain R and vanishing

degeneracy in the domain L. In other words, the state will cease to exist as we move from the

domain R to the domain L crossing the wall separating the two domains. In the τ plane this

wall is a straight line through 0.

We shall now examine the fate of the state in various other domains. This is done by noting

that the degeneracies in the other domains may be calculated by mapping them to the domain

R using an S-duality transformation and then applying the degeneracy formula (8), (9) in the

domain R [13]. Let us consider a domain R̃ that is mapped to the domain R via an S-duality

transformation matrix

(
â b̂
ĉ d̂

)
. This will map the charge vector (Q0, P0) to (Q′

0, P
′

0) given by

Q′

0 = âQ0 + b̂P0 =




−b̂
â + b̂

b̂
−â


 , P ′

0 = ĉQ0 + d̂P0 =




−d̂
ĉ + d̂

d̂
−ĉ


 . (17)
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Thus d(Q0, P0) in the domain R̃ is equal to d(Q′

0, P
′

0) in the domain R. Although the charge

vectors (Q′

0, P
′

0) do not have the form given in (7), they can be expressed as

Q′

0 = (ΩT )−1Q′′

0, P ′

0 = (ΩT )−1P ′′

0 , (18)

where

Q′′

0 =




0
â2 + âb̂ + b̂2

âĉ + b̂ĉ + b̂d̂
−1


 , P ′′

0 =




−1
âĉ + âd̂ + b̂d̂
ĉ2 + ĉd̂ + d̂2

0


 , ΩT =




â 0 0 −b̂
0 â b̂ 0
0 ĉ d̂ 0
−ĉ 0 0 d̂


 . (19)

Since (Q′′

0, P ′′

0 ) have the form (7), and Ω denotes a T-duality transformation, we conclude

that our degeneracy formula (8), (9) holds for the charge vectors (17). Thus in order to get

non-vanishing d(Q′

0, P
′

0) we must have (Q′

0)
2 ≥ −2, (P ′

0)
2 ≥ −2. Using (17) these conditions

translate to

â2 + b̂2 + âb̂ ≤ 1, ĉ2 + d̂2 + ĉd̂ ≤ 1 . (20)

Since the left hand sides of both equations are positive definite for âd̂ − b̂ĉ = 1, the above

equations give strong constraint on â, b̂, ĉ and d̂. In particular for integer â, b̂, ĉ, d̂ both

bounds must be saturated. Thus we have (Q′

0)
2 = (P ′

0)
2 = −2. Eq.(13) now tells us that

unless Q′

0 · P ′

0 ≤ −1 the degeneracy vanishes in the domain R. This gives rise to one more

inequality

2(âĉ + b̂d̂) + âd̂ + b̂ĉ ≥ 1 . (21)

We can find all integer solutions to (20), (21) subject to the restriction âd̂ − b̂ĉ = 1. Up to an

overall sign that does not affect the mapping between the domains in the τ plane, we get the

following solutions for

(
â b̂
ĉ d̂

)
:

(
1 −1
1 0

)
,

(
1 0
0 1

)
,

(
0 1
−1 1

)
. (22)

This gives the set of all â, b̂, ĉ and d̂ for which d(Q′

0, P
′

0) is non-zero inside R and hence

d(Q0, P0) is non-zero inside R̃. Thus the set of all domains in which d(Q0, P0) is non-zero is

obtained by the image of R (for charge vector (Q′

0, P
′

0)) under an S-duality transformation by

the inverse of

(
â b̂
ĉ d̂

)
. Now one can easily verify that each of the S-duality transformations

given in (22) maps the domain R to itself,1 – this is best seen by noting that each of these

1More precisely, it maps the domain R for the charge vector (Q0, P0) to the domain R for the charge vector
(Q′

0
, P ′

0
).
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transformations permutes the vertices 0, 1 and ∞ of R. Thus any other domain R̃ is mapped

to R via an S-duality transformation outside the set (22), and hence d(Q0, P0) must vanish in

the domain R̃. This leads to the conclusion that d(Q0, P0) vanishes in all domains outside R.

We shall now try to verify this prediction by working near a point in the moduli space

where there is an enhanced SU(3) gauge symmetry. This is achieved by taking the matrix

valued scalar field M to be of the form

M =




4/3 2/3 −1/3 2/3
2/3 4/3 −2/3 1/3
−1/3 −2/3 4/3 −2/3
2/3 1/3 −2/3 4/3


 . (23)

In this case one finds that the BPS mass of a purely electric state vanishes for the charge

vectors

α =




1
−1
−1
0


 , β =




0
1
0
−1


 , γ =




1
0
−1
−1


 . (24)

Indeed the vectors ±α, ±β and ±γ = ±(α+β) are eigenvectors of (M +L) with zero eigenvalue

and satisfy α2 = β2 = γ2 = −1. As a result electrically charged states with these charge vectors

give the six massless electrically charged states which are necessary for getting the full set of

SU(3) gauge fields. If we adjust the moduli M to be slightly away from the one given in (23)

then the SU(3) gauge symmetry is spontaneously broken to U(1)×U(1) and the charged gauge

fields become massive, but remain light compared to the string scale.

