OXIDATION STUDIES—V

Oxidation of Light and Heavy Water by Peroxydisulphate

By S. PADMA AND M. SANTAPPA, F.A.Sc.

(Department of Physical Chemistry, University of Madras, Madras 25)

Received October 10, 1967

ABSTRACT

Oxidation of light and heavy water by peroxy disulphate was studied at 60-70° C. The acid independent and acid dependent rate constants and respective $\triangle E$ values were computed. An attempt is made to explain the kinetic isotopic effect observed. A probable mechanism is proposed.

RESULTS reported on oxidation of light water by peroxydisulphate by several workers¹⁻⁷ revealed that oxidation proceeds both by (i) acid dependent as well as (ii) acid independent paths. The rate constants and Arrhenius parameters for these paths reported by Kolthoff and Miller¹ were in sharp contrast from those of Breuer and Jenkins.⁷ All the mechanisms suggested both for acid catalysed and acid independent reactions lead to

$$S_2O_6^- + H_2O \rightarrow 2HSO_4^- + \frac{1}{4}O_8$$

as the final stoichiometric equation; (i) was assumed to proceed by homolysis of $S_2O_8^-$ to radical ions SO_4 —which react with water producing HSO_4 and OH radicals which dimerise to $H_2O + \frac{1}{2}O_2$. (ii) involved the formation of $HS_2O_8^-$ which decomposes to HSO_4^- and SO_4 radicals, the latter reacting further in $SO_4 \rightarrow SO_3 + \frac{1}{2}O_2$ and $SO_3 + H_2O \rightarrow H^+ + HSO_4^-$. OH and SO_4 are therefore the precursors for O_2 from (i) and (ii) respectively. We have studied the oxidation of light water by $S_2O_8^-$ in the pH range 0-10 at $60-80^\circ$ C. Acid dependent and acid independent rate constants and the respective $\triangle E$ values are being reported. Similar studies with heavy water were made but confined to the pH range 2-8, k_{H_2O}/k_{D_2O} values have been reported for the 'overall rate' constants as well as for 'acid catalysed' and 'acid independent' reactions. Curiously enough for the overall rate, $k_{D_2O}/k_{H_2O} > 1$ while for the latter reactions $k_{H_2O}/k_{D_2O} > 1$ were observed. The rate was found to be proportional to total acidity and not to Hammett's

H₀, thus emphasizing participation of both H⁺ and H₂O in the transition state for the catalysed reaction.

EXPERIMENTAL

 $K_2S_2O_8$ (E Merck; G.R.); H_2SO_4 (A.R. 36 N Basynth; India); $HClO_4$ (A.R., 60%, Mayand Baker); NaOH (G.R., E. Merck); Heavy Water (Atomic Energy, Trombay, India; 99.4% purity) were employed. Distilled water, distilled over alkaline KMnO₄ twice and then passed through Ion exchange resin (Biodeminrolit; Permutit Co., U.K.) was used for preparation of all solutions. Adjustments of ionic strengths were made with H_2SO_4 , $HClO_4$ and NaOH solutions. pHs of solutions were measured in pH meter (Leeds and Northrup Cat. No. 7666) provided with a system of glass and calomel electrodes and standardised by potassium biphthalate (M/20; pH = 4.00 at 35°C.). All the experiments were confined to $[S_2O_8^-] = 0.005$ M and $\sim 35\%$ conversions of the former and for ~ 90 minutes.

The solution of $S_2O_8^-$ (in light or heavy water) after adjustment of pH (by the addition of H_2SO_4 or NaOH) was thermostated at the required temperature (60-80° C.) \pm 0·1° C. controlled by a relay and toluene regulator. Aliquots (5 c.c.) were withdrawn at 10 min. intervals; quenched in ice-cold water (25 c.c.) containing KI (2 gm.); set aside for about 45 minutes; acidified with acetic acid (6·0 N, 2 ml.) and titrated against standard sodium thiosulphate (0·025 N). From $[S_2O_8^-]$ reacted, rate of $S_2O_8^-$ disappearance, $-R_{S_2O_8^-}$, was computed. Rate measurements by addition of excess standard (Fe⁺²) to aliquots and back titration with standard KMnO₄ or ceric sulphate compared well with those by iodometry and the rates may be considered accurate to within \pm 1%.

RESULTS AND DISCUSSION

(i) The orders with respect to $[S_2O_8^-]$ were observed to be unity, the $\log{(a-x)}$ vs. t plots being linear in H_2O (Fig. 1, A) as well as D_2O (Fig. 1, B) at various pHs. Perchloric acid in place of H_2SO_4 for adjustments of pH in H_2O did not make any difference. The pseudo first order rate constants in light and heavy water k_{H_2O} and k_{D_2O} respectively at 60° and 70° C. at various pHs together with the respective $\triangle E$ values, etc., appear in Table I. It is seen from Table I that there is an irregular increase and decrease in $\triangle E$ values with variations in pH and the lowest value for $\triangle E = 10.7$ at pH 2.14 in H_2O was noticed. Our values are in better agreement with those of Breuer and Jenkins ($\triangle E = 23-35$) than those of Kolthoff and Miller 1.

