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ABSTRACT

This paper describes a method for predicting a super-
secondary structural motif, b-hairpins, in a protein
sequence. The method was trained and tested on a
set of 5102 hairpins and 5131 non-hairpins, obtained
from a non-redundant dataset of 2880 proteins using
the DSSP and PROMOTIF programs. Two machine-
learning techniques, an artificial neural network
(ANN) and a support vector machine (SVM), were
used to predict b-hairpins. An accuracy of 65.5%
was achieved using ANN when an amino acid
sequence was used as the input. The accuracy
improved from 65.5 to 69.1% when evolutionary
information (PSI-BLAST profile), observed secondary
structure and surface accessibility were used as the
inputs. The accuracy of the method further improved
from 69.1 to 79.2% when the SVM was used for
classification instead of the ANN. The performances
of the methods developed were assessed in a test
case,wherepredictedsecondarystructureandsurface
accessibility were used instead of the observed struc-
ture. The highest accuracy achieved by the SVM based
method in the test case was 77.9%. A maximum accur-
acy of 71.1% with Matthew’s correlation coefficient of
0.41 in the test case was obtained on a dataset previ-
ously used by X. Cruz, E. G. Hutchinson, A. Shephard
and J. M. Thornton (2002) Proc. Natl Acad. Sci. USA, 99,
11157–11162. The performance of the method was also
evaluated on proteins used in the ‘6th community-wide
experiment on the critical assessment of techniques
for protein structure prediction (CASP6)’. Based on
the algorithm described, a web server, BhairPred
(http://www.imtech.res.in/raghava/bhairpred/), has
been developed, which can be used to predict
b-hairpins in a protein using the SVM approach.

INTRODUCTION

Currently available high-throughput sequencing facilities
have generated a large amount of raw sequence data, making
it possible to know the sequences of an increasing number of
proteins. In contrast, there are a limited number of proteins
whose structure is known at atomic level. To reduce the ever-
widening gap between known sequences and known structure,
there is a need to develop accurate methods for protein struc-
ture prediction. The available methods for structure prediction
can be divided into three categories: (i) knowledge based
methods, (ii) ab initio methods and (iii) a hierarchical
approach. In the knowledge based approach, the rules are
first derived from known structures and then these rules are
used to predict the structure of proteins from their amino acid
sequences (1). The ab initio methods attempt to derive the
structure from first principles, i.e. without reference to any
experimentally determined structure. In the hierarchical
approach, first an intermediate structure (such as secondary
structure) is predicted from the amino acid sequence of the
protein and then this information is used to predict the tertiary
structure of the protein. This paper is an attempt to improve the
performance of hierarchal methods.

A large number of methods have been developed for pre-
dicting the regular secondary structures (a-helix, b-strand) and
coils in proteins. These achieve an average accuracy of �80%
(2–5). The prediction of tertiary structure from secondary
structure is the most difficult step for two reasons. First,
most of the methods can predict only the regular secondary
structures, which cover on average �50% of the residues of a
protein. Thus, these methods do not provide any information
regarding the remaining 50% of the residues, which form
irregular structures. Recently attempts have been made to
predict irregular secondary structures in a protein that includes
a-turns (6), b-turns (7–10) and g-turns (11). Among b-turns,
the type has been successfully predicted (12). Second, the
secondary-to-tertiary structure prediction route has not been
fully explored yet. In the past few years, methods have been
developed to predict tertiary structures from supersecondary

*To whom correspondence should be addressed. Tel: +91 172 2690557/2690225; Fax: +91 172 2690632/2690585; Email: raghava@imtech.res.in

� The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

W154–W159 Nucleic Acids Research, 2005, Vol. 33, Web Server issue
doi:10.1093/nar/gki588

 by guest on A
pril 27, 2011

nar.oxfordjournals.org
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


structures (predicted by taking the secondary structure as
input) (13–15). Approaches for predicting supersecondary
structural motifs fall into two main categories: the first is
based on finding different supersecondary structural motifs
in a protein sequence, all in one go, whereas in the other
category attempts are being made to predict special structural
motifs such as b-hairpins.

