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Abstract: Among secondary structure elements, -turns are ubiquitous and major feature of bioactive peptides. We ana-
lyzed 77 biologically active peptides with length varying from 9 to 20 residues. Out of 77 peptides, 58 peptides were 
found to contain at least one -turn. Further, at the residue level, 34.9% of total peptide residues were found to be in -
turns, higher than the number of helical (32.3%) and -sheet residues (6.9%). So, we utilized the predicted -turns infor-
mation to develop an improved method for predicting the three-dimensional (3D) structure of small peptides. In principle, 
we built four different structural models for each peptide. The first ‘model I’ was built by assigning all the peptide resi-
dues an extended conformation (  =  = 180o). Second ‘model II’ was built using the information of regular secondary 
structures (helices, -strands and coil) predicted from PSIPRED. In third ‘model III’, secondary structure information in-
cluding -turn types predicted from BetaTurns method was used. The fourth ‘model IV’ had main-chain ,  angles of 
model III and side chain angles assigned using standard Dunbrack backbone dependent rotamer library. These models 
were further refined using AMBER package and the resultant C  rmsd values were calculated. It was found that adding 
the -turns to the regular secondary structures greatly reduces the rmsd values both before and after the energy minimiza-
tion. Hence, the results indicate that regular and irregular secondary structures, particularly -turns information can pro-
vide valuable and vital information in the tertiary structure prediction of small bioactive peptides. Based on the above 
study, a web server PEPstr (http://www.imtech.res.in/raghava/pepstr/) was developed for predicting the tertiary structure 
of small bioactive peptides. 
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1. INTRODUCTION 

 Peptides have the capability to control important func-
tions of the organism, such as cell reproduction, appetite, 
euphoria, sleep, learning, immune response etc. There is a 
plethora of bioactive peptides, which act as hormones, neu-
rotransmitters, antioxidants, toxins and antibiotics. Due to 
the importance of bioactive peptides, extensive studies have 
been carried out directed at their structure determination with 
a goal to understand function and to design clinically and 
diagnostically useful compounds. 

 Each role assumed by a bioactive peptide typically corre-
sponds to a unique three-dimensional (3D) structure. Moreo-
ver, to design biologically active peptide requires a detailed 
knowledge of the 3D structure and is generally focused to-
wards the modification of secondary structure elements. 
Also, the secondary structure rather than the tertiary structure 
is the dominant factor affecting the binding characteristics of 
the peptides [1]. However, smaller a polypeptide, the lesser 
well defined is its structure [2]. NMR is the widely used 
technique for determining the structure of polypeptides and 
proteins up to 100 residues or so [3-4]. But, the technique is 
time consuming and unable to keep up with the ongoing se-
quencing projects. Therefore, in past, few in-silico methods 
such as Robetta [5] and PepLook [6] were developed to pre-
dict the 3D structure of peptides. Robetta is based on build- 
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ing models of protein domains using both a template-based 
and de novo approaches [7-8]. PepLook is a recent method 
based on random combinations of -  values and minimiz-
ing the structures by an iterative Boltzmann-Stochastic pro-
cedure [6].  

 Our strategy for predicting tertiary structure of small pep-
tides is based on the observation that -turn is an important 
and consistent feature of small peptides in addition to the 
regular secondary structures. A large body of evidence points 
to the significant occurrence of -turns in bioactive peptides. 
It has also been shown that -turns occur frequently among 
the conformationally active forms of the various linear and 
cyclic peptides [9-10]. For instance, in many antimicrobial 
peptides the structure that is responsible for bactericidal ac-
tivity contains -turn [11]. Moreover, the introduction of 
non-peptide bond mimics of the -turn motif provides 
greater potential therapeutic value [12-13]. Also, in past, a 
number of methods have been developed for prediction of -
turns and their types in proteins [14-17]. Taken together, it 
should be possible, given the sequences of peptides, to make 
accurate predictions about their structure using both the 
regular (helices and -strands) and irregular ( -turns) secon-
dary structure information. Energy minimization and mo-
lecular dynamic simulations can be used to further refine the 
structure.  

