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S U M M A  R Y 

Possible deviations in the regular . . .ABACA. . .  
sequence of  stacking (0004) close-packed planes in 
the double hexagonal close-packed (d.h.c.p.) struc- 
ture have been considered. Six intrinsie and one 
extrinsic type stacking faults have been suggested. The 
schemes of  stacking sequences have been usefully 
considered in terms of  the configurational symbols 
suggested by Jagodzinski. Extending the Hirth and 
Lothe procedure, estimates of  theoretical fault 
energies are given in terms of  the number of  pairs of  

planes of  separation N which are not in the scheme of 
perfect structure sequence. Relative fault energies 
have been arrived at reckoning only the first and 
second nearest neighbour interactions for three 
ideal situations: 
(a) the transformation eneroy of  d.h.c.p, structure 
to either f.c.c, or h.c.p, structure is the same; 
(b) d.h.c.p. ~ f.c.c, transformation occurs; and 
(c) d.h.c.p. ~-- h.c.p, transformation occurs. 

Z USA M M E N F A  SS  UNG 

M6gliche Abweichungen yon der regelm6fligen Sta- 
pelfolge . . . ABACA.. .  von dichtest gepackten (0004)- 
Ebenen in der doppelhexagonalen (dhcp) Struktur 
wurden untersucht. Sechs intrinsische und ein ex- 
trinsischer Stapelfehler werden vorgeschlagen. Ein 
Schema der Stapelfolgen wird an Hand der yon 
Jagodzinski vorgeschlagenen Konfigurationssymbole 
aufgestellt. Unter Erweiterung des Hirth-Lothe- 
Verf6hrens wurden Abschgitzungen der theoretischen 
Stapelfehlerenergien durchgefahrt; dabei wurde die 

Zahl N der Trennebenenpaare, die nicht in die 
richtige Stapelfolge passen, beriicksichtigt. Relative 
Stapelfehlerenergiewerte wurden gefunden, indem 
far drei ideale Falle nur die Wechselwirkung zwischen 
niichsten und i~berndchsten Nachbarn beriicksichtigt 
wurde: a) Die Umwandlungsenergien yon einer 
doppelhexagonalen in entweder eine flgichenzentrierte 
oder hexagonale Struktur sind gleich, b) dhcp ~ fcc- 
Umwandlung findet statt und c) dhcp ~ hcp-Um- 
wandlung tritt auf 

R E S U M E  

Des perturbations possibles dans r empilement r~ou- 
lier de plans compacts (0004), dans l'ordre 
. . .ABACA. . .  qui caractOrise la structure hexago- 
nale compacte double ( h.c.d.), ont OtO examinees. Six 
types de d~fauts d'empilement intrins~ques et un 
type de dOfaut extrinsbque sont proposOs. Pour 
schOmatiser les diff~rents ordres d'empilement des 
plans, les symboles de configuration introduits par 
Jagodzinski ont OtO utilis~s avec profit. Moyennant 
une g~n~ralisation de la mOthode de Hirth et Lothe, 
on peut donner une estimation de l'Onergie th~orique 

des dOfauts en fonction du nombre de paires de plans 
d' espacement N qui ne sont pas disposks dans l' ordre 
de la structure parfaite. Des valeurs relatives de 
l'Onergie de dOfaut ont ~t~ obtenues en ne tenant 
compte que des interactions entre premiers et seconds 
voisins; elles ont conduit aux trois rOsultats suivants: 
(a) l'~nergie de transformation de la structure h.c.d. 
en structure c.f.c, et en structure h.c. est la m~me; 
(b) la transformation h.c.d. ~- c.f.c, est possible et 
(c) la transformation h.c.d. ~ h.c. est possible. 
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l .  INTRODUCTION 

Mucti work is available concerning stacking faults 
in f.c.c, and h.c.p, structures. These close-packed 
structures are conveniently looked upon as result- 
ing from stacking of identical hexagonal nets of 
atoms with the three possible stacking positions 
denoted as A, B and C. B and C positions are dis- 
placed with respect to A by + S respectively, where 
S is a vector of the type a/6 (112) in the f.c.c, struc- 
ture and a/3 (1010) in the h.c.p, structure. The f.c.c. 
and h.c.p, structures are formed respectively by 
stacking of (111) and (0002) close-packed planes 
in the sequences ...ABCA... and ...ABA... respect- 
ively. Stacking faults in these structures represent 
deviations from the perfect schemes, the condition 
of close packing, however, not violated. Possible 
types of stacking fault have been given in terms of 
the operator notation 1, namely A and V to denote 
translations of + S (A --* B ~ C ~ A) and - S (A 
C ~ B ~ A )  respectively. Nabarro z has suggested 
the use of configurational symbols 3 for describing 
the faulted sequences of close-packed structures. 
In this notation close-packed planes are desig- 
nated c or h depending on whether the neighbours 
on either sides of these planes correspond to 

