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The phenomenon of glass transition *
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Abstract. Principal features of glass transition phenomenon are summarised.
Various theoretical approaches such as free volume, entropy, energy surface, etc.,
have been briefly discussed.

1. Introduction

Many materials when cooled from their molten state do not crystallise to their
parent crystalline phases at the thermodynamic melting temperatures. Such melts
easily supercool to much lower temperatures than T,, the meltmg temperature
and congeal to solids without any attendant discontinuous changes in volume or
entropy. These solids which are isotropic in all their physical properties are known
as glasses. While some melts like those of SiO,, B,Os, etc., become glasses even

on slow cooling, melts of mixed nitrates of potassium and calcium, mixed sulphates -

of potassium and zinc, As,Te,, etc., require rapid cooling from their normal melting
temperatures in order to form glasses. Melts of metals like iron and cobalt (with
upto 207; silicon or phosphorus) require very much higher (~ 10¢ deg sec!) quench-
ing rates in order to form glasses (Owen 1973). Now it appears that almost any
melt can be quenched into a glass at sufficiently fast rates of quenching (Turnbull
1969).

Glasses as a class are forerunners of amorphous solids. They are x-ray amorphous
(Warren 1937) and give rise to haloes in Laue photographs and are structurally
similar to other amorphous solids such as thin films, gels and amorphous deposits
from shock and shear amorphised solids. However glasses are distinct in that
they exhibit a pseudo-second order transition at a temperature known as glass
transition temperature, 7, (MAB 1968). When heated sufficiently slowly, most
glasses crystallise between T', and T, and the crystallisation temperature is often
designated as T,,. Both T, and T, are easily characterised in'a sensitive differen-
tial thermal analysis (DTA) experiment. A thermogram is shown schematically
in figure 1.

‘In this brief review some salient features of glass transition are first presented
followed by brief discussion of various theoretical approaches reported in the lite-
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Figure 1. Differential thermogram of a typical glass (schematic).
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Figare 2. Variation of volume and entropy of a glass with temperature (schematic).

ratyre. . Many details in each of these approaches have been left out since they may
not substantiate the principal features of the theory. It is likely that the emphasis
given in this review and that expressed in the source literature are not the same.
But it may be noted that summaries of this nature often reflect author’s preferences.

2. General features of glass transition

When a glass forming melt is cooled, the volume and entropy of the materials
change in a manner schematically shown in figure 2. A similar plot is given in figure 3
depicting the nature of variations of heat capacity, C,, thermal expansivity, o and
compressibility, 8. While S and ¥ vary continuously there is a more or less sudden
change in C), a and g, indicating that the glass transition 1s probably a second order
transition in the Ehrenfest (1933) sense (Rao and Rao 1978).
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Figure 3. Variation of heat capacity, thermal expansivity and compressibility of
a glass as a function of temperature (schematic).
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Figure 4. Variation of logarithm of viscosity of a glass forming melt as a function
of inverse temperature (schematic), T, corresponds to 7 of approximately 10
poises.

The glass transition temperature is sensitive to the cooling rate particularly in
the transition region. In figure 4, the variations of volume at different cooling
rates have been shown for typical glass forming materials. The viscosities for such
melts vary with temperature as shown in figure 5. Since close to the glass transi-
tion temperature, the viscosities are very high, the relaxation times also become
very high. Therefore the melt takes more time to readjust its volume to its new
equilibrium value. (It may be noted that in the supercooled region, the melt is
really in metastable equilibrium.) With fast quenching rates, they fall ovt of equili-
brium. Since viscosities of the order of 1012 poises correspond to relaxation times
of the order of minutes (n = Gr) for reasonable values of shear moduli, the viscous
(supercooled) liquid behaves like a solid for all practical purposes. Such a solid

is kiown as glass. Hence it appears that the transition to a glass is essentially a
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Figure 5. Effect of cooling rate on volume of the glass and hence on T,, cooling

rates for 1, 2, 3 are in decreasing order. Thus T, (1) > T,(2) > T,(3).