Supersecondary structure prediction is a field which is now
being explored. Sun et al. (13) employed an artificial neural
network (ANN) to predict 11 different commonly occurring
supersecondary motifs and achieved an accuracy ranging
between 70 and 80% and a Matthew’s correlation coefficient
(MCC) between 0.40 and 40.50. Cruz et al. (14) developed a
method for predicting b-hairpins in a protein. They used a
scoring scheme which utilized 14 scores based on alignment
and such properties as secondary structure, accessibility, pres-
ence of turns, specific pair interactions and non-specific dis-
tance based contacts. Using this approach they attained an
accuracy of 47.7% (–3.9). Kuhn et al. (15) attempted in
2004 to classify strand–loop–strand motifs by identifying
local hairpins and non-local diverging turns using amino
acid sequence as the input. This method, which attempted
to predict the beginning and end of a hairpin and diverging
turns or absence thereof, achieved an accuracy of 77.3% (–6.1)
in predicting hairpins.

In the present paper an attempt has been made to develop a
method for predicting b-hairpin motifs in protein sequences on
similar lines to the approach of Cruz et al. (14). The main
reasons behind selecting antiparallel b-hairpin structures were
(i) that, after the alpha/beta (a/b) domain, they comprise the
second largest group of protein domain structures, (ii) that
functionally this group is very diverse and is found in
enzymes, transporter proteins, antibodies and in viral coat
proteins and (iii) that it is ubiquitous and exhibits simplicity
of structure (16). In order to develop a classifier, we used two
machine-learning techniques, a support vector machine
(SVM) and an ANN, both of which are based on single
sequence information, evolutionary profile, surface accessib-
ility and secondary structure information (17,18). We trained
and tested the method on a dataset of 2880 proteins using
5-fold cross-validation. In addition, we also trained and tested
our approach on 534 proteins (referred to as Thornton’s dataset
below) used in the work of Cruz et al. (14). For a fair assess-
ment of a method, one should evaluate its performance on
protein structures not included in the dataset used for devel-
oping the method. To this end, we evaluated our method on all
63 proteins used recently in CASP6 (http://predictioncenter.
llnl.gov/casp6/).

MATERIALS AND METHODS

Dataset of b-hairpins and non-hairpins

The dataset was generated from a large set of 2880 non-
redundant (nr) protein chains of known structures, where no
two protein chains have a percentage identity >33% (obtained
from http://cubic.bioc.columbia.edu/eva/res/weeks.html#unique
on November 25, 2002). The following steps were performed
to generate the dataset.

(i) Secondary structure was assigned to each amino acid of all
the 2880 proteins using DSSP (18).

(ii) From these proteins 12 653 unique amino acid patterns
with secondary structure bcb (minimum two consecutive
amino acid residues in each state, later designated ECE
patterns) were extracted (14).

(iii) PROMOTIF (19) was used to assign b-hairpin status in
the 2880 proteins: 6675b-hairpins, among which 6549 had
unique amino acid patterns, were obtained.

(iv) A total of 5820 bcb patterns (obtained from step ii), which
were also assigned as hairpins by PROMOTIF, were finally
considered as b-hairpins; the remaining 6833 bcb patterns
were considered as non-hairpins.

(v) Only 5548 hairpins and 6322 non-hairpins with length
between 6 and 30 amino acid residues were kept.

The rationale behind selecting patterns of length 6–30 amino
acids was the requirement of the machine-learning techniques
for fixed-length patterns, as hairpin and non-hairpin patterns
cannot be used without fixing the length. Therefore, fixed-
length patterns of 17 amino acids were generated using the
steps described below.

(i) If pattern length was <17, residues flanking the peptide in
the primary amino acid sequence were appended at both
the ends.

(ii) If pattern length was >17, only those patterns were kept
for further study whose coil region was <10 residues
long.

(iii) In the case of pattern length >17 and coil region
<10 residues, the central coil residue was mapped and
9 residues from the left-hand side and 8 residues from
the right-hand side were taken.

In this way, a total of 5102 hairpins and 5113 non-hairpins of
length 17 were obtained.

