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The orientation of a solute probe in a binary mixture often exhititstiple relaxation times at the

same solvent viscosity but different compositio8eddardet al, Nature (London 294, 145

(1981)]. In order to understand this interesting observation, we have carriedN&iT)( molecular
dynamics simulation study of rotation of prolate ellipsoids in binary mixtures. The simulations show
that for a broad range of model parameters the experimental behavior can be reproduced. The plot
of orientational relaxation time versus the solvent viscosity, the latter changed by varying the
composition, shows a nonmonotonic viscosity dependence. The nature of the plot is found to depend
on the system parameters, especially on the solute—solvent interactions. A mode coupling theoretical
analysis of this complex dependence of the rotational relaxation t@ the binary viscosityy

is presented. The theory can qualitatively explain the origin of the multiple relaxation time at the
same Vviscosity.

I. INTRODUCTION Conventionally the rotational diffusionD{R) for a

) o ) spherical rotor is given by the well-known Debye—Stokes—
Multicomponent systems are ubiquitous in nature.ginstein(DSE) relation

Among them, the binary mixtures are particularly relevant to

solution chemistry since the properties of the solvent can be

tuned by varying the composition. This is why the properties D= KT , (1)

of binary mixtures are intensely investigated both experi- Crmus

mentally and theoretically. Although the static and dynamical

properties of many mixtures are well characterized, a generalherekgT is the Boltzmann constant times the temperature

theoretical framework especially to understand the dynami¢T), % is the viscosity of the liquid medium, is the spe-

cal properties is still lacking. cific volume of the molecule, an@g is a constant which is
While the elegant theory of Buff and Kirkwood can be equal to 3 in DSE theory but often left as a fitting parameter.

used to explain many aspects of static propeftieach a According to the slip boundary condition, for a spherical

theory is not available for the dynamical properties. This isrotor Cx=0, which seems unrealistic. This paradoxical result

somewhat surprising given the fact that the dynamical propwas resolved by Hu and ZwanZigwho have shown that a

erties in a binary mixture show exotic features which posaeasonable value fdDy is obtained if the solute is approxi-

interesting challenges to theoreticians. Among them, the exmated by a spheroid.

trema observed in the composition dependence of excess Experimentally one usually measures the orientational

viscosity? and the anomalous viscosity dependence of theime correlation functionC,(t) (I is the rank of the spherical

orientational relaxation time are certainly the most impor- harmonic coefficienis Now, if the Debye rotational diffu-

tant ones. Although the nonideality in the compositionsion model is assumed, then the relaxation timg)( is

dependence of the viscosity has been addressed retentlgiven by

the anomalous behavior of the orientational dynamics is yet

to be explained from theoretical or computer simulation nr=[1(1+1)Dg] "% 2

studies.

. In a binary mixture there exist three d_ifferent potential Although some experimental results can be explained
|nterapt|ops, two length SC"’_‘IeS’ and two dlfferenf[ masses. 'ﬁsing the DSE relation, there are many which show deviation
combination of all these different parameters gives rise 1%rom the DSE behavior. Beddasd al3* have used the pico-
several microscopic time scales in the system. Thus, thegacong fluorescence depolarization technique to study the ro-
equilibrium and dynamical properties in these systems argyiiona| relaxation time of dye cresyl violet in alcohol—water
considerably different from those of one-component fluids iy re by varying the alcohol composition. They have re-
In fact, very little understanding of a binary mixture can be e different rotational relaxation times in solutions at the
obtained by studying a one-component system. In particulaggme yiscosity but different compositions. They have also

the orientational relaxation of a solute in a binary mixture ,antioned that this effect depends on the specific interac-
poses interesting questions which cannot be addressed by thg,\

study of a one-component solvent.

Although the role of specific interaction in the orienta-
tional dynamics has often been discussed and the effect has
dElectronic mail: bbagchi@sscu.iisc.ernet.in been included in the DSE relation by changing the boundary




0.75 present the potentials and the systems used in this study. In
Sec. Il the simulation results and discussions are presented.
The mode coupling theoretical analysis is given in Sec. IV.
The article concludes with a few remarks in Sec V.
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II. SYSTEMS AND SIMULATION DETAILS

A series of molecular dynamics simulatiopsonstant
pressure P), temperatureT), and constant total number of
particles (N)] of isolated prolate ellipsoids in binary mix-
tures has been carried out. Pressure is kept constant by
12 14 18 18 20 22 24 Andersen’s piston methotiwhile in the case of temperature
a damped oscillator method has been adopted which keeps
temperature constant at each and every ¥éfhe piston
FIG. 1. The reduced orientational relaxation timgg, plotted against the mass involved here is 0.0027 / ai), which is regarded as