Figure 6. Variation of C, as a function of In 7, The shaded area corresponds to
the configurational entropy lost on cooling down to T,. The unhatched area
corresponds to the frozen entropy.

relaxational phenomenon and that the glass is an aberration for the supercooled
melt which has fallen out of equilibrivm.

The above picture of glass transition changes when we carefully examine the
behaviour of heat capacity and entropy of such systems. A plot of C, vsIn T is
given in figure 6. The shad:d area in the figure corresponds to the total entropy
loss when the melt is cooled. Slower and slower cooling shifts the T, to lower
and lower values, increasing the area of the shaded portion. However the total
shaded area cannot exceed the value of entropy gained by the system at its melting
temperature. That is, as shown in figure 7, the extrapolated entropy line of the
liquid cannot cross the entropy line corresponding to the crystal, because it amounts
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Figure 7. The limiting T, value based on thermodynamic considerations (Svs T)
is T, at which the extrapolated entropy line of the melt intersects the entropy line
of the crystal (schematic).

to having a supercooled disordered arrangement of particles with a lower entropy
than the corresponding ordered crystalline arrangement. Hence it was argued by
Kauzmann (1948) that the nature averts it by a transition to a solid which is glass
(the self-contradictory situation that would arise below the limiting T, is also referred
to as Kauzmann Paradox). Therefore there is a limiting T, at which the super-
cooled melt undergoes a glass transition. ‘ :
Supporting the thermodynamic viewpoint is the fact that in a very large number
of systems involving different bonding types and molecular complexity, T, scales
as T, or T, (the liquidus temperature in the case of mixed melts) with constant
ratio, T,/ T ~ 0-66 (Sakka and Mackenzie 1971). Evidence to the fact that there
is a limiting temperature below which liquid-like properties do not exist comes
from various transport property measurements. Viscosities (n), diffusion coeffi-
cients (D) and (ionic) electrical conductivities (A) of many ionic melts exhibit depar-
tures from Arrhenius behaviour and their temperature variations are more appro-
priately described as (Angell and Moynihan 1969; Angell 1968) :

v =w,exp [— E(T — T0)l; \ ¢y

wherey is¢ (= 1/7), D or A and y,is their infinite temperature values (y, is mildly
temperature dependent as expressed above). Therefore T, is appropriately the
temperature corresponding to the termination of liquid regime. It is close to and
always less than T,. Hence a limiting T, corresponding to the lower bound to
liquid state is likely to exist and has a thermodynamic origin. _

1t may be pointed out that the non-Arrhenius viscosities have often been analysed
using the well-known Vogel—Tammann—Fulcher, VTF, equation (Vogel 1921;
Tammann and Hesse 1926; Fulcher 1925) and the Doolittle (1951) equation which
have the following form :

VTF : ' n=A exp [¢/(T — Tol, ' ' (2)

Doolittle : 7 =4 exp- [V]vrl, - 3)

T
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where a is a constant with units of temperature, v, is free volume and ¥ is constant
in units of volume, Williams ef a] (1955) employed a modified expression based on
equation (2) and established its correspondence to equation (3). Equation (1) is
only a more general form of (2). Further, Angell and coworkers (Angell and Moyni-
han 1969 ; Easteal and Angell 1970, 1972; Angell and Helphrey 1971; Moynihan
et al 1969) have shown that T, of €q. (1) and the limiting T, found from figure 6
type of plots (Kauzmann plots) are in very good agreement, supporting the view
that T, is a thermodynamic feature of the liquid state. ' '

Hence, any theory of glass transition has to account for the thermodynamic
character of T, and still be able to rationalise the relaxational nature of it. Several
of the theoretical approaches to glass transition have thus been theories or models
for liquid viscosity involving thermodynamic quantities,