Thornton’s dataset

A Dataset of 534 proteins was obtained from Cruz et al. (14). To
this dataset the same rules were applied to generate a library
of hairpins and non-hairpins of length 17. DSSP generated
2229 ECE patterns, of which PROMOTIF classified 1169
as hairpins and 1060 as non-hairpins. Finally, after excluding
the patterns with a chain break or heteroatom, 1076 b-hairpins
and 878 non-hairpins of length 17 were obtained.

Secondary structure and surface accessibility

The secondary structure and surface accessibility were
assigned using the DSSP program. The predictions of second-
ary structure and surface accessibility were made using the
PSIPRED and NETASA (20) programs, respectively.

Multiple sequence alignment and position specific
scoring matrices (PSSMs)

Multiple sequence alignment of each protein was performed
using PSI-BLAST (21) at threshold 0.001 against a nr protein
database (obtained from www.ncbi.nlm.nih.gov) with three
iterations. Intermediate PSI-BLAST generated PSSMs were
used as a direct input to the ANN and the SVM. The matrix had
21 · M elements, where M is the length of a pattern. Each
element in the matrix represents the frequency of occurrence
of each of the 21 amino acids at a given position in the
alignment.
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Feature representation. For the sequence based model, each
pattern was represented by 21 · 17 units, where 21 binary
vectors were used to represent an amino acid (20 for the
amino acid and one for terminal residues). In the case of
multiple alignment or evolutionary profile, the PSSM matrix
was used instead. In accessibility models, one unit was added
to represent the accessibility of residues: 0 for buried and 1
for exposed residues. Thus, accessibility models have 17 ·
22 units for each pattern. In the case of the secondary structure
model, three units were used in the test case and one unit was
added in the ideal case.

Artificial neural network

The artificial neural network was implemented using
Stuttgart’s neural network simulator (http://www-ra.
informatik.uni-tuebingen.de/SNNS/). A feed-forward neural
network with a back-propagation algorithm (22) was used
to discriminate between hairpins and non-hairpins.

Support vector machine

In this study, SVM implementation was achieved using the
SVM_light package (23), which provides a number of inbuilt
parameters and kernels (e.g. linear, polynomial, radial basis
function, sigmoid or any user-defined kernel). Three kernels,
namely, linear, polynomial and sigmoid with different kernel
parameters, were used for the training.

Consensus and combination prediction

In order to utilize the strength of both the ANN and SVM
based approaches, we combined their results in the intersection
and union modes, which are called the consensus and com-
bined prediction modes, respectively. Consensus and com-
bined approaches are analogous to the logical Boolean
operators ‘AND’ and ‘OR’. In consensus prediction, a pattern
predicted as a hairpin by both methods was considered to be a
hairpin; otherwise it was considered as a non-hairpin. In com-
bined prediction, a hairpin predicted by either of the two
methods was considered a hairpin.

Evaluation

Jack-knife test. The performance of any prediction algorithm
is often checked by cross-validation or jack-knife tests. In this
study the performance of all the methods and models was
evaluated using 5-fold cross-validation in which the dataset
was randomly divided into five equal sets, out of which four
sets were used for training and the remaining one for testing.
This procedure was repeated five times by changing the test
dataset, so that each set was used for training as well as testing.
The final performance was calculated by averaging over all
five sets. During ANN architecture optimization, training was
done on three sets; one set was used for validation to avoid
overtraining the network.

Performance measures. We used the following standard meas-
ures to estimate the performance of our methods: (i) accuracy
of prediction (Acc), (ii) MCC, (iii) sensitivity (Qo(H)) or per-
centage coverage of hairpins, (iv) specificity (Qo(Nh)) or per-
centage coverage of non-hairpins, (v) probability of positive
(or hairpin) prediction (Qp(H)) and (vi) probability of negative
(or non-hairpin) prediction (Qp(Nh)). See Supplementary

Material for detailed equations (http://www.imtech.res.in/
raghava/bhairpred/supli.html).

CASP6 proteins or independent dataset

We evaluated our method on all the 63 targets used in the
recently concluded CASP6 competition. We submitted the
amino acid sequences of these proteins to the BhairPred server
and compared the predicted hairpins with PROMOTIF
assigned hairpins. In addition, in order to evaluate the discrim-
inatory capability of the method, all ECE patterns were
sampled and the number of ECE patterns correctly classified
as hairpin and wrongly classified as non-hairpin was
computed.