0.55

0.50

: ()

Uij=46ij

1 12

r—o(r,uy,U,)+1

6

4

: ©)

reduced viscosity of the binary mixture;*, is shown by the filled circles. _optimum.lo'll

e e o oo aniomee I the binary mixture let us denote the two Species as

the direction of the arrows shows the increasing composition of A particles. A’ and “B.” The composition (x) of the binary mixture is

The study is performed al*=1.0 and P*=1.0, for model Il. 75,  varied, where composition of A and B particles is denoted as

= mor\(€ga/Mac) and 7* = noa/maegs. xa and yg, respectively. The total number of molecules in

the system is 504, where there are 4 ellipsoids which are
placed far from each other and 500 solvents which include

condition’® a detailed study of the rotational dynamics in aPoth A and B types of molecules.

binary mixture has not been carried out yet to the best of our ~ The interaction between the particles is modeled by dif-

knowledge. ferent potentials. The interaction between the spheres in the
In the work reported here, extensive MD simulationsbinary mixture is given by the Lennard-Jones poter(id)

[constant pressurd?), temperatureT), and total number of 12 6

molecules N)°7 of isolated prolate ellipsoids have been (ﬂ) _(ﬂ)

carried out in several binary mixtures. The primary goal of r r

this study is to understand the anomalous viscosity depen- ) ) . ) )

dence of the orientational relaxation time,§). From our ~ Where “i”and “j” denotes two different particles which can

study of several systems we propose a set of model systerR9th be A or both B or one A and the other B. .

where the orientational relaxation time of the ellipsoid is The' Interaction between two ellipsoids with arbitrary

found to be different in the solution at the same viscosity buPrientations is assumed to be given by the Gay—-B¢@#)

different compositions. When plotted against viscoghy potentiaf

varying the composition the orientational relaxation time

shows a re-entrance..ln a binary m.i>.<ture the viscosity it;elf is Ugs= 46(?,&1,02){ (

known to have a nonideal composition dependérdgut, it

is found that this nonideality in viscosity alone cannot ex-

plain this re-entrance af,g. The nature of the re-entrance is _ 1

found to depend on the system parameters, especially on the r—o(r,uy,Uy)+1

specific interaction of the solute with the solvents. If the

solute has different interactions with the two spe¢@esent wherel, G, are the axial vectors of the ellipsoids 1 and 2.

in a binary mixturg, then the macroscopic properti¢r  is the vector along the intermolecular vector,—ry,

example the viscosilyof the solvent are not the unique de- wherer; andr, denote the centers of mass of ellipsoids 1

terminant of the solute dynamics. A plot of the rotationaland 2, respectivelyo(f,0,,0,) and e(7,0,,0,) are the

relaxation time against the solvent viscosity for a systenprientation-dependent range and strength parameters, respec-

which shows a typical re-entrant behavior is given in Fig. 1.tively. o and € depend on the aspect ratia Finally, the
The results obtained from the simulations are explainednteraction between a sphere and an ellipsoid is accounted

from a mode coupling theoretical analysis. It is been showrfor by a modified GB—LJ potential given below

that, unlike in one-component system, the inverse propor- 12 6

tionality of the rotational diffusion of a solute and the solvent o(ei| [ o0

viscosity(as given by the DSHs absent in a binary mixture. r r

Ugi=4eg;

This is because in a binary mixture the expressions of both
the rotational diffusion and viscosity are quite complex andwhere “E” denotes the ellipsoids and
involve different time and length scales.
The organization of the rest of the article is as follows. o( g)Ei:(b/z—jLRi),
In the next section we discuss the simulation details and V1—X? cog 0

can be A or B.
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TABLE |. The reduced mass, size, and interaction energies for solvent A The viscosity is calculated from the simulations using

and B and also for the ellipsoid E for models I, Il, and lll. The mass is (o microscopic expression for the time-dependent shear vis-

scaled bym,, size byo,, and interaction energy parameter &y . . L . .
Y Yo wP % cosity, which is formulated in terms of stress autocorrelation

Parameters Model | Model 11 Model I function and is given b1)5'16

oA 1.0 1.0 1.0 (1) =(VkgT) X "4 0)¥(t)), (11
og 1.0 0.66 0.66 i i

an 0.5 0.7 0.7 whereo** is the off-diagonal element of the stress tensor
€se 1.0 1.0 1.0 N

o o o o o= 3 [(pfpfim)) + Fx]. 12
mg 1.0 0.33 0.33

L 2.0 2.0 3.0 Here,FjZ is thez component of the force acting on tfth
a 1.0 1.0 1.0 particle and the corresponding position of fftie particle is
ZEA 1(2) (1)"31 (1)'2 X;j. p; is thez component of the momentum of thia par-
mEEB 10 10 10 ticle andm; is its mass. The summatignincludes all the

solvents. The viscosity is scaled kimaegg/ oa.