3. Theories of glass transition
3.1, Free volume theory

The transport properties of liquids have long been successfully discussed in terms
of free volume (Doolittle 1951; Williams ef af 1955). But the most successful
development of the free volume theory has been due to Cohen and Turnbull (1959)
and Turnbull and Cohen (1961, 1970). In this model which was originally deve-
loped for dense hard sphere fluids, particles are assumed to be oscillating in their
own cages corresponding to their Voronoi polyhedra. Increased temperature
has the effect of increasing the cage volume and as a result, the oscillatory motions
of particles become diffuisive (the diffusive motion having gas kinetic velocities).
The additional volume of the cage permitting the diffusive motion is free volume.
The total free volume of an ensemble of particles is randomly distributed over the
cages. The diffusive motion is responsible for the event of transport. It is assumed
that there exists a minimum free volume v for the transport to occur. The size
distribution function [P ()] for the free volume is shown to be

P () =1/o; - exp (= pofoy), | 0

where 7 is a free volume overlap correction constant, with a numerical value between
1/2 and 1 and v, is the total free volume. The diffusion coefficient D may be
derived as

D=gul a(v)P(v)dn, (5)

where g is geometrical factor, u is the gas kinetic velocity in the direction of the
jump, a(v) characteristic jump distance and »* is the minimum size of the void
(distributed free volume) which permits the diffusive motion. Since D is related
n by the relation '

D = (k(3n a,). T/, (6)
where &, is the molecular diameter, one can combine (4), (5) and (6) to obtain»

n = (kT/3n ay a* gu) . exp [yo*/n,]. | | )
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Equation (7) suggests that as v, decreases the viscosity increases exponentially and
the transport is severely curtailed. The diffusive nature of particle motion becomes
more and more oscillatory. The empirical Doolittle and VIF equations (2) and
(3) may be recovered from (7) by substituting for v,. One plausible assumption
is that vy~ v, —v, 2 Aa(T — T, where v, is the volume of the melt at the
temperature T and v, that of the glass at T,, However theoretical evaluations
were carried out with v, taken as the difference between the total volume and the
dense random close packing volume.

The essential simplicity of the approach has lent free volume theory an undimi-
nishing attraction. Many features of glass transition where a complete quanti-
tative agreement is not needed are easily understood in terms of free volume theory.
The use of vpp has been found to fit shear viscosities of liquids only at higher tempe-
ratures and leads to considerable discrepancies at lower temperatures. Further,
high pressure studies of both viscosities and transition temperatures indicate that
free volume model has been far from being correct (Goldstein 1963 ; O’Reilly 1962 ;
Sperry and Mackenzie 1968 ; Macedo and Napolitano 1968). In cases like acetate
glasses (Williams and Angell 1973) where Aq is negative close to the transition
temperature, free volume concept itself suffers a major setback.

3.2. Entropy theory

One important feature of the molten state is its large entropy, alarge part of which
is acquired discontinuously at its melting point. This acquired entropy is likely
to be mostly conftgurational. In the entropy theory, transport is conceived to be
a local cooperative rearrangement of particles into different configurations which
contribute to the configurational entropy (Gibbs and DiMarzio 1958; Gibbs 1964;
Adam and Gibbs 1965). As the temperature of the melt is Jowered, the configu-
rational entropy decreases and larger number of particles in the system are involved
in cooperatively achieving configurational changes thus enabling a transport event
to occur. At a sufficiently low temperature, the configurational entropy becomes
zero leading to a second order transition to an ideal glass. However in real situa-
tions the intervention of kinetic solidification leads to glass transition at which part
of the configurational entropy is frozen in.

For a group of z molecules which allows a configurational rearrangement, the
transition probability o (T’ is given by (Adam and Gibbs 1965)

o (T) = Adexp [— z Au/kT], ®)

where Ay is essentially the potential energy hindering .rearranfge'ment. .In order
that at least one rearrangement is possible there must be some minimum $1z¢ of the
rearranging unit which may be designated as z*. Considering gll such clusters

which can yield nonzero transition probabilities, the average transition probability
may be obtained as, ‘