RESULTS

The performance of the method was evaluated in two different
cases, the ideal and the test case. In the ideal or true prediction
case, only assigned values were used for training the algo-
rithm, whether it was the secondary structure or the surface
accessibility. The strategy adopted was thus similar to that of
Cruz et al. (14). However, this approach does not reflect the
true picture, because in real life the algorithm has to discrim-
inate between a hairpin and a non-hairpin solely on the basis of
sequence information; thus, the ideal case was used just to
ascertain the upper limit of performance of the method when
the highest quality of information (observed secondary struc-
ture and accessibility) was provided for training. We also
performed a real-life test of our method (later designated as
the test case), in which predicted information was used instead
of the observed information. Our aim was to demonstrate the
capability of our method to predict hairpins in real life, where
the secondary structure of the protein is not known.

ANN approach

A two-layered neural network architecture was constructed,
with a sequence-to-structure layer (PSI-BLAST profile used as
input) and structure-to-structure layer. The input of the second
layer or network is the output of first network and predicted
secondary structure obtained from PSI-BLAST (Supplement-
ary Figure S2). When only the amino acid sequence was used
as input, the ANN was able to distinguish between hairpins
and non-hairpins with an accuracy of 65.5%, with percentage
coverage of 58.4% for hairpins and 78.5% for non-hairpins
(Table 1). Accuracy and MCC were improved considerably
(65.5 to 67.0% and 0.31 to 0.34%, respectively) when the PSI-
BLAST profile was used as the input. Surface accessibility and
secondary structure, when supplemented with amino acid
sequence, increased the accuracy to 66.4 and 71.2%, respect-
ively. In the ideal case, the maximum accuracy and MCC
attained were 71.2% and 0.43, respectively. In order to
train the method, in the test case we used predicted secondary
structure and surface accessibility (real-life situation) with
PSI-BLAST profile. As shown in Table 1, a maximum accur-
acy of 67.1% and MCC of 0.37 could be achieved using the
ANN in the test case.

SVM approach

We achieved accuracies of 68.1 and 74.9% in the case of a
single sequence and multiple alignments, respectively, using
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the SVM technique (Table 2). This reflects the effect of evolu-
tionary information on the performance of the classification
method. Observed surface accessibility and secondary struc-
ture, when supplemented with amino acid sequence, increased
the accuracies to 69.9 and 74.2%, respectively (in the ideal
case). It is interesting to note that approximately the same
performance was obtained with multiple sequence alignment
as with the observed secondary structure. When all three sets
of information—namely, evolutionary profile, surface access-
ibility and secondary structure—were combined, in the ideal
case, an accuracy of 79.2% and MCC of 0.59 were achieved.
In the test case an accuracy of 77.9% and MCC of 0.56 were
obtained using the predicted secondary structure and access-
ibility (Supplementary Figure S3). These results clearly indic-
ate the superior performance of the SVM over the ANN in the
prediction of b-hairpins.

Combination of SVM and ANN

In order to utilize the capabilities of both approaches the pre-
diction outputs of SVM and ANN were combined (Table 3).
Supplementary Figure S4 shows the sensitivity and specificity
of the consensus approach using the SVM (default threshold)
and different thresholds of the ANN. As can be seen from the
figure, it is possible to achieve high specificity of hairpin
prediction but the sensitivity decreases drastically. However,
the sensitivity may be increased at the cost of specificity or the
probability of correct prediction. As shown in Supplementary

Figure S5, the sensitivity increases but the specificity
decreases in the case of the combined approach. The rationale
behind using the consensus or combined approach lies in their
inherent properties. The consensus approach would be an ideal
choice if high specificity were desired during prediction,
whereas the combined approach should be used if high
sensitivity (detection of most of the hairpins) is desired.