Ill. RESULTS AND DISCUSSIONS

where @ is the angle between the major axis of the ellipsoid In this section we will present the simulation results and
and the vector joining the centers of the sphere and the eliscuss their interpretations.

lipsoid. A. Re-entrance of orientational correlation time
Ri=ail2, () The re-entrance behavior is shown in Fig. 1. Here, the
rotational relaxation time is plotted against the viscosity by
a’—Db?/4 : e L -
X = all , ®) varying the composition. The system in this study is de-
a’+ Ri2 scribed by model I[see Table)l The maximum of viscosity

is obtained at compositiog,=0.4, where its value is 2.66

times the value ajy,=0.0. The rotational relaxation time
2 varies by a factor of 1.5. The essence of re-entrance is nicely

_RiZ, (9) captured in Fig. 1. _ o

Note that although Fig. 1 has the same qualitative feature
as the experimental pldtthere exists some differences in the
details. These details of the plot are sensitive to the interac-
tion parameters, in agreement with the observations of Bed-
dardet al3

and
a= \/ (b?+R?)

wherelL is the major axis of the ellipsoid artalis the minor
axis of the ellipsoid.

All the quantities in the simulation were scaled to appro-
priate units, the density bzy;‘", the temperature byzg/Kg,
and the time by\/(mAaAzleBB)—the scaled quantities are
denoted byp*, T*, andt*, respectively.

In this article, simulations of three different systems, re-
ferred to as model I, model I, and model IIl are reported. ~ To understand the role of specific solute—solvent inter-
The models differ in the values of the mass, size, and specifigctions in this anomalous behavior efz, we have per-
interactions of A, B, and E. The specific values for the mod-formed a study by keeping the mass and the size of the two
els are presented in Table I. All the simulations were carriedpecies in the binary mixture the same. The mass of the
out atP* =1.0 andT* = 1.0, where the pressure is scaled by€llipsoid is also kept the same and its minor axis is kept
(egglod). equal to the radius of the sphergsodel ). The results ob-

The time stepAt used to simulate model | is 0.001 and tained for this system are plotted in Fig. 2. It is clear from the
that for models Il and IIl is 0.0005. The system was equili-figure that this model, too, can exhibit the re-entrant behavior
brated for 1.5 10° time steps and after that the averagesoOf the orientational relaxation time when plotted against sol-
were obtained over another}Q‘LO’f’ time Steps_ In each case vent ViSCOSity. A|thOUgh the mass and the size do change the
we ran at least five independent simulations and took th¥alues of ther,g and », and thus the details of the plot, the
averages. specific interactions of the ellipsoids with the solvents A and

To study the orientational correlation timgg, we have B play the key role in this anomalous behavior gf. In
calculated the single particle orientational correlation functhis system the maximum of viscosity is obtained at compo-

L/2+R,
b/2+R;

B. Sensitivity of re-entrance to mass, size, and
specific interactions

tion, defined by sition x4,=0.2, where its value is 1.67 times that g;=0.
. . The orientational relaxation time varies by a factor of 1.28.
P (u;(0)u;(t The composition in this plot is varied from 0-0.6.
cf(t):< 1(Ui(0)u;(1))) 10 P P

NG ' In Fig. 3 we plot the orientational relaxation time against
P (u;(0O)u;(0
(Pi(u(0)ui(0)) the viscosity for an ellipsoid with aspect ratie=3 (model
for I=2. P, is the Ith-order Legendre polynomiak,g is  1ll). Here, the binary mixture is the same as in model Il. The
obtained by integrating oveZ3(t). plot shows a sharp re-entrance. This can be attributed to two



0.95
0.904 /

0.85

12 R

0.80

0.75

0.70 T . T . T . T
25 3.0 35 4.0

n.