cubic (AI3C) or hexagonal (A~3A)close packing. 
Frank 4 has identified a basic distinction between 
two types of fault, namely intrinsic and extrinsic. 
In intrinsic faults the perfect stacking scheme of each 
half of the crystal extends to the fault plane, while 
in extrinsic faults the fault plane does not belong to 
the crystal structure on either side of it. Christian 
and Swann 5 have reviewed the work on classification 
of stacking faults, their quantitative measurement 
and implication in mechanical behaviour of f.c.c. 
and h.c.p, metals and alloys. Hirth and Lothe 6 have 
indicated a useful method for estimating theoretical 
stacking-fault energy for the different types of fault 
in f.c.c, and h.c.p, structures on the basis of violations 
of atom-pair bonds using the hard-sphere model 
with the assumption of central forces. 

The present work is concerned with the double 
hexagonal close-packed (d.h.c.p.) structure. The 
d.h.c.p, structure is formed by repetition of the 
(0004) close-packed planes in the sequence 
...ABACA .... which in the operator notation is 
... AVVA... and in the configurational notation is 

h c 
...ABAC... Rare-earth metals americium, cerium, 
lanthanum, neodymium and praseodymium crys- 
tallise in d.h.c.p, structure 7. Jayaraman s has no- 

ticed a general tendency in f.c.c, metals to trans- 
form first to the d.h.c.p, structure under high pres- 
sure. An h.c.p. --. d.h.c.p, transformation under high 
pressure has also been observed 9. Many interme- 
diate phases 1°'11 are known to be of the d.h.c.p. 
type. Following the procedures established for f.c.c. 
and h.c.p, structures, we enumerate in this paper the 
possible stacking faults in the d.h.c.p, structure and 
'the Burgers vectors of the partial dislocations bound- 
ing the faults. The theoretical fault energies have 
been estimated on the basis of a modified Hirth and 
Lothe procedure. 

2. DISLOCATIONS IN THE D.H.C.P. STRUCTURE 

We list in Table 1 possible dislocations and their 
Burgers vectors in d.h.c.p, structure shown in Fig. 1 
(a). Ideal c/a ratio of x / ~  has been assumed for 
calculation of b I values. Imperfect dislocations 
attached to stacking faults and composite disloca- 
tions with marginal stability, i.e. whose energy is 
equal to the sum of energies of the two component 
dislocations, have been included. In analogy with 
Thompson tetrahedron 12 for the f.c.c, structure and 
the bipyramid and the double tetrahedron respect- 
ively suggested by Berghezan et al. 13 and Damiano 14 
for the h.c.p, structure, a double tetrahedron is 
shown in Fig. 1 (b) in which possible dislocations in 
the d.h.c.p, structure can be conveniently illustrated. 
It may be noticed that the base of the tetrahedron 
in Fig. 1 (b) has sides whose lengths are double the 
lattice vectors in the basal plane. 

B' B; 
c 

a~ 

A 

A o A 2 

B6 B ~  2 B5 c 

(o) (b) B4 

Fig. 1. Notation for Burgers vectors of dislocations in d.h.c.p. 
structure. 
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TABLE 1 : DISLOCATIONS IN THE D.H.C.P. STRUCTURE 

Dislocation Notation in Fig. 1 Miller-Bravais b 2 
for b notation for b 

Perfect B1B~ (0001) ~ a  2 
B~B~ ½(i2i0) a 2 
B 1B~ ~ ( i2 i3 )  ~-a 2 

Shockley #B1 ½(i010) ½a 2 

Frank ~fl ¼(0001) ~a 2 
~fl ½(0001) ]a  2 
~'fl ~(0001> 6a 2 

Frank + ~B 1 (ctfl + fiB 1) ~2 (4043) a2 
Shockley yB~0,fl+flB~) -~ (~023) 3a 2 

ct'Bl(Ct'fl +fiB1 ) i~(4049) ~ a  2 

Frank+ ~fll(~fl+flfll) A(gg43) ~a 2 
Perfect 7fll (~fl + flfll) ~(2423) k3~a 2 

o~'flx(ct'fl+flfll ) A(4949) 7a 2 

Shockley + flB'~(flB~ +B~B~) ½(i013) l l a  2 
Perfect fiBs(fiB1 +B1Bs) -](TIO0) -~a 2 