 Hence, in present study, an attempt has been made to 
predict the tertiary structure of bioactive peptides using regu-
lar predicted secondary structures and -turn types predicted 
from BetaTurns [17] method. Four models were generated 
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for each peptide, which include (i) model with all peptide 
residues in extended conformation (  =  = 180o), (ii) sec-
ond model with backbone torsion angles corresponding to 
predicted secondary structure states, (iii) third model with 
backbone torsion angles corresponding to predicted secon-
dary structure states and -turn types predicted by BetaTurns 
and (iv) fourth model with side chain  angles assigned us-
ing standard Dunbrack backbone dependent rotamer library 
[18] in addition to main-chain ,  angles of model III.  

 All these models were then subjected to energy minimi-
zation using Assisted Model Building and Energy Refine-
ment (AMBER) version6 computer package [19]. In order to 
measure the performance of the predicted structure of all 
peptides using these models, root mean square deviations 
(rmsd) were calculated after superimposing the predicted 
structures with the actual known structure. Both before and 
after energy minimization, superimposing the peptide with 
its actual structure after incorporating -turns information 
obtained a lower C  rmsd in comparison to models having 
extended conformation and regular secondary structure in-
formation alone.  

2. METHODS 

The Dataset 

 A representative data set comprising of 3D structures of 
77 biologically active peptides was selected from PDB [20] 
and other databases such as PSST (http://pranag.physics.iisc. 
ernet.in/psst) [21] and PRF (http://www.genome.ad.jp/) [22]. 
The data set was restricted to those biologically active pep-
tides that consist of only natural amino acids and are linear 
with length varying between 9-20 residues. For NMR struc-
tures, the first model was considered. Further, we excluded 
the peptides stabilized by a disulfide bridge and the remain-
ing 42 were used for model generation and simulation stud-
ies.  

Assignment of Secondary Structure 

 The secondary structure assigned by Database of Secon-
dary Structure in Proteins (DSSP) was used to determine the 
distribution of different secondary structure states in the data 
set. It provides eight states classification of secondary struc-
ture [23].  

Assignment of -Turns 

 The details of the location and types of -turns in the 
dataset were determined using ‘PROMOTIF’ program [24]. 
Promotif defines a -turn as a stretch of four consecutive 
residues (denoted by i, i+1, i+2 and i+3), where the distance 
between the C  atom of residue i and the C  atom of residue 
i+3 is less than 7Å and the two central residues are not heli-
cal. The present study used the -turn types classification 
scheme proposed by Hutchinson and Thornton [25] which 
categorizes nine types of -turn types I, II, I’, II’, IV, VIa1, 
VIa2, VIb and VIII. The program lists the residue number, 
one-letter amino acid code of residues i, i+1, i+2 and i+3; -
turn type and dihedral angles (i+1), (i+1), (i+2), (i+2) 
of residues i+1 and i+2. 

 

Prediction of Secondary Structure 

 The secondary structure of bioactive peptides was pre-
dicted using PSIPRED, which provides three states – helices, 

-sheets and coil [26]. It is a neural network based secondary 
structure prediction method, which uses multiple alignment 
information of the target sequence obtained from PSI-
BLAST [27]. 

Prediction of -Turn Types 

 The -turn types were predicted using BetaTurns 
(http://www.imtech.res.in/raghava/betaturns/) [17]. It is a 
neural network based method, which predicts -turn types I, 
II, IV, VIII and non-specific using multiple sequence align-
ment information. It uses the position specific matrix ob-
tained from PSI-BLAST [27] and secondary structure infor-
mation obtained from PSIPRED [26]. 

Side-Chain Torsion Angles 

 All amino acids except Ala and Gly have a side-chain 
with one or more angles of rotation. For a specified ,  
angles of main-chain, the side-chain  angles were obtained 
from standard backbone dependent Dunbrack rotamer library 
[18] of May, 2002. 