FIG. 2. The reduced orientational relaxation timgg, plotted against the

reduced viscosity of the binary mixturegy, is shown by the filled circles. Xa

Tor Shows a re-entrance. The solid line is a guide to the eye. The composi-

tions of the A particles are 0, 0.08, 0.2, 0.4, and 0.6, where the direction oFIG. 4. The composition dependence of the reduced viscosity is shown by
the arrows shows the increasing composition of A particles. The study ighe filled circles. The solid line is a guide to the eye. The dashed line shows
performed atT* =1.0 andP*=1.0, for model |. 7%= Tmm the ideal behavior of viscosity in a binary mixture. The study is performed at
and 7* = 702/ Mpezp. T*=1.0 andP* = 1.0, for model Il. 7* = o/ yMaegp.

different reasons. First, the difference in interactions of the
ellipsoid with molecules A and B is less than that in model 1. _ o .
Second, for a larger ellipsoid the time scale of rotation is”7(Xa)/ 7(xa=0.04). The dashed line is the result obtained

comparable to that of the dynamics of the solvent. Thus, iffom the DSE relation where, is calculated from Eq(1)
probes a more average solvent dynamics. and Eq.(2) by using the viscosities plotted in Fig. 4. From
this figure it is obvious thathe nonideality in viscosity in a
binary mixture cannot alone explain the re-entrance

The study here shows that, in a system where the solute
interacts with the two different species in a binary mixture in

In Fig. 4 we plot the simulated viscosity against the g gifferent manner, the rotational relaxation of the solute will
composition. The viscosity shows a nonideal behavior. Th%epend more on the composition than on the viscosity of the
ideal behavior is given by the dotted line. This nonideality in binary mixture. Thus, the re-entrant type behavior is strongly

the composition dependence °5f the viscosity has been digjgnendent on the interactions of the solute with the two dif-
cussed at length by Srinivaet al. ferent species in the solvent.
We next investigate whether the nonideality in viscosity

alone can reproduce the observed anomalous behavior of the
orientational relaxation time. In Fig. 5 we have shown the
ratio of 7r(xa)/Tor(xa=0.04) against the ratio

C. Can nonideality in viscosity alone explain the re-
entrance?
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FIG. 3. The reduced orientational relaxation timgg, plotted against the  FIG. 5. The ratior,r(xa)/ T2r(xa=0.04) against the ratio;(x)! 7(xa
reduced viscosity of the binary mixture;, is shown by the filled circles.  =0.04) is shown by the filled circle. The solid line is a guide to the eye. The

7,r shows a sharp re-entrance. The solid line is a guide to the eye. Theashed line shows the plot of the same, but hgpéy,) is calculated from
compositions of the A particles are 0, 0.04, 0.15, 0.2, 0.4, 0.6, 0.8, and 1.(Egs.(1) and(2) of the text using the simulated viscosities. The compositions
where the direction of the arrows shows the increasing composition of Aof the solvent are the same as in Fig. 1 and the direction of the arrows shows
particles. The study is performed @t =1.0 andP*=1.0, for model lll.  the increasing composition of A particles. The study is performedi*at

5= Tor\(€as/Ma0a) and 7* = noa/\Myep. =1.0 andP* =1.0, for model II.



IV. MODE COUPLING THEORY ANALYSIS

OF THE NONHYDRODYNAMIC BEHAVIOR Ne(re, Qg t) = Yim(Q6))
(2m)
The inverse proportionality between orientational diffu-
sion of a tagged particle and the liquid viscosity can be ra- XE J dk eik'rECFn];(k)ﬁpj(k,t),
tionalized either from Navier—Stokes hydrodynamics or i
from microscopic mode-coupling theory. The former pre- (15)

scription does not change in going from single component to
binary mixture and thus fails to account for the multiple Where dpj(k.t) is the Fourier transform ofdp;(r,t)
values of the rotational correlation time at a fixed V|sc05|ty pl(rl ’t) poj » Wherepy; is the average density of the sol-
The mode coupling theoryMCT), on the other hand, sug- entj. C (k) is the Imth coefficient in the spherical har-
gests a completely different scenario and is more in agreemgn'C expansion of the direct correlation function
ment with the results observed in present simulations. NS (k {2g) term, which is the Fourier transform @(re )
though quantitative calculation of the correlation time of an—'j »€2€)- The above expression of torque is now substi-
ellipsoid in binary mixture(or even in a one-component lig- tuted in Eqg.(14) to obtain the following expression for the
uid) has not been carried out yet, we can draw some generdme-dependent friction:
conclusions from the structure of the equations.