$(H_{2}SO_{4}) \qquad (0.69)$ $k_{D_{2}O} \times 10^{4} \qquad 0.74 \qquad 0.64$ $70^{\circ} C k_{H_{2}O} \times 10^{4} \qquad 1.6 \qquad 2.9 \qquad 6.6 \qquad 7.8 9.0 \qquad 2.4 5.9 \qquad 6.3 6.4 \qquad 0.64$ $(H_{2}SO_{4}) \qquad (1.6) \qquad 1.33 \qquad 1.0 \qquad 0.92$ $\triangle E \text{ in K.cal.} - $												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pH	()	0.5	1.0	1.5	1 .	9	3.0	2.1	4 2	,\1	3 49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 - 33	0 · 89	0.5	0.77							
$\begin{array}{c} k_{\rm ngo} \times 10^{4} & \dots & \\ 70^{\circ} {\rm C} & k_{\rm ngo} \times 10^{4} & 2 \cdot 16 & 2 \cdot 27 & 1 \cdot 19 & 1 \cdot 58 & 2 \cdot 12 & \dots & 1 \cdot 4 & 0 \cdot 7 & 1 \cdot 0 \\ (H_{2} {\rm SO}_{4}) & \dots & (2 \cdot 2) & \dots & (1 \cdot 3) & \dots & (1 \cdot 0) \\ k_{\rm ngo} \times 10^{4} & \dots & & & & & & & & & & & & & & & \\ \Delta E {\rm in} {\rm K.cal.} & & & & & & & & & & & & & & & & & \\ H_{2} {\rm O} & \dots & 20 \cdot 2 & 21 \cdot 4 & 20 \cdot 7 & 20 \cdot 1 & 18 \cdot 70 & 10 \cdot 00 & 10 \cdot 7 & 17 \cdot 0 & 26 \cdot 9 \\ & \dots & & & & & & & & & & & & & & \\ H_{2} {\rm O} & \dots & 20 \cdot 2 & 21 \cdot 4 & 20 \cdot 7 & 20 \cdot 1 & 18 \cdot 70 & 10 \cdot 00 & 10 \cdot 7 & 17 \cdot 0 & 26 \cdot 9 \\ & \dots & & & & & & & & & & & & & \\ H_{2} {\rm O} & \dots & 20 \cdot 2 & 21 \cdot 4 & 20 \cdot 7 & 20 \cdot 1 & 18 \cdot 70 & 10 \cdot 00 & 10 \cdot 7 & 17 \cdot 0 & 26 \cdot 9 \\ & \dots & & & & & & & & & & & \\ H_{2} {\rm O} & \dots & \dots & & & & & & & & \\ D_{2} {\rm O} & \dots & \dots & & & & & & & \\ \hline p_{H} & 3 \cdot 05 & 3 \cdot 4 & 4 \cdot 4 & 5 \cdot 0 & 6 \cdot 0 & 7 \cdot 0 & 8 \cdot 0 & 9 \cdot 0 & 10 \cdot 0 \\ \hline p_{H} & 3 \cdot 05 & 3 \cdot 4 & 4 \cdot 4 & 5 \cdot 0 & 6 \cdot 0 & 7 \cdot 0 & 8 \cdot 0 & 9 \cdot 0 & 10 \cdot 0 \\ \hline p_{H} & 3 \cdot 05 & 3 \cdot 4 & 4 \cdot 4 & 5 \cdot 0 & 6 \cdot 0 & 7 \cdot 0 & 8 \cdot 0 & 9 \cdot 0 & 10 \cdot 0 \\ \hline k_{15} {\rm o} \times 10^{4} & \dots & 0 \cdot 69 & 1 \cdot 4 & 1 \cdot 9 & 2 \cdot 8 & 3 \cdot 7 & 1 \cdot 7 & 1 \cdot 44 \cdot 0 \cdot 19 & 0 \cdot 58 \\ \hline (H_{2} {\rm SO}_{4}) & \dots & 0 \cdot 69 & \dots & \dots & \dots & \dots & \dots \\ \hline k_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & 2 \cdot 9 & 6 \cdot 6 & 7 \cdot 8 & 9 \cdot 0 & 2 \cdot 4 & 5 \cdot 9 & 6 \cdot 3 & 6 \cdot 3 \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & 1 \cdot 6 & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {\rm o} \times 10^{4} & \dots & \dots & \dots & \dots & \dots & \dots \\ \hline \lambda_{15} {$	(H_2SO_4)		• •	• •		(0)	96)	(1-61)	(0.8			(O · 23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{\scriptscriptstyle \mathrm{DgO}}\! imes\!10^4$	• •	g. f	g d mensy among the resp. district to in installation	N N N N N N N N N N N N N N N N N N N	* . ****	e Line absence her	a r € Number of the term	0.7	7 (1)	96	0.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.16	2.27	1.19	1.58	3 ,	12	1 4	Second Se	()		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(H_2SO_4)	• •	• •	, .	# A	(5.	2)		£: 1)			(1-0)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$k_{\mathrm{pgO}}\! imes\!10^4$	• •	y •	entra menara - La Nova - Radio	A		e ganta e	e to some				A + 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			21.4	20.7	20.1	18	70	10.00	10	.7 1	7-0	26.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				* *	* 4	(18	(8)	(16.00)) (10)	(1)		(26.9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D_2O		, .			,		z *	,15	7 3.	1-11	12.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pH	April 10	3.	05 3	4 4	4	5.0	6.0	7.0	8.0	9.0	10.0
$k_{\text{Dyo}} \times 10^4$		es ,≊ , ⊕ ∀ √ ∞ ⊃	0.6	59 1	.4 1	.9	2.8	3.7	1.7	1 - 44	() - 19	0.58
70° C.— $k_{\text{H}_{2}\text{O}} \times 10^{4}$. 1·6 2·9 6·6 7·8 9·0 2·4 5·9 6·3 6·4 (H ₂ SO ₄) . (1·6)	(H_2SO_4)		(0.6	59) .				8		<i>t</i> • •		* 4
$k_{\text{H}_{2}\text{O}} \times 10^{4}$ 1·6 2·9 6·6 7·8 9·0 2·4 5·9 6·3 6·3 6·4 (H ₂ SO ₄) (1·6)	$k_{\rm rso} \times 10^4$		* * * *	* :	. 0	74		х у	0.64	; •		r w
$k_{\text{D}_{2}0} \times 10^{4}$		program, estimaturo il estatutiva più	1 • 6		·9 (1	· 6	7 - 8	9 - ()	ner man	5 . 9	a.s.	A S
△E in K.cal.— H ₂ O 19·2 19·5 23·2 22·2 22·4 22·4 21·3 20·5 23·6 (19·2)	(H_2SO_4)		(1.6	5) .		,		9 %	1 3	4 7	k r	1 '
H_2O 19·2 19·5 23·2 22·2 22·4 22·4 21·3 20·5 23·6 (19·2)	$k_{\scriptscriptstyle m D_2O} imes 10^4$. 1	• 33			1.0	0.92		i t
					·5 23	•2	22.2	22.4	22.4	21 - 3	20 - 5	23.0
	D_2O			- du J , ,				9 ¥	1 3	* *	я в	* 8