flB~(flB~ +B1B~) ~<2203> 12a 2 

3. STACKING FAULTS IN THE D.H.C.P. STRUCTURE 

It is convenient to typify each fault by the virtual 
process that leads to its formation. The process so 
defined also naturally leads to the type of partials 
bounding the fault. Basically there are three opera- 
tions, viz. glide, removal and insertion of layers of 
close-packed planes. Removal and insertion of up 
to three layers can be considered for the d.h.c.p. 
structure. When the operations of removal and in- 
sertion cause violation of close-packing conditions, 
the initial operation is followed b3; glide by+S.  In 
terms of partial dislocations, faults resulting from 
glide are bounded by Shockley partials (+S) and 
those arising on account of removal or insertion of 
one (-T-¼F), two (T-½F) and three (T-~F)layers by 
Frank partials. Here F is the vector [-0001]. Where 
removal and insertion are combined with glide the 
bounding dislocation is a composite of Frank and 
Shockley partials. 

In Table 2 are listed the various operations and the 
faults. It is very useful to adopt the configurational 
notation. When a fault occurs there are interrup- 
tions in the regular ... ch ch... sequence of the per- 
fect d.h.c.p, structure. In the last column of Table 2 
are given the number of interruptions of the first 
kind, namely when c is not followed by h or when h 
is not followed by c layer, as well as the number of 
interruptions of the second kind, namely when chc 
or hch sequences do not occur. A notation for faults 

P. RAMA RAO 

is also suggested in terms of c and h layers that do 
not form part of a continuous ... ch ch... sequence, 
similar to the notation in terms of A's and V's. 

Only those faults are further discussed in this 
paper which lead to a minimum number of inter- 
ruptions of the stacking rule in any operation. 
When the number of interruptions of the first 
kind happen to be equal for two or more faults, 
those that lead to the smallest number of interrup- 
tions of the second kind are considered. It is also 
clear that two different operations can lead to the 
same fault, e.g. removal of two layers (No. 5 in 
Table 2) and insertion of two layers (No. 4(a) in 
Table 2) lead to Intrinsic-hh fault. In all, the follow- 
ing six intrinsic and one extrinsic type fault are 
considered important: 

1. Intrinsic-c 
2. Intrinsic-h 
3. Intrinsic-ch 
4. Intrinsic-cc 
5. Intrinsic-hh 
6. Intrinsic-ccc 
7. Extrinsic-hcc 

It is also possible to see from Table 2 that the con- 
figurational notation is preferable to the operator 
notation. Unlike in the f.c.c, and h.c.p, structures, 
interchange of A for V or vice versa do not mean 
the same fault. The ultimate structure that results 
on successive introduction of any fault is also imme- 
diately indicated by the present notation. Thus 
Intrinsic-c fault transforms the d.h.c.p, structure to 
f.c.c, structure, Intrinsic-h fault to the h.c.p, struc- 
ture. The stacking fault resulting from shear, if 
successively repeated, brings back the original 
structure. This is clear from the notation ch. 

4. ESTIMATION OF THEORETICAL FAULT ENERGY 

In the f.c.c, and h.c.p, structures, an Nth neighbour 
pair of planes in the perfect crystal can only be 
either like or unlike, e.9. in the perfect f.c.c, structure 
the second nearest neighbour planes can only be 
unlike (A-C, B-A) while in the perfect h.c.p, struc- 
ture like (A-A, B-B). A distortional energy fin may 
therefore be associated with every pair of planes of 
separation N which is not in the proper sequence. 
Hirth and Lothe have given expressions for the fault 
energy in terms of q/N multiplied by the number of 
such pairs of planes. For the d.h.c.p, structure, how- 
ever, the second nearest neighbour planes in the per- 
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fect crystal itself can be either like (A-A) or unlike 
(B-C). There may thus be an excess like or unlike 
second nearest neighbour pair of planes in different 
faults implying opposite kind of fault energies. This 
and related anomalies are overcome if the close- 
packed planes are identified by the configurational 
symbols. We can then represent the interaction 
energy of like Nth neighbour pairs of planes by SN 
and of unlike pairs by DN. The configurations of 
planes in the pair are given in the superscript. Thus 
in the perfect structure the first, second, third and 
fourth neighbour interaction energies are respect- 
ively D] h or Oh ¢, S~ ~ or D~ h, D~ h or D~ ~ and S]~ or 
S ]h. Consideration of symmetry and stability of the 
structure suggest that 

ch  h c  
D 4 N _  3 = D 4 N -  3 (1) 

cc h h  
S 4 N  - 2 ~" D 4 N  - 2 (2) 

eh hc 
D 4 N -  1 "-~ D 4 N -  1 (3) 
S]% = S,~ h (4) 