Besides the half-BPS massive gauge fields, and the half-BPS dyons related to these by

S-duality transformation, the spontaneously broken SU(3) gauge theory also contains quarter

BPS dyons carrying electric and magnetic charges of the form [21]

Q = pα + qβ, P = rα + sβ, p, q, r, s ∈ ZZ , (25)

in specific domains in the moduli space depending on the values of p, q, r, s. These must

represent some states in the spectrum of quarter BPS dyons in string theory.2 Conversely every

BPS state in string theory, carrying charge vectors of the form (pα + qβ, rα + sβ), becomes

light compared to the string scale in the region of the moduli space we are considering, and

2Note that the gauge theory limit can be taken by adjusting the moduli M and is insensitive to τ = a + iS.
Thus even after taking the gauge theory limit we can explore all the different domains separated by walls of
marginal stability by varying τ .
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hence they must have a realization in gauge theory. In particular since (Q0, P0) defined in (15)

has the form

Q0 = β, P0 = −α , (26)

it must have a realization in SU(3) gauge theory.

A simple realization of quarter BPS dyons in SU(3) gauge theory is as a 3-string junction [28,

29] on a system of three closeby parallel D3-branes [21]. This system has U(1)× spontaneously

broken SU(3) gauge theory as its low energy limit. An (m, n) string ending on a D3-brane

carries an electric charge m and magnetic charge n under the U(1) gauge field living on the

D3-brane. Thus if we have a configuration where an (m1, n1) string ends on the first D3-brane,

an (m2, n2) string ends on the second D3-brane and an (m3, n3) string ends on the third D3-

brane, with the three strings meeting at a 3-point junction, then the system will be said to

carry electric and magnetic charge vectors

Q̃ =




m1

m2

m3


 , P̃ =




n1

n2

n3


 . (27)

Charge conservation at the three string junction requires
∑

i mi and
∑

i ni to vanish. Thus

although the gauge theory on the D3-brane is U(3), the state described above carries only an

SU(3) charge. This allows us to compare a BPS state of the configuration described above with

that of the SU(3) gauge theory that arises as the low energy limit of heteroric string theory

on T 4 × T 2. For this we first need to learn how to translate a charge vector of the type given

in (27) to the one given in (1). We do this by comparing the charges carried by the massive

gauge fields. On the configuration of three D3-branes, the massive gauge fields arise from (1,0)

string stretching from one D3-brane to another. Thus in the convention described above, the

electric charges carried by these gauge fields take the form ±α̃, ±β̃ and ±γ̃ = ±(α̃ + β̃) with

α̃ =




1
−1
0



 , β̃ =




0
1
−1



 , γ̃ =




1
0
−1



 . (28)

On the other hand in heterotic string theory on T 4 × T 2, the SU(3) gauge fields carry electric

charge vectors ±α, ±β and ±γ given in (24). Thus we now have a correspondence between the

charge vectors in the D3-brane system to ones in heterotic string theory for states which are

charged only under the SU(3) subgroups in both theories. In particular a state in the heterotic

string theory carrying charges (pα + qβ, rα + sβ) will correspond to a three string junction
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1

2

3

(0,-1)

(-1,0)

(1,1)

Figure 2: The three string junction containing a (0,−1) string, a (1,1) string and a (−1, 0)
string ending on D3 branes 1, 2 and 3 respectively.

1

3

2

(-1,0)

(1,1)

1
3

2

(0,-1) (-1,0)

(a) (b)

1 3

2

(0,-1)

(1,1)

(c)

Figure 3: Marginally stable three string junctions. In (a) the string ending on the first D3
brane shrinks to zero size, in (b) the string ending on the second D3-brane shrinks to zero size,
and in (c) the string ending on the third D3-brane shrinks to zero size.

carrying charges

Q̃ = pα̃ + qβ̃, P̃ = rα̃ + sβ̃ . (29)

Let us now consider a three string junction in which a (0,−1) string ends on the first

D3-brane, a (1, 1) string ends on the second D3-brane and a (−1, 0) string ends on the third

D3-brane (see fig. 2). This corresponds to the choice

Q̃ =




0
1
−1


 = β̃, P̃ =




−1
1
0


 = −α̃ . (30)

Thus in heterotic string theory on T 4 × T 2, the charge vectors carried by this state will be

(β,−α) = (Q0, P0) with Q0, P0 given in (15).
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We shall now examine the domain in which the three string junction exists and compare

the result with the one obtained from the dyon degeneracy formula in N = 4 supersymmetric

string theory. The 3-string junction can become marginally unstable in one of three ways,

corresponding to shrinking one of the three strings to zero size [21] (see fig.3). Consider first

the case where the (0,−1) string ending on the first D3-brane shrinks to zero size. In this case

the resulting configuration becomes identical to that of a (1,1) string going from the first to

the second brane and a (−1, 0) string going from the first to the third brane. According to our

convention the former has charge vectors

Q̃1 =




−1
1
0



 = P̃ , P̃1 =




−1
1
0



 = P̃ , (31)

whereas the latter has a charge vector

Q̃2 =




1
0
−1



 = Q̃ − P̃ , P̃2 =




0
0
0



 = 0 . (32)