Values in brackets refer to those in $HClO_4$ in H_8O . All $k_{\rm H}$ and $k_{\rm D}$ values have dimensions \sec^{-1}

($\triangle E = 26-33$ K.cal./mole). All these workers confined their oxidation studies to $40-50^{\circ}$ C. range while our investigations were carried out in the $60-70^{\circ}$ C. range.

(ii) Form of H⁺ (D⁺) function: It was found that $\log k_{\rm H_2O}$ (or $k_{\rm D_2O}$) was found to be proportional to total acidity [H⁺] and plots of $\log k_{\rm H_2O}$ w. H₀ were curves (Fig. 1, F).

Fig. 1. Plots A and B, $\log (a - x)$ vs. time. $[S_2O_8^-] = 0.005$ M in $H_2O(A)$, $D_2O(B)$ at 60° C. Plot C, pseudo first order rate constant vs. $[H^+]$ ml.⁻¹ for H_2O at 60° C. Plot D, Pseudo first order rate constant kobs vs. $[H^+]$ ml.⁻¹ for H_2O at 60° C. Plot E, kobs vs. $[H^+]$ ml.⁻¹ for D_2O at 60° C. Plot F, $\log kobs$ vs. H_0 for both H_2O and D_2O .

(iii) Separation of $k_{\text{H,O}}$ ($k_{\text{D,O}}$) to acid independ at $k_{\text{1H,O}}$ ($k_{\text{1D,O}}$) and acid dependent $k_{\text{2H,O}}$ ($k_{\text{2D,O}}$) terms: From the intercepts and slopes² of the plots $-R_{\text{S,O,}}$ ws. [H⁺] (Fig. 1, C, D and E) $k_{\text{1H,O}}$ and $k_{\text{2H,O}}$ respectively were evaluated at 60° and 70° C. Similarly $k_{\text{1D,O}}$ and $k_{\text{2D,O}}$ were also evaluated (Table II).