®(T) = Aexp (— z* Ap/kT). - ®
In the theory z* is now related to the total configurational entropy S, as z* = Nsg/
S,, where s,* is the entropy of the minimum or critical size z* (it cannot be less
than k In 2). Using the known relation between 7 and @ (T) and  and =, Adam
and. Gibbs derive the expression for 7 as :

n = A' exp [B/TS.], (10)
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where B = (Ns; A u/k). Equation (10) has an important implication in that it
leads to a deftnition of a glass with zero configurational entropy. It corresponds
to an ideal glass with a defined ground state. At T = T, where S, = 0, a second
order transition, in the Ehrenfest sense, takes place. However, as pointed out
earlier, the available configurations decrease rapidly close to T, and a kinetic freez-
ing takes place leading to the glass transition and the resulting glass retains a part
of the configurational entropy as frozen entropy. Once again the VTF equation (2)
may be derived from (10) making the assumption,

T
Se=J AC,dlnT
T o~Ty
where AC, = C, (liquid) — C, (glass/crystal) ~ a constant.

The success of the entropy theory has been its ability to account for the pressure
dependence of the glass transition temperature (Goldstein 1963, O’Reilly 1662)
and to account for the second order nature of the transition. But it may be noted
that whenever the configurational entropy is a simple function of the free volume
only, both the free volume and entropy theories should be expected to give same
results. Experimentally one observes that a certain fraction of the free volume is
frozen in and so is a certain portion of configurational entropy. We may call these
frozen quantities as (minimum) excess free volume V. and (minimum) excess entropy
S,. ‘

If the occurrence of the experimental glass transition is determined by either
V, or S,, it is possible to evaluate the merits of the two theories as follows (Gold-
stein 1963). Since ¥, and S, are fixed at T,, we have dV, = dS, =0 and both
V. and S, can be treated as functions of pressure and temperature. When 4V, is
Zero, it is possible to show that

and when dS, =0, we obtain similarly,
dT,/dP = VT, Aa/ AC,. : - (12)

Since (11) and (12) involve all experimental quantities only, they can be used to
evaluate the two theories. If they are equivalent, then

VT!J Aaz/Aﬂ Aq: = 15 (13)

which is the well-known Prigogine-Defay ratio (Prigogine and Defay 1954). The
experimental data (O’Reilly 1962) on various substances like polyvinyl acetate,
rubber, glycerol, propanol, selenium, B,O, and various other materials indicate
that equation (12) holds better than (1 1) suggesting that the entropy theory is more
accurate. But in the case of ZnCl, glass it has been found that (12) also leads to
large and unacceptable discrepancy (Angell et al 19770).

3.3. Significant structures approach

Another attempt to understand glass transition phenomenon from a theory of vis-
cosity has been made by Eyring and coworkers (Ree et al 1962; Faerber et al 1970).
In their significant structures approach, the total partition function of the liquid
is taken as a product of solid-like and gas-like contributions. Then the viscosity
is obtained from the activated complex theory and the contribution to viscosity
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from gas-like part is ignored. The final working expression for the viscosity ol a

system of rigid spheres is of the form
p=ATV(V — V,) - exp [er/hT],

where 4 is a constant involving the free dist
of the particle and a constant transmission coefficient. ¥ and F, are the totad

volume and the solid-like part of the liquid volume, ¢t isthe activation encrgh
for jump of a molecule. Using the isoviscosity (rheological) criterion for pluss
transition, namely, that at T, the value of n ~ 103 P, the values of T, huve been
evaluated. In the homologous series of substituted benzenes, the T, evaluations
were found to be good. Considering that T, {s initially used to evaluate ¥, the
glass volume, and that it involves many other assumptions, this approach is besth
weak and its success is only moderate. Further, the approach inherits all the
limitations of free volume theory in so far as it relates the viscosity 1o excess volume
and incorporates the concept isofree volume at glass transition,

t1d)

ance between nearest neighbouvrs, mass

3 .4. Bond-Lattice model

Since glasses are disordered solids, it should be of interest to view glass transition
as a feature of the amorphous solid state. Such an approach has been meade in the
bond-lattice model (Angell and Rao 1972). Most glasses have a local crder uhin
to the order in resoective crystalline phases. The constitient partivles mas be
looked upon as connected to the nearest neighbours but not ordered over lony
range. Therefore, it should be possible to abstract a lattice of honds fromm sk
arrangement. These bonds may be of any description (covalent, ete.) inchuding
secondary bonds. (The long range interactions do not enter the description speuss