Energy Minimization and Molecular Dynamics Simula-
tions (MD) 

In the present study, energy minimization and dynamic simu-
lations was carried out using SANDER module of Amber 
version 6.0. Following protocol was used: 

a) Building of the Models 

 The Terminal Leap (Tleap) module of Amber v6.0, 
which is the non-graphical and command-line interface was 
used for constructing different models for each peptide. To 
establish baseline performance, the first model I was con-
structed by considering all the peptide residues in the ex-
tended conformation (  =  = 180o). The second model II 
was built by assigning the peptide residues ,  angles of the 
regular secondary structure states predicted by PSIPRED. In 
third model III, we specified the main-chain conformation 
the ,  values corresponding to PSIPRED predicted states: 
helix (-60, -40), -strand (-120, 120) and ,  angles corre-
sponding to -turn types predicted by BetaTurns. The fourth 
model IV had main-chain ,  of model III and side-chain  
angles obtained from Dunbrack library. To achieve the 
maximum performance of the method, two other models 
were built up using observed secondary structure states. 
Thus, the fifth model was generated using ,  angles of 
observed secondary structure states as assigned by DSSP. 
The sixth model VI was built using ,  angles of observed 
secondary structure states assigned by DSSP and -turn 
types assigned by Promotif. The models V and VI were used 
to establish the upper level performance of the prediction 
method. Further, for all these models, TLeap was used to 
prepare the coordinate and topology files, which were used 
as input to the energy minimization and dynamics.  
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b) Energy Minimization and Dynamics 

 Energy minimization and MD calculations were carried 
out using SANDER module with Amber force field, dis-
tance-dependent dielectric constant and the non-bonded cut-
off value of 8Å. It was performed for all the six types of 
models for 42 peptide studied. Each round consisted of few 
initial cycles of steepest descent minimization followed by 
dynamics. The system was equilibrated and the constant 
pressure (NTP) simulations were carried out for 25ps at 
300K using 1-fs time steps. Finally, this was followed by 
minimization using a combination of steepest descent and 
conjugate gradient algorithms. The final low energy confor-
mations were saved in PDB format.  

Performance Measure of Predicted Structures 

 After doing the MD simulations, it was necessary to in-
spect the quality of the obtained structure and see how well it 
actually fit the experimental structure. The carnal module of 
AMBER was used to calculate the backbone rmsd by super-
imposing the respective C  atoms. It calculates the backbone 
rmsd as 

RMSD = 
=

N

n

nn

N

qq

1

2)'(
 

where, qn is the coordinates of the nth residue in one peptide 
and q’n is the coordinates of the nth residue in the other pep-
tide. The more similar the peptides are, the lower is the 
RMSD value. 

3. RESULTS 

 A data set of 77 experimentally determined 3D structures 
of bioactive peptides was used. Only few of them had their 
3D structures solved by X-ray crystallography otherwise 
most of them were have NMR solved structures. Most of the 
peptides were antibacterial, conotoxins and binding peptides. 
From these 77 peptides, we excluded 35 peptides stabilized 
by disulfide bridges. Table 1 lists the PDB codes and the 
solvent types of the remaining 42 peptides studied.  

Distribution of Secondary Structure States 

 The regular (helices, -sheets) and irregular ( -turns) 
secondary structure states were assigned in the data set using 
DSSP and Promotif respectively. The analysis of the distri-
bution of secondary structure states clearly indicates that 
both regular and irregular secondary structures occur in bio-
active peptides, with -turns being the most prominent (Ta-
ble 2). A significant percentage of -turns has been found in 

the peptides in comparison to helices and -sheets. Out of 77 
peptides, 58 have been found to contain at least one -turn, 
comprising 75.3% of total peptides. It has been followed by 
helices forming 60%. The least occurring state is the -
strand, present in just 13% of the total peptides studied. At 
residue level, nearly 35% of total peptide residues are found 
in -turn conformation.  