Performance on Thornton’s dataset

We also trained and tested our approach on datasets used in
the past by Thornton’s group (14). The performance of the
SVM based method on this dataset is shown in Supplementary
Table S1. The performance of our method decreased by 2.2,
4.1 and 6.8%, respectively when amino acid, the ideal case
(combined information) and the test case (combined informa-
tion) were used. With the ANN, performance dropped by 7.4
and 3.2% in using amino acid and sequence-to-structure net-
work, respectively (Supplementary Table S2). These results
clearly indicate that the performance of the method depends
on the size and quality of the dataset. When the difference in
performance of our method on our and Thornton’s dataset was
analyzed, it was observed that, although the performance
decreased, the trend remained the same.

Performance on CASP6 proteins

To perform an impartial review of our methodology, we
predicted hairpins in all the 63 CASP6 proteins using our
web server (http://www.imtech.res.in/raghava/bhairpred/).
To avoid any bias, during this prediction we did not optimize
any prediction parameter (e.g. threshold) on the server. The
following information was obtained for each protein:
(i) number of ECE patterns predicted by PSIPRED, (ii) num-
ber of ECE patterns predicted as hairpins by BhairPred and
(iii) number of predicted hairpins also assigned as hairpins by
PROMOTIF. The mapping between ECE patterns, predicted
hairpins and observed hairpins, along with the amino acid
sequences of the proteins, is depicted diagrammatically in
Supplementary Figure S1 (http://www.imtech.res.in/raghava/
bhairpred/supli.html). A total of 201 ECE patterns were found
by PSIPRED. The length of these patterns varied from 6 to >20
amino acid residues. After fixing the length at 17 residues, only
180 patterns remained. Out of these, 132 (73.33%) ECE pat-
terns (47 hairpin and 85 non-hairpin; sensitivity 60.25% and
specificity 83.33%) were correctly predicted by BhairPred
(Table 4). Hairpins assigned by PROMOTIF were also

Table 1. Prediction results with the 2880 protein dataset using the ANN

Approach Coverage (%) Probability (%) Accuracy (%) MCC
Qo(H) Qo(Nh) Qp(H) Qp(Nh)

AA 58.4 78.5 68.1 63.7 65.5 0.31
MSA 66.7 67.3 66.7 53.4 67.0 0.34
AA + ACC_O 60.9 72.0 68.5 65.0 66.4 0.33
AA + SS_O 67.9 74.4 72.8 70.1 71.2 0.43
Seq–Str
network (SS_O)

58.5 80.7 75.1 66.2 69.6 0.40

Seq–Str
network (SS_P)

56.5 77.5 71.5 64.2 67.1 0.37

AA: amino acid sequence; MSA: multiple sequence alignment; ACC_O:
observed accessibility (DSSP); SS_O: secondary structure observed (DSSP);
seq: sequence; str: structure; SS_P: secondary structure predicted (PSIPRED).

Table 2. The performance of our SVM based modules on 2880 proteins using

5-fold cross-validation

Approach Coverage (%) Probability (%) Accuracy (%) MCC
Qo(H) Qo(Nh) Qp(H) Qp(Nh)

AA 63.7 72.4 69.7 66.7 68.1 0.36
MSA (1) 77.3 72.4 73.7 76.3 74.9 0.49
AA + ACC_O (2) 69.1 70.6 70 69.7 69.9 0.39
AA + SS_O (3) 67.9 80.4 77.5 71.6 74.2 0.49
Hybrid
(1 + 2 + 3)

82.6 75.7 77.2 81.4 79.2 0.59

AA + ACC_P (4) 64.1 71.9 69.5 66.9 68.0 0.36
AA+ SS_P (5) 68.9 72.3 71.2 70.0 70.6 0.41
Hybrid
(1 + 4 + 5)

76.2 79.6 78.8 77.1 77.9 0.56

AA: amino acid; MSA: multiple sequence alignment; ACC_O: observed
accessibility (DSSP); SS_O: secondary structure observed (DSSP); SS_P:
secondary structure predicted (PSIPRED); ACCP: predicted accessibility.