cally.) This abstracted lattice of bonds is similar to Polk Turnbull (Puolk 1971,
Turnbull and Polk 1972) lattice of amorphous germanium, When the glass is
heated the thermal energy excites these bonds and are said to be broken. 'The
quantum of energy changes in the excitation process is / E/mole. The excitation
is associated with slight rearrangement and change in volume,  Fimole, and also
with vibrational frequency changes causing entropy change, . .S/mole, of brohen
bonds. The excitation is assumed to be random. For this simple case of wne
excited state, the fraction of bonds broken (f) and the corresponding contigura-
tional heat capacity (AC,) are given by

f=11+exp AG/RT],
AC, =(AHYRT?)f(1 - f). (153

Yariation of AC, with temperature does not exhibit any singularity but shows an
asymmetrical hump-like rise in heat capacity. The value of ,ﬁd is dependem
on AS while the peak temperature (the T', in this approach)is determined by . H
The two-state model does not however give rise to sufficiently steep rise ﬁf' 4( ?“
The authors have improved on this by (i) consideringa large number of :miimz
states and (ii) by allowing a part of the excitation enthalpy; JH, to vanish co-
operatively as a function of temperature. Introduction of » excited states leads
to a configurational heat capacity, AC, (n) S

AC, ()= I AHYRT* [\ —f) = \[RT* 5' " H, H [, [

=y ‘. i
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where f; = exp (— AG, /RT) [L + é exp (— AG/RT). (16)

The n state model does sharpen the heat capacity increases but is not sufficient to
simulate the real transition behaviour. Alternatively AH may be considered as a
sum of two parts, AH = AH; + AH, Further AH, may be treated as a co-
operatively vanishing term with the following heuristically chosen functional form

AHy = AHY{1 + exp [(T — T,)/D]}. an

Then AC, may be given any arbitrary sharpness so as to very closely simulate th.e
experimental glass transition. In the above expression AHY refers to the maxin
mum value of this enthalpy (at 0K) ; T, and D are adjustable parameters. The
idea of cooperativity used here is unconventional. It is understandable however
that as temperature increases, a few secondary bonds get broken (such as H-bonds
in glassy water), the strains in primary bonds (responsible for cohesion and not
necessarily regidity) relax and strengthen while the energies of the remaining
secondary bonds decrease to a new constant value. But there has been no direct
evidence to this effect. The concept of cooperativity in glass transition has been
questioned (Goldstein 1973) and alternate methods of attaining arbitrarily sharp
rise in AC, has been suggested (Goldstein 1972). Use of two adjustable parameters
in the exponent of (17) makes the approach weak. Further, many categories of
amorphous materials such as thin flms, amorphous deposits, etc., for which this
theory should be applicable do not exhibit glass transition. The model has however
been employed with a degree of success for water and ZnCl, (Angell 1971; Angell
and Rao 1972). But it may be recognised that solid state approach to glass transi-
tion phenomenon is beset with many conceptual difficulties regarding both the
nature of the bonds of relevance (Rao and Mohan, 1979) and their mutual - inter-
actions. The bond lattice model, however, emphasises the fact that the glass transi-
tion may not be a second-order transition at aj] in the Ehrenfest sense.

3.5. Theory of potential energy surfaces

Goldstein, whose contribution towards critical assessment of glass transition theo-
ries is monumental has himself proposed a model for viscous liquids (Goldstein
1969). In this model the (3 N+ 1) dimensional energy surface of N particles
possesses a number of minima; the system moves among these minima in time.
At lower temperatures the system is restricted to explore the deeper minima which
are fewer in number and hence a lower configurational entropy. The glass transi-
nc?n_ apparently corresponds to the system being trapped into one of these deep
minima. In this theory, most importantly, the activation energy is temperature-
dependent. The theory predicts that below the glass transition temperature there
must be frozen ¢ islands of mobility > which are responsible for secondary relaxa-
tions (subglassy relaxations), which are now known experimentally to be almost
a universal feature of glassy state (Johari and Goldstein 1971; Goldstein 1976
1977). But such relaxations could possibly be accounted for from other 1node1;

also ‘(.suc@ as frozen regions of broken bonds, etc.). The theory does not permit
quantitative evaluation in any manner