Thus, we present here an analysis of the nonhydrody- /g pp(t)— ke Tps E J dk kZZ [(1+1)
namic behavior of the rotational relaxation time/rotational
diffusion, within the mode coupling theoretical framework.
The analysis is qualitative, the aim here is to show that the (k C \/WF”(I( v. (16)
logic behind the validity of the hydrodynamic theory in a In the above expressmﬁi'j(k,t) is the dynamic structure
one-component system cannot be extended to a binary mixXactor or the intermediate scattering function of the liquigl,
ture. is the density of the solvent, ang is the mole fraction of

Let us assume thate(rg,Qg,t) denotes the position species. We believe that the above expression of rotational
re, orientationQg, and time-dependent number density of friction in a binary mixture is presented for the first time over
the ellipsoid E at time. p;(rj,t) is the position- and time- here.
dependent density of the solvgntvherej represents both A- A similar expression for the mode coupling part of the
and B-type of solventsN(rg,Qg,t) is the torque on a viscosity in a binary mixture can also be writter? as
tagged ellipsoid atr,Qg,t). The expression of the torque

is given by’ kgT E * 3 (S ” Q) dt B2kt
Mop™ ijifat/)y
6072 1] O S (q)
17
Ne(re :QEyt):kBTVQEE f dr{ whereS;;(q) andS/,(q) are the static structure factor and its
J derivative, respectivelyr,, is the characteristic time for the
XCEJ(rE—rJ’ QF) 5pj(rj' 1), (13 Gaussian decay of the binary viscosity.

The above two expressions take simpler forms in a one-

component syste'® An analysis of the recovery of the
CEl(rE—r ,Q¢) is the angular direct correlation function hydrodynamic condition for a one-component system has

between the ellipsoid E and the solvegnt been presented recentfiin a dense liquid, most of the con-
The orientational friction can now be given by Kirk- tribution to the wave vector integration comes from the in-
wood'’s formula, which expresses the friction as an integratermediate regime where the static structure factor of the
over the torque—torque time correlation functibn liquid, S(q), has a sharp peak. In this region, the dynamic
structure factor or the intermediate scattering function,

F(k,t), of a neat liquid is diffusive in nature and can be

% 1 given by the following simple expression:
fR,pp:_f dtﬁf drg dQg(Ng(rg, Qg ,0) )
2kgTJo ™ F(k,t)=S(k)exp(—Dgk“t/S(k)). (19
Ne(re, Qg ,t)), (14  This equation, when substituted in the expression of rota-

tional friction, g, for a one-component liquid yields the

following expression for the friction:
where( . . .) involves averaging over the initial solvent con-

figurations and also solvent dynamics when the position and ksTps

the orientation of the solute probe are held fixed. CRipp= 16773[)0] dk Sk)z (1 +1)Cl(K). (19
In the subsequent steps one writes the integral in the

wave vector k) space and expands the direct correlation ~ This equation can be recast in the following form:

function in the spherical harmoni¢s the framework where

k is taken parallel to the axis). Straightforward algebra

leads to the following expression of the torque:

TRDO_ fdk S(k)El (1+1)C2 (k). (20)



This expression has the nice feature that the terms on thetational relaxation time cannot be explained only in terms
right-hand side are purely static and determined by local coref the nonideality in viscosity. The solute—solvent interac-
relations. HereD, is the translational diffusion of the sol- tions play a key role. If the difference in the interactions of
vent molecules. the solute with the two species in the solvent is not large,

With the same diffusive assumption for the dynamicthen the re-entrance will be shatas shown in Fig. band
structure factor, one can show that the collective part of vissimilar interactions of the solute with the two different spe-
cosity is related to translational diffusion by the following cies will lead to DSE type behavior.

relation: A qualitative mode coupling theoretical analysis of the
nonhydrodynamic behavior has also been presented. We
Dyn= kgT fwdk R[S’ (K)/S(K)T2S(K). (21) havg argued thqt be_cause of the_complex_ strugture of. the
12072 J) o rotational relaxation time and the viscosity, in a binary mix-

__ ture, a simple proportionality between them does not exist.
From Eqs.(20) and (21), D, can be eliminated and the Further, note that the response of a binary mixture to an

inverse proportionality betweer, and can be established. external probe is sensitive to the composition fluctuation,

A similar analysis for the binary system needs the ex-__ " . L
pressions for the,;(k,t). Approximate expressions for the particularly when the solute—solvent interaction is different

dynamic structure factors are available. Even these appro for the two species. Thus, the spatial and dynamical correla-

: fions of such fluctuations could be of importance. Our pre-
mate expressions have complex dependence pandDyg. I ; : i
. ._liminary study shows that in a neat binary mixture the cor-
Thus, the productgyz cannot be expressed in terms of static

. X . relation length of composition fluctuation is less tha. 3
guantities alone. Moreover, diverse length and time scale a8\ namical correlation of a binarv mixture at short lenath
present in Eqs(16) and (17). Given the diversity of the y Y g

svstem. it is naive to expect the presence of such sim Iscale is yet to be studied in detail. In the mode coupling
Y ! . P P P ﬁ'leory these static and dynamical correlations of the compo-
proportionality betweeny and 7.