Table 3. Performance of the consensus and combined approaches on the 2880

protein dataset

Consensus prediction Threshold Combined prediction
Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

76.1 79.6 0.1 98.9 10.6
75.1 79.8 0.2 94.8 27.5
72.2 80.7 0.3 89.3 43.4
67.6 82.2 0.4 84.9 55.7
61.5 84.6 0.5 81.6 64.7
53.1 87.4 0.6 79 71.9
41.3 91.2 0.7 77.4 76.4
25.7 95.7 0.8 76.4 78.9
5.8 99.8 0.9 76.2 79.5
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examined (a total of 159 hairpins in all 63 proteins). Compar-
ing PROMOTIF assigned hairpins with PSIPRED predicted
ECE patterns, we found 27 exact matches the secondary struc-
ture of the hairpin and the ECE pattern were the same), 51 non-
exact matches (the predicted and observed regions overlap, but
the secondary structure of a few residues did not match) and 61
entirely misaligned secondary structure patterns (ECE pattern
not predicted in the hairpin region; for detail see Supplement-
ary Material). BhairPred was able to correctly predict 22 out of
27 hairpins (81.48% accuracy) in the case of exact matches,
and 25 hairpins in the case of non-exact matches of secondary
structure patterns. The performance of the BhairPred server in
different categories of CASP6—namely comparative model-
ing (CM), fold recognition (FR) and new fold (NF)
discovery—was also examined. Although the method per-
formed reasonably well in the CM and FR categories, it
was found to be unsuccessful in the NF category, which
was due to the failure to correctly predict the ECE pattern
by PSIPRED in the NF category (Table 5). These results
unambiguously established the dependence of the BhairPred
server on the performance of PSIPRED. In other words, if the
ECE pattern is correct, BhairPred can predict hairpins with
high accuracy.

Web server

A web server, BhairPred, was developed to predict b-hairpins
in proteins using an SVM method, based on algorithms dis-
cussed in this paper. The server performs the following steps:
(i) it accepts protein sequences from the user in any standard
format (FASTA, PIR, EMBL); (ii) it predicts the secondary
structure using PSIPRED; (iii) it identifies the bcb regions in
the protein; (iv) it generates an alignment profile for the pro-
tein using PSI-BLAST; (v) it predicts surface accessibility in
the protein using NETASA and (vi) finally it predicts whether
the identified bcb regions are hairpins or non-hairpins from
predicted secondary structure and PSI-BLAST profile. The
BhairPred server provides various options to users, including
selection of an appropriate threshold value for predicting b-
hairpins (Supplementary Figure S6). It also allows output to be
presented in tabular format with complete details of the pre-
dicted sheet–coil–sheet patterns in proteins and, among these
patterns, specifies which are potential b-hairpins (Supplement-
ary Figure S7). The server also provides advanced options
such as assigning user-defined secondary structure to query
the protein instead of using the predicted secondary structure
obtained from PSIPRED.

DISCUSSION

In proteins, a few secondary structures are arranged in a def-
inite, simple geometrical shape to form supersecondary struc-
tures. These supersecondary structures are the building blocks
of the 3D structures of proteins, which are also called struc-
tural motifs. Many times these structural motifs are associated
with specific functions. Accurate prediction of supersecondary
structures can be one important step toward building a tertiary
structure from the specified secondary structure. There is thus
a need to understand supersecondary structures, particularly
the linker regions which connect regular secondary structure
a-helices and b-strands. There are a number of well-defined
structural motifs, e.g. a–a and b–b motifs, a–b and b–a
arches and a–a and b–b corners. One of the frequently occur-
ring motifs in proteins is the b-hairpin, which connects two
adjacent antiparallel hydrogen bonded b-strands. In proteins,
several adjacent antiparallel b-sheets are found, but they need
not be connected with each other by either covalent or non-
covalent bonds. Thus, the prediction of b-hairpins is very
important because it can reduce the number of possible
folds available to that protein. So far as the prediction of
protein structure is concerned, recently Cruz et al. (14)
described an approach that predicts hairpins from predicted
secondary structures. They demonstrated successfully that
their approach could identify the hairpins with significant
accuracy, much higher than that obtained by random
prediction.