When a fault occurs, some layers change their po- 
sition and configuration and consequently the 
interaction energies, e.9. D] ~ may become either 
D] ~ or D~x ~. The distortional energy 0N is the differ- 
ence of the interaction energy in the faulted struc- 
ture from that in the perfect structure. It is ob- 
vious that in contrast with the treatment of Hirth 
and Lothe, the distortional energy is no longer the 
same for all pairs of planes of same separation N 
which are not in the proper sequence and the total 
distortional energy is not a simple multiple of ON. In 
terms of the S's and D's, we define the distortional 
energies as follows (N ranges from 1 to oo except 
for ~k~ N_ ~, ~k~v-3 and ~ / 4 N - 3  where the range is 
from 2 to oo): 

0 4 N -  3 - -  cc Dc h  - -  D 4 N - 3 - -  4 N - 3  

~/ , n h h  o c h  
4 N  - 3 : z " 4 -N  - 3 - -  4-N - 3 

0 ~ N - 3  K*cc / ' ~ c h  : ° 4 N  - 3 ~ z " 4 N  - 3 

~ t 4 N -  3 = ch ch ~tt S 4 N -  3 - -  D 4 N  - 3 

~ 4 N - -  3 = h h  ch  " "  S 4 N -  3 - -  D 4 N  - 3 

cc  h h  
~ 4 N -  2 = D 4 N -  2 - -  D4N- 2 

! 
I ] / 4 N  -- 2 K~hh r ~ h h  

~ 4 N  - 2 - -  a - " 4 N  - 2 

- lr~eh Dhh  
4N - 2 = z ' 4 N  - 2 - -  4N - 2 
t i t  ~ 4 N  - 2 ffch /~hh 

O 4 N _  2 - - . V 4 N _  2 

K~ec r ~ e h  ~ / 4 N - I  = O 4 N - I - - ~ L " d - N -  i 

0 4 N  -- 1 h h  c h  ' = D 4 N -  1 - -  D 4 N -  1 

tt cc ch 
1 ~ 4 N -  1 : D 4 N  - 1 - -  D 4 N  - 1 

(5) 

(6) 
(7) 

(8) 
(9) 

(10) 
(11) 
(12) 

03) 
04) 
(15) 
(16) 

. . . .  h ch (17) 
~ I 4 N  - 1 = S 4 N  - 1 - -  D~N- z 

[ / / 4 N  - 1 h h  c h  (18) " "  : S 4 N - 1 - - D 4 N - 1  

g',*N = O ] ~  - S~% (19) 

ff~N =D~,~ -- S~v (20) 

~'~} = D~r - S]% (22) 

The fault energy 7 can now be written by adding 
the appropriate distortional energy terms. We give 
below the fault energies (I and E in suffix to 7 refer 
to Intrinsic and Extrinsic faults respectively) as 
also ?TC and YXn which represent respectively the 
d.h.c.p. ~ f.c.c, and d.h.c.p. ~ h.c,p, transformation 
energies per layer. The limits for the summation 
are always N = 1 to oo. 

7,-o = ¢ ~ + x [2N0Z~_ ~ + ( 2 N -  2) 0:~;,- 2 

+ ( N -  1) ~b~N_ z + 2 N ~ N -  a 

+ N0:~;)_ 1 

+ 2N~k~N + 2N~b~ 

+ (2N + 1) ~b4N +~ + 2N~k~N + 1] (23) 

?i- h = ~O'~ + E [ ( 2 N -  2) ~ N -  2 + 2 N ~ _  2 

+ 2N~O~,N_ 1 + (2N-- 1)~k~N- a 

+ 2Nq':~N + 2Sq'2;, 

+ 2N~k4N+ 1 + ( N +  1)~k~N+ ~ 
+U0:~;,+l] 

~I - ch = ~/1 -t- 0 1  nt- ]~ E(2N- 2 )  04N- 2 

+ (U - 1) ¢':~N- 2 
+2~:~N_2 + 2~:~;,_2 

q- ~ 4 N -  1 -t- 2 ~  N _ 1 

2N 2 . . . . . . .  + (  - )0 ,N- l+¢ '4N-1  

+ ( 2 N -  1) ¢',N + 20:~N 
+ 2~:~;, + ( 2 N -  1) ~:~;; 

+ 2~k4N+ 1 + 2~kN+ 1 

+ 2Nqs~;~+ 1] 

7t-cc = 2qsz +Y~ [ ( 2 N -  1)~k,N_ 2 + 2~k~N_ 2 

+ 2~;~N- 1 + 2 N ~ v _ I  

t t t  + 2N~k4N + 2~b4N 

+ 2~4N + 1 + 2U0:~;d 

(24) 