TABLE II

Acid dependent and acid independent rate constants and Arrhenius parameters in H_2O and D_2O

	60° and 70° C.	Rate constants			60° and 70° C.	Isotopic effects		Activation parameters in K. cal./mole		
pH range	k _{₁H} ×10 ⁵	$k_{1D} \times 10^{5}$	k₃н ×10³	k₃n ×10³	$k_{_{1}\mathrm{H}}/k_{_{1}\mathrm{D}}$	$k_{{\scriptscriptstyle 2H}}/k_{{\scriptscriptstyle 2D}}$	$\triangle E_{iH}$	△E _{2H}	$\triangle E_{iD}$	∆E _{3D}
1–13 for light water	r 2·2	1.65	6.3	4.9	2.05	1.27	31.6	27.2	35.5	15.2
2·2-7·9 for D ₂ O .	. 7.0	5.0	20.0	25.00	1 · 41	0.82		• •	••	• •

It is seen that $k_{\rm D,0}/k_{\rm H,0}$ are usually greater than unity (1.041, 0.98) and 0.936 at 60° C. and 3.4, 3.1 and 2.90 at 70° C. all in the pH range 2.2 to 8). The isotopic effects $(k_{\text{H}_2\text{O}})$ and $k_{\text{D}_2\text{O}}$ were resolved into $k_{\text{1H}_2\text{O}}$, k_{2H_4O} , etc.): $k_{1H_2O}/k_{1D_2O} = 2.05$ and 1.41 at 60° and 70° C. respectively and $k_{\rm 2H,0}/k_{\rm 2D,0}=1.27$ and 0.82 respectively at 60° and 70° C. all in the pH range 2.2 to 8.0. It may be seen that the kinetic isotopic effect $k_{D_{\bullet}O}/k_{H_{\bullet}O}$ > 1 and the ratio increases with increase of temperature. The opposite effects are found in the kinetic isotopic effects with the resolved constants $k_{1\text{H}_2\text{O}}/k_{1\text{D}_2\text{O}} > 1$ and $k_{2\text{H}_2\text{O}}/k_{2\text{D}_2\text{O}} > 1$ and the ratio decreases with increase of temperature. These are rather anomalous. In the case of organic substrates with C-H bonds the $k_{\rm H_2O}/k_{\rm D_2O} > 1$ is usually understood in terms of a proton transfer being involved in the rate-determining step; on the other hand $k_{\rm D,0}/k_{\rm H,0} > 1$ meant the equilibrium involving the substrate, $S + H^+ \Rightarrow SH^+$ being important. If similar arguments apply for a substrate like S₂O₈ (which does not involve a C-H bond) it is rather likley that acid catalysed reaction is

$$S_2O_8^- + H^+ \rightleftharpoons HS_2O_8^- \tag{1}$$

slow

$$HS_2O_8^- + H_2O^- \rightarrow 2HS_4^- + H^+ + \frac{1}{2}O_2$$
 (2)

This mechanism is also supported by the fact that rate is a function of total acidity and not of Hammetts function H_0 . An alternative to step (2) may be 2(a):

$$HS_2O_8^- + H_2O \rightarrow HSO_4^- + H^+ + SO_4^- + OH$$
 (2 a)

which may be important in substrate oxidations. The kinetic isotopic effects decreasing with increasing temperature are in order. Acid independent path may follow the course not involving any proton transfer:

$$S_2O_8^- \rightarrow 2SO_4^{-}$$
 (3)

$$2 SO_4 - + 2 H_2O \rightarrow 2HSO_4 + 2 OH$$
 (4)

$$2 OH \rightarrow H_2O + \frac{1}{2} O_2$$
 (5)

The kinetic isotopic effect $k_{D,O}/k_{H,O} > 1$ is probably subject to solvent isotopic effects which are not quite clear.

ACKNOWLEDGEMENT

One of us (S. Padma) is grateful to the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship.

REFERENCES

1. Kolthoff, I. M. and J. Amer. Chem. Soc., 1951, 73, 3055. Miller, I. K.

2. Bawn, C. E. H. and Trans. Farad. Soc., 1955, 51, 925. Margerison, E.

3. Bartlett, P. D. and J. Amer. Chem. Soc., 1949, 71, 1419. Cotman, J. D., Jr.

4. Fronaeus, S. and Ostman, Acta Chem. Scand., 1955, 9, 902.

5. Schumh and Rittner .. J. Amer. Chem. Soc., 1940, 62, 3416.

6. Edgar Howard, Jr. and Ibid., 1953, 75, 6170. Leonard S. Levitt

7. Breuer, M. M. and Jenkins Trans. Farad Soc., 1953, 59, 1310.

^{319-68.} Printed at The Bangalore Press, Bangalore City, by M. S. Narayanamurthy, Secretary and Published by B. S. Venkatachar, Editor, "Proceedings of the Indian Academy of Sciences." Bangalore