Distribution of -Turn Types 

 The 58 peptides consist of 141 numbers of -turns, which 
have been identified and categorized, in different types as 
shown in Fig. (1). The distribution of different types of -

Table 1. PDB Codes and Solvent Type of the 42 Bioactive 
Peptides 

1qcm 1egs (H2O/D2O) 

1odp (SDS) 1myu (DPC/D2O/H2O) 

1m02 (SDS) 1qfa (TFE/Water) 

1sol (SDS) 1rpv (TFE/Water) 

1jav (SDS) 1id6 (Dimethyl sulfoxide/D2O) 

1g89 (Dodecyl phosphate) 1e0q (H2O/D2O) 

1d7n (SDS/ D2O/H2O) 1kzv (Methanol chloroform)  

1c98 (SDS) 1b03A 

1dn3 (SDS/Na2PO4) 2bta 

1p0o (SDS) 1lcx (NaN3) 

1p0j (SDS) 1gjf (5mm peptide) 

1p5k (SDS) 1in3 (5mm peptide) 

1p0l (SDS) 1l3q (Na2PO4) 

1d6x (SDS) 1a13 

2bp4 (TFE/Water) 1hu6 (Sodium phosphate) 

1nkf (H2O/D2O) 1hu7 (Sodium phosphate) 

1d9j (DPC/H2O/D2O) 1hu5 (Na2PO4 buffer) 

1d9o (DPC/D2O/H2O) 1pef 

1d9l (DPC/D2O) 1du1 

1d9m (DPC/D2O) 1l2y (Peptide) 

1d9p (DPC/D2O) 1niz (NaAcetate buffer) 

Table 2. Distribution of DSSP and Promotif Assigned Secondary Structure States in 77 Bioactive Peptides 

Secondary structure state No. of peptides % of total peptide residues 

Helices 46 32.3 

-sheets 10 6.9 

-turns 58 34.9 
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turns is highly asymmetric. Type IV is found to be most fre-
quently occurring turn type (around 77.3%) followed by 
Type I -turn (17.7%). The percentage occurrence of turn 
types I’, II and VIII in bioactive peptides is negligible. 
Moreover Types II’ and VI does not occur even once. Fur-
ther, it has also been found that out of 141 -turns identified, 
only 15 -turns is part of -hairpin structure. The distribu-
tion of -turn types in bioactive peptides is in similar to that 
in proteins, with Type IV and I being the numerous occur-
ring -turn types [28]. 

Peptide Tertiary Structure Prediction 

 We studied four models for each of 42 peptides, whose 
brief description is given below: 

 Model I: with all peptide residues in extended conforma-
tion. 

 Model II: with ,  angles of regular secondary structure 
states 

 Model III: with ,  angles of secondary structure states 
including -turns 

 Model IV: with ,  angles of model III and side chain  
angles from rotamer library 

 These models were compared with the actual three-
dimensional structure and averaged backbone rmsds were 
calculated to assess the prediction performance (Table 3). It 
is clear from the table that the model III is the most closest to 
the experimental structure with average C  rmsd of 4.7Å. 
The first model with extended conformation has the largest 
backbone deviation from the actual structure. The model II 
with only the information of regular secondary structures 
obtained rmsd value of 5.7Å, intermediate of models I and 
III. Adding the side chain  angles to model III reduces the 
rmsd a little to 4.5Å. Thus, using -turns, a difference of 
1.0Å is achieved in comparison to regular secondary states 
containing model II. 

 An important step used in later stages of structure deter-
mination is energy minimization. This can be improved by 
MD, which is a means of simulating the motion expected in 
a molecule. For all the three different models for each pep-
tide, energy minimization and dynamics simulations were 
performed to further refine the models and the final averaged 
rmsd values obtained are 7.1Å, 4.4Å, 4.1Å and 4.0Å for 
models I, II, III and IV respectively (Table 3). As expected, 
the models III and IV with -turn information are found to 
be close to the actual structure in comparison to other mod-
els. It is clearly evident from the results that incorporation of 

-turn information has minimized the backbone root mean 
deviation and contributes significantly to the overall tertiary 
structure prediction.  

Limits of Method 

 Ideally, one should be able to achieve 100% prediction 
accuracy, however it is not possible. For instance, with mod-
els III and IV, the final rmsd value is 4.1 and 4.0Å respec-
tively, which is still higher. In order to assess the limit of 
these models, further two models were built using DSSP 

 

 

 

 

 

 

Figure 1. Distribution of different -turn types in 77 bioactive 
peptides. 