(25) 
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7,- hh = 20'1 + X [ ( 2 N -  1)q/~,N- 2 + 20~N- 2 

+20 : ,N- ,  

+20~} +2N0~}  

+ 20~,N + 1] (27) 

~l- ooo = 301 + z [20, , ,_  ~ + (4N - 2) 0 : ~ -  

+ ( 2 N -  1)04N- I + 202N- 1 

+ 20~}-~ + (2N - 2)0~}_1 

+ 204 ~ + (4N - 2) 0 ~  + 20;~} 

+ 2 0 ~  +, + (2N - 1)0~,u+ 1 

+ 2N0~u + 1] (28) 

YE-hc~ = 20~ + 0'1 -- 02 + 20~ 

+ X [ 20 ,  ~_ 2 + (4N - 4) 0 ~ -  2 + 20~v- 2 

+ ( 2 N -  2)04~-1 -~- ( 2 N -  1)0~,u- ~ 

2,t, . . . . .  ~'¢s- t + 2 0 4 ~ -  1 

+ 204s + (4N - 2 ) 0 ~  + 20~iv + 0 ~  

+ 2 0 4 N  + 1 + 0 ; N  + 1  -F ( 2 N -  1)0~N + 1  

+ 20;~}+ 1 + ( 2 N -  1 ) 0 ~ +  1] (29) 

])TC = ~ [ 0 6 N - 5 - ] - 0 6 N - 4 + 0 6 N - 3  

q- I//6N- 2 -~- 0 6 N - 1  + 1 0 6 N ]  (30)  

~TH = ~] [ I / /2N- 1 "At- 0~$N- 1 ] '  (31) 

0 t = 0 1 ,  0 ~ = 0 1 ,  0 ~ = 0 7 ,  

5. COMPARISON OF FAULT ENERGIES 

We shall consider only the first and second neigh- 
bour interactions in order to be able to compare 
the fault energies for the following three idealised 
situations : 

1. ])TC = ~TH and ~i- c = ])I- h 

which gives 

2. YTC >~ ~)TH a n d  71-c  >~ • l -h  

which gives 

01 = 01 = 0 7  = go,  

3. 7TC '~ TTH and 7i- c ~ 71- h 

which gives 

0t  = 0 g = 0 ~ = ~ -  

~YTC >~ ]2TH and 7TC ~ '~TH correspond respectively to 
cases where d.h.c.p.~h.c.p, and d.h.c.p.~-f.c.c. 
transformations occur. In Table 3 are listed the 
fault energies for the above three cases. 

When 3'TC = ~TH and Intrinsic-c and Intrinsic-h 
faults have equal energy, this energy is one-half the 
energy associated with Intrinsic-ch faults. Faults 
consequent to removal and insertion of single layers, 
namely Intrinsic-ccc and Extrinsic-hcc respectively, 
have the highest energy. Faults arising on account 
of insertion of two layers with or without glide, 
namely Intrinsic-cc and Intrinsic-hh respectively, 
have the same energy, which, interestingly enough, is 
lower than that of the fault due to insertion of single 
layer. When ~TC ~ ~TH Intrinsic-c faults and when 
7TH ~ ~'TC Intrinsic-h faults have minimum energy. 

In an actual situation, however, as observed by 
Gallagher 15, formation barriers may restrict the 
amount of faulting of various types which in no way 
should be taken to imply that the corresponding 
energies are in the same ratio as observed numbers 
of faults. The picture appears to be clear only with 
regard to Intrinsic-ch faults requiring only nu- 
cleation of a Shockley partial dislocation. These 
must be present in deformed d.h.c.p, crystals. It is 
difficult to predict the barriers for faults which 
require insertion or removal of close-packed planes. 

TABLE 3: STACKING FAULT ENERGIES IN THE D.H.C.P. STRUCTURE 

Fault Fault energy 

7TC ~ 7TH ~TC ~ 7TH 7TC=TTH 

1. In t r ins i~c  q/1 + 2~9~ oo 
2. Intr insic-h ~ ~'~ + 2~b~' 
3. In t r ins i~ch  oo oo 
4. Intrinsic-cc 2~t  + @2 +2¢~ 
5. Intr insic-hh go 2~] + ip~ + 2~p~' 
6. Intrinsic-ccc 3~1 + 21//2 + 2 ~  
7. Extrinsic hcc oo oo 

O l + 2 0 ~  

2ff 1 + 40~ 
2Ol + ~2 +20~ 
201 + 02 +20~ 

30~ + ~2 + 40~ 
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