A one-loop calculation of the binary viscosity within the sition fluctuation are taken into account through the wave

. . number and frequency-dependent dynamic structure factor.
mode coupling theoretical framework already extsTese : . . )
) . . - Here, we would like to mention an interesting phenom-
calculations could explain the nonideal composition depen- . : . :
. . - : enon observed in the study of the orientational relaxation.
dence of the viscosity. A similar full MCT calculation of the . . . . S i
. - . The orientational correlation function for ellipsoids with as-
rotational friction should be able to explain the re-entrance, .
ect ratio 2, ajy,=0 and even foegg= 0.7, was found to be

This is a nontrivial calculation and remains an exercise to bgscillatory with an initial Gaussian part. This free-rotor-like

addressed in the future. Our aim here was to show thag L ; .
just from the expressions of rotational friction and viscosity .eh_awor Is usually exp.ected n .the gas p_hase but not in a
J liquid at reduced density 0.8vhich is typical of normal

in binary mixture, it can be argued that there exists no sim-

: ) ; ~liquids). To analyze this surprising phenomenon we have
slyeng:rc:ip():c;rnonahty betweeng and as predicted by hydro simulated the radial distribution functioggg(r) and found

that it does not have any structure. It starts from zero, then
V. CONCLUSION slowly rises, and eventually at large™saturates at 1. Due
éo the absence of any solvent structure around the solute, the

In this article we presented computer simulation studie i o T
and mode coupling theoretical analysis of the orientationagens'ty contribution to the friction is small, although the den-
ity is above 0.8. The binary contribution to the friction is

relaxations in binary mixtures, with an aim to understand the’ ler b ; bined effect of this radial di
re-entrant type behavior observed by Beddatdl® when ~ SYEN SmMaller because of a combined etiect of this radial dis-

the orientational correlation function is plotted against Vis_tr|but|on function and small value of the specific interaction.

cosity. As we noted earlier, this interesting problem haSThus, the small friction at short and intermediate time leads

drawn surprisingly little attention from theoreticians. As cor- to tr]rehfree;rotor—llke fbtehhavlog f orientational d L
rectly discussed by Beddardtal® and emphasized by € relevance ot the study ot orientational dynamics in

Fleming® the orientation relaxation of a solute probe in a PMary mixtures goes beyond the observed re-entrance. Ori-

binary mixture is determined by many factors and viscosityemat,lon;]il relaxatlort; Thafbt'r?ary mﬁutre 1S pa(;t_lcullarlyl;_rel-
ceases to be the unique determinant. evant when one or both of the constitutes are dipolar. Binary

We have performed isothermal—isobaribl#T) MD m!xtutr(at§ ar? dalso k_nowr]: ttr? belp?tentlaLglass dformers. gh?
simulations of isolated Gay-Berne ellipsoids in binaryOrlen ational dynamics ot the solute can be Used as a probe 1o

Lennard—Jones mixtures. From this study, we have propose%gdy the r_\et.eroge_neous _dynam|cs n supercogled .b|n_ary
different model systems which show the anomalous viscosit?j'Xt.ure'. T.h's is an interesting problem and work in this di-
dependence of orientational relaxation time, similar to thal ection is in progress.

observed in the experimert4.7,z, when plotted againsi

by varying the composition of the solvent, shows a re-
entrance. Our study suggests that this re-entrant type behav- One of authorgS.B) would like to thank Dr. S. Rav-

ior could be a general feature of orientational relaxations irichandran, whose program for GB ellipsoids was a great help
binary mixtures. The three different models presented hera developing the code used here. Thanks are also due to R.
are examples of the kind of systems where thg of the  Vasanthi, Arnab Mukherjee, Goundla Srinivas, and Rajesh
ellipsoid when plotted againsy will show such re-entrant Kumar Murarka for help and discussions at various stages
type behavior. This anomalous viscosity dependence of thef this work.
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