Table 3. Averaged Backbone Root Mean Deviation of 42 Peptides Before and After Energy Minimization and Dynamics Simula-
tions 

Averaged backbone root mean deviation (Å) 
Models 

before EM & DS
a
 after EM & DS 

Models built using predicted secondary structure information 

I (extended conformation) 10.0  7.1  

II (regular secondary states) 5.7  4.4  

III (regular states + -turns) 4.7  4.1  

IV (III model +  angles) 4.5 4.0  

Models built using observed secondary structure information 

V (DSSP) 5.6  4.7 

VI (DSSP + Promotif) 4.9  4.0  

 a EM and DS denote energy minimization and dynamics simulations respectively. 
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assigned regular secondary structures (model V) and Promo-
tif assigned -turns with regular secondary structures (model 
VI). These models are then used to establish a higher-level 
accuracy or the maximum accuracy that one can achieve. 
The results of model V and VI can be compared with that of 
models II and III respectively. As expected, the minimum 
rmsd values have been achieved with these models (Table 3). 
The model V has rmsd value of 5.6Å, which is slightly lower 
(~0.1Å) than model II. However, with both the DSSP and 
Promotif information, model VI has the least rmsd of 4.0Å. 

Pepstr Server 

 Based on the study, we have developed a web server that 
allows the user to predict the tertiary structure of small pep-
tides. A flow chart of our procedure for tertiary structure 
prediction of peptides is shown in Fig. (2). The method is a  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of tertiary structure prediction procedure of 
Pepstr. 
 

de novo protocol, which involves many steps- In first step, 
the regular secondary structure states (helix, -strand and 
coil) and -turn types are predicted using BetaTurns method. 
Secondly, a conformation is generated using ,  angles 
corresponding to secondary structures. Then, the side-chain 
torsion angles are assigned using standard Dunbrack back-
bone-dependent rotamer library. Further, the structure is re-
fined using energy minimization and MD simulations. There 
is also an option for the user to specify the environment 
(vacuum, hydrophilic or hydrophobic) for the simulations. 
Finally, the server provides the final coordinates in PDB 
format.  

 The web server is available free for academic or non-
profit users. Users can enter the input sequence in a single 
line using the one-letter amino acid notation. The output 

consists of predicted tertiary structure with final coordinates 
in PDB format. 

Comparison with Existing Methods 

 It is important to compare the newly developed method 
with other existing methods. Recently, Thomas et al. [29] 
compared our Pepstr method with other prediction methods 
such as Robetta [5] and PepLook [6] on five peptides with 
lengths shorter than 30 residues [29]. The performance is 
measured more quantitatively using secondary structures, 
rmsd and mean force potential (MFP) energy scores. The 
results showed that Robetta which is more dedicated to pro-
teins has some limitations for small peptides. However, 
Pepstr and PepLook yielded better predictions. For instance, 
rmsd values obtained for peptides Magainin 2 (2MAG) and 
Transportan (1SMZ) are 7.3 Å, 1.3 Å, 3.3 Å and 8.7 Å, 6.5 
Å, 4.3 Å for methods Robetta, PepLook and Pepstr respec-
tively. Moreover, it is also shown that the MFP energy 
scores of Pepstr are comparable to the NMR structures, 
which clearly suggests that Pepstr predicted structures are 
close to NMR structures. It is also to be noted that Pepstr 
predicts structure faster than PepLook in many instances.  

CONCLUSIONS 

 To conclude, the present work is an attempt to improve 
the prediction performance of tertiary structure prediction of 
bioactive peptides using -turns information along with the 
regular secondary structure states. The suggested approach is 
open for further improvement especially in the view of the 
further growth of the structural database of bioactive pep-
tides, which will probably clarify their biological roles, and 
occurrence of tight turns in bioactive peptides.  
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LIST OF ABBREVIATIONS 

3D = Three-dimensional 

AMBER = Assisted Model Building with Energy Refine-
ment 

RMSD = Root mean square deviation 

PDB = Protein data bank 

PSST = Protein sequence search tool 

PRF = Protein research foundation 

DSSP = Database of secondary structure in proteins 

Tleap = Terminal Leap 

MD = Molecular dynamics 
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