In this study, an attempt has been made to develop a better
and quantitative method for discriminating hairpins from non-
hairpins, on similar lines to Cruz et al. (14). Cruz et al. (14)
compared the bcb regions against a library of b-hairpins with
the same number of residues and calculated 14 scoring terms
from the alignment. These scoring terms were used as the input
units of a neural network to discriminate between the potential
hairpins and non-hairpins. They used the machine-learning
method ANN, which is more qualitative than quantitative,
and a major limitation was to get similar types of known
hairpins. In the present method, we have worked with
fixed-length hairpins and non-hairpin patterns, generated
either by appending or by trimming at the pattern terminus
(see Materials and Methods for the detail process). Patterns
obtained in this way were used as input to the ANN and the
SVM. In this study we have shown, for the first time, the
importance of evolutionary information in predicting super-
secondary structures (in this case b-hairpins), an importance

Table 4. Performance of BhairPred in predicting of ECE patterns as hairpins or

non-hairpins

CASP6
categories

No. of
proteins

No. of ECE
patterns

No. of
discarded
ECE patterns

TP TN FP FN

ALL 63 201 21 47 85 17 31
NF 4 7 0 0 4 2 1
FR(A) 6 12 1 4 4 1 2
FR(H) 10 23 1 6 6 4 6
CM 20 55 8 11 24 5 7

ALL: number of target proteins in CASP6; NF: new fold; FR(A): fold recogni-
tion (analogous); FR(H): fold recognition (homologous); CM: comparative
modeling; TP: true positives; TN: true negatives; FP: false positives;
FN: false negatives.

Table 5. Performance of Bhairpred on hairpins assigned by promotif in CASP6

proteins

CASP6
categories

No. of
proteins

No. of
hairpins
(Promotif)

Exact
matching
ECE

Non-exact
matching
ECE

Non-exact
at all

ALL 63 159 27 (22)a 51 (25) 61
NF 4 9 0 1 (1) 7
FR(A) 6 9 2 (2) 4 (2) 3
FR(H) 10 20 4 (3) 8 (3) 6
CM 20 46 5 (4) 13 (7) 20

aCorrectly predicted hairpins by Bhairpred in parentheses.
ALL: number of target proteins in CASP6; NF: new fold; FR(A): fold recogni-
tion (analogous); FR(H): fold recognition (homologous); CM: comparative
modeling.
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that known to hold for secondary structures. Besides this, from
the result obtained, it was also evident that the evolutionary
profile contains more information than the simple amino acid
sequence. This conclusion is also supported by the improved
performance of the SVM as well as the ANN when a PSSM is
used for training (Tables 1 and 2; Supplementary Tables S1
and S2). We also trained, developed and evaluated the per-
formance of the same algorithm on the dataset used by Cruz
et.al. (14). Although the performance was inferior, the trend
remained the same. It was thus inferred that the learning ability
of any machine-learning technique is directly proportional to
the size of the dataset used for training.

The real strength of any prediction method can be estimated
only by evaluating its performance on an independent dataset.
In our case we used the CASP6 proteins as an independent
dataset to evaluate the performance of our method. As shown
in Results, BhairPred performed reasonably well on the
CASP6 proteins. It was observed that the performance of
BhairPred depended to a great extent on the performance of
PSIPRED, since it is the PSIPRED predicted secondary struc-
ture through which ECE patterns were extract.

The present method could discriminate between hairpins
and non-hairpins with very high accuracy if the predicted
secondary structure was correct. Because of this, we incorpor-
ated the option to give the secondary structure to the BhairPred
server. One of the major things reported in this paper was that
the method developed can predict with high accuracy non-
hairpin ECE regions in proteins, thereby reducing the number
of theoretical folds available to any protein, and thereby bring-
ing down the effort and time for protein folding. Thus the
method can be a good tool for protein structure prediction.

One of the limitations of the approach presented is that the
length of patterns of a number of hairpins and non-hairpins had
to be fixed, resulting in the removal of those which did not
satisfy the criteria laid down. Thus, the result obtained should
not be compared with that of Cruz et al. (14), because in that
procedure all hairpins and non-hairpins were considered,
whereas in the present case only those bcb regions which
satisfy the conditions described were considered. An average
of 20% of hairpins and non-hairpins were excluded from our
dataset. Therefore, the method given in this paper should be
considered as a supplement to that of Cruz et al. (14). It is
hoped that this study will be a useful addition to protein
tertiary structure prediction.
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