*
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4. Computer experiments and glass transition

Some of the most fascinating and crucial results have been obtained from computer
simulation experiments. Both types of investigations namely—Monte-Carlo (MC)
(Lee ef al 1973) and Molecular Dynamics (MD) (Briant and Burton 1975; Rahaman
et al 1976 ; Woodcock et al 1976) simulations have been performed on model systems
of particles interacting with diverse types of model potentials (hard spheres, Lennard-
Jones, Born-Mayer, etc.). One of the limitations of the approach is that even when
very advanced computers and liberal research funding are available, one cannot
cool the system at a rate lower than 10 deg K/sec ! (Woodcock et al 1976;
Angell et al 1977a). This rate of quenching is orders of magnitude greater than the
fastest quenching known in the laboratory. The quenched systems in the computer
experiments clearly indicate a glass transition. The T, is anywhere from 0-3 T,
to 0-7 T,,. In spite of such fast quenching the radial distribution functions obtained
from the MD experiments are remarkably close to the experimental radial
distribution functions (from scattering studies).

Using the data of Rahaman et al (1976), Gordon et al (1976) came to the con-
clusion that for the hard sphere and Lennard-Jones glasses, the configurational
entropy does not tend to zero at the glass transition, a conclusion quite different
from that of entropy theory discussed earlier.

Computer experiments with soft potentials have revealed (Hoare 1976; Hoare
and Barker 1977) that stable amorphous packings with a central symmetry are
formed which are quite large when compared to icosahedral (Frank 1952 ; Hoare and
Pal 1972) or pentkidodecahedral (Tilton 1957) units, The importance of pentagonal
symmetry in liquid structural models has been known through earlier classic work
of Bernal (1960, 1964). But large enough units with an internal (short range) order
which allows for a distinct € connective tissue’ are required for glass structures.
They had only been postulated with such descriptions as ‘ amorphon’ (Grigorovici
1969), ‘Vitron’ (Tilton 1957), etc., to account for the structure of viscous liquids.
From the above computer experimental results, Hoare and Barker (1977) have
supported a model for glass transition originally suggested by Tammann (1933).
In this model large rigid clusters with inherent, self-limiting, pentagonal symmetries
are formed in the liquid and grow randomly in the supercooled region. The glass
transition corresponds to a ‘congelation’ and locking together of these clusters
into a rigid structure. Sharply differentiated regions with limiting sizes lead to
sharp glass transition. In the heating cycle the transition manifests because of the
surfacial melting of these clusters.

Invoking clusters, or rigid and ordered but small structural units, has been a
phenomenological input in the development of many a model for the glass structure.
Computer experiments have confirmed that such clusters of substantial sizes and
with inherent pentagonal symmetries are spontaneously generated. The con-
nective tissue which is therefore a common feature of glasses can also be the source
of weak secondary relaxations observed in many glasses (Goldstein 1977).

5. Epilogue

Glass transition is now recognised as a sufficiently well-defined phenomenon (Hoate
and Barker 1977) exhibited by a wide variety of glass formers. However none of
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the models discussed above constitutes a theory of glass transition in the reg.l sense
of the term. Many important and useful glasses are much more complex In their
chemistry and nature of bonding. Glass structural models vsflll have t.o give due
importance to the chemistry and structure of the parent crystalline materials, Poly-
morphism associated with parent crystalline phases (Goodman 1975) may pla.y an
important role in the structure and stability of the c.lusters. It .has been pointed
out (Ramaseshan 1978) that silica glass exhibits optical anomalies around 840 K

at which temperature the parent crystalline (quartz) phase has a well-known trans-
formation.

Hence the first important step in understanding glass transition is development
of suitable structural model for glasses which is as general as possible
from which their temperature behaviour may be hopefully derived. A complete

understanding of glass transition phenomenon may therefore remain elusive till
such times,
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