Thus this particular wall of marginal stability corresponds to the decay

(Q̃, P̃ ) → (P̃ , P̃ ) + (Q̃ − P̃ , 0) . (33)

Proceeding this way we see that the second wall of marginal stability, corresponding to shrink-

ing of the (1,1) string ending on the second D3-brane to zero size, induces decay into an (0,−1)

string going from the second to the first brane and a (−1, 0) string going from the second to

the third branes. This gives

(Q̃, P̃ ) → (0, P̃ ) + (Q̃, 0) . (34)

Finally the third wall of marginal stability, corresponding to the shrinking of the (−1, 0) string

ending on the third brane to zero size, induces decay into a (0,−1) string going from the third

to the first brane and a (1, 1) string going from the third to the second brane. This gives

(Q̃, P̃ ) → (0, P̃ − Q̃) + (Q̃, Q̃) . (35)

Eqs.(33), (34) and (35) give the walls of marginal stability bordering the domain in which

the three string junction under consideration exists. From (10) we see that these are precisely

the walls which border the domain R. Thus we see that the particular three string junction

under consideration exists in the domain R, – exactly as predicted by the dyon degeneracy
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formula in string theory. The degeneracy formula in fact goes further and predicts that these

states will have degeneracy 1. This cannot be verified directly using the three string junction

picture since quantization of such a configuration is difficult, but has been verified by working

in the gauge theory description of these states [30–32].

We can also consider a slightly different three string junction in which a (0, 1) string ends

on the first D3-brane, a (1,−1) string ends on the second D3-brane and a (−1, 0) string ends

on the third D3-brane. Following the same procedure as in the previous case one finds that

the corresponding state in heterotic string theory on T 4 × T 2 has Q2 = P 2 = −2, Q · P = 1.

Thus this state exists with degeneracy 1 in the domain L. An analysis identical to the one

described earlier shows that in the heterotic string theory description the state ceases to exist

as we cross any of the walls of marginal stability bordering the domain L. This leads to a

definite prediction for the domain in the moduli space of D3 brane configurations in which the

three string junction exists. This can be verified explicitly in the same way as in the previous

case.

Let us now consider the case of a more general three string junction configuration where an

(m1, n1) string ends on the first D3-brane, an (m2, n2) string ends on the second D3-brane and

an (m3, n3) brane ends on the third D3-brane. If (m1n3 −m3n1) = −1 then this configuration

may be obtained from the one discussed earlier, – containing a (0,−1), (1, 1) and (−1, 0)

strings, – by an S-duality transformation by the matrix

(
−m3 −m1

−n3 −n1

)
. Thus the domain

in which it exists can be determined, – both in the string junction description and in the

description as a dyon in the N = 4 supersymmetric heterotic string theory, – by an S-duality

transformation of the domain in which the configuration of (0,−1), (1, 1) and (−1, 0) string

exists. Our earlier analysis for the latter configuration now implies that the results in the two

descriptions would also agree for the more general configuration involving (m1, n1), (m2, n2)

and (m3, n3) strings as long as (m1n3 − m3n1) = −1. Similarly if (m1n3 − m3n1) = 1 then

we can relate this to the configuration of (0, 1), (1,−1) and (−1, 0) string via an S-duality

transformation

(
−m3 m1

−n3 n1

)
, and the agreement between the results based on dyon spectrum

in string theory and three string junction would follow as a consequence of a similar agreement

for the (0, 1), (1,−1) and (−1, 0) configuration.

What about the case when (m1n3−m3n1) 6= ±1? It is instructive to see what kind of charge

vectors the general (m1, n1), (m2, n2) = (−m1 − m3,−n1 − n3), (m3, n3) string configurtion

corresponds to in heterotic string theory. In the string junction description the charge vectors
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are

Q̃ =




m1

−m1 − m3

m3


 = m1α̃ − m3β̃, P̃ =




n1

−n1 − n3

n3


 = n1α̃ − n3β̃ . (36)

Thus in the heterotic string theory on T 4 × T 2 this would correspond to the charge vectors

Q = m1α − m3β =




m1

−m1 − m3

−m1

m3


 , P = n1α − n3β =




n1

−n1 − n3

−n1

n3


 . (37)

In this case it is easy to see that

g.c.d.(QiPj − QjPi; i, j = 1, 2, 3, 4) = |m1n3 − m3n1| . (38)

For |m1n3 −m3n1| 6= 1 these states are outside the duality orbit of the state (7) [14,18,33,34].

Hence the currently known formula for degeneracy of dyons in N = 4 supersymmtric string

theories do not have any information about the spectrum of these states. Indeed, since one

can now construct a non-premitive lattice vector from an integer linear combination of Q

and P , even the structure of the marginal stability walls change, – in the decay (Q, P ) into

(adQ − abP, cdQ − cbP ) and (−bcQ + abP,−cdQ + adP ) the coefficient a, b, c, d need not all

be integers any more.

Different aspects of the relation between dyon spectrum in supersymmetric gauge theories

and string theories have been discussed in [35].
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