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When radiation is scattered by a medium, a part of its momentum is transferred to the target
particles. This is purely a mechanical force which comes into effect when radiation is not coherently
interacting. This force is known in literature as radiation pressure. Recent experimental studies have
demonstrated the feasibility of using radiation pressure of a laser beam as a tool for cluster
formation in solution. In this paper we describe the Brownian dynamics simulation of solute
molecules under the perturbation induced by laser radiation. Here the force field generated by a laser
beam in the fundamental mode is modeled as that of a two-dimensional harmonic oscillator. The
radial distribution function of the perturbed system gives indication of high inhomogeneities in the
solute distribution. An explicit analysis of the nature of these clusters is carried out by calculating
the density—density correlation functions in the plane perpendicular to beam dirg¢tith; and

along the direction of beamg(z), they give an average picture of shell structure formation in the
different directions. The relaxation time of the first shell structure calculated from the van Hove
correlation function is found to be relatively large in the perturbed solution. This is the signature of
formation of stable nanoclusters in the presence of the radiation field. Our study on the dynamics of
solute molecules during the cluster formation and dissolution gives the duration of collective
relaxation, far away from the equilibrium to an equilibrium distribution. This relaxation time is
found to be large for a perturbed solution.

I. INTRODUCTION principle of conservation of momentum of incident
Study of cluster formation in the solution is a subject of radiation?® There are two kinds of forces arising from the

great current interedt Often the route used is a chemical SCattering of radiation. One is along the direction of propa-
reaction, followed by aggregatidhRecently, however, an gation of radlat!on gnd the second one gives the transverse
interesting technique has been developed where radiatigfPMmPonent, which is due to the scattering of a beam of ra-
pressure is used to selectively bring together specific pa,dlatlon with an asymmetric distribution of intensity by the
ticles and form a cluster. The merit of this technique is thaf@rget particle. This creates a net force on the particle due to
clusters of desired shape can be formed which gives thithe difference in the momentum transferred at different parts
technique a special advantage. In this work, we present gf the target particle. The first experimental evidence of ra-
Brownian dynamics simulation of such a cluster formation indiation pressure using sophisticated experiments after the ad-
a uniform solution. This study reveals microscopic aspects ofent of the lasers can be found in the celebrated work of
such a cluster formation. Ashkin, where he reported acceleration of a single micro-
Interaction of electromagnetic radiation with atoms andparticle by radiation pressure. His successive works con-
molecules via absorption and emission gives insight into théirmed the effect of radiation pressure on huge biomolecules,
structure and dynamics of inner degrees of freedom. If thdatex particles, eté.
incoming radiation is not resonantly interacting, this interac-  This work pursues a different aspect of the problem,
tion gives rise to a pure mechanical pressure which could beamely the statistical behavior of a collection of interacting
independent of the internal structure of atoms and moleculesnolecules under the stable external force field created by a
The radiation pressure is the mechanical pressure exerted kyser beam. Recently Masuhagfial ®~** carried out exten-
radiation due to the partial transfer of the momentum of rasive experimental work on microparticle formation in the
diation while it is reflected or refracted. Alternatively, radia- solution by a radiation field. They also reported an analysis
tion pressure can be defined microscopically as the forcef the potential arising from the radiation which is found to
experienced by a particle, when the dipole induced by exterhe harmonic in nature. These experiments look into the clas-
nal field on the particle tries to minimize its energy by re-sical many-body problem of cluster formation under an in-
positioning. Debye in 1909 carried out a complete study ohomogeneous force field. Another interesting aspect of the
radiation pressure on spherical particles of arbitrary size angroplem is the dynamics of formation of such clusters under
optical constant® The most general derivation of the mag- the radiation field and dissolution of them when radiation is
nitude of force generated by the radiation can be done by thgitched off.
The organization of the rest of the paper is as follows:
3For correspondence: bbagchi@sscu.iisc.ernet.in Section Il gives the details of modeling of radiation pressure




as a harmonic potential. The details of the Brownian dynam- ,Toi

ics simulation are given in Sec. lll. Results obtained fromthe ~ Fj(r)=— ZanW—z, (7)
simulation are described in Sec. IV. Some concluding re- 0

marks are presented in Sec. V. or

Il. THEORETICAL FORMULATION Fi(r)=—krg;, (8)

Here we are interested particularly in the incoherent in-where
teraction of the molecules with radiation. For a coherent
beam of radiation having Gaussian intensity distribution in = .
the plane of cross-section the force field experienced by a Wo

molecule can be modeled analogous to that of a tWopgnce the force due to the radiation pressure of a laser beam

dimensional harmonic oscillator with force constanthen i, the fundamental mode can be approximated by a harmonic
the electromagnetic radiation interacts with a dipole it eXPepotential. The magnitude of the electric field can be calcu-

2aE?2
° 9)

riences a Lorentz forcé lated from the power of the lasét.
F=(p-V)E+ 1ap XE 1

. A . IIl. SYSTEM AND SIMULATION DETAILS
where E is the electric field in the plane of beam cross-

section andp is the dipole moment. This e>§pression can be  |n the model simulated here, the solute molecules move
arranged using the vector identify- VE=3VE?~EX(V  in the solution under the force field generated by the sum of
XE) and p=aE, « is assumed to be the positive mutual interactions and the external field generated by the

polarizability*? radiation pressure. Hence the motion of the solvent is analo-
1 1 J(EXB) gous to that of a Brownian particle which moves under the
F=a EVE2+ </ (20 random forces in a potential well. Hence a Brownian dynam-

c

ics simulation***%is the most suitable method for tracing the

Due to the heavy mass of the scatterer, the force in the ddynamics of solute molecules in the solution. In the Brown-
rection of beam can be neglected, hence the total force cdan dynamics simulation the solute molecules are selectively

be approximated by first term of E(R) simulated as moving under the friction or resistance gener-
ated by solvent molecules. In our simulation the equation of
F=aiVE? (3  motion is obtained by integrating the single particle Lange-

It ident f thi tion that the f due to radiati vin equation, hence all the hydrodynamic effects are ne-
IS evident from this equation that the force due to radialiony o wteq - Simulation is confined to the particle rays of the

depends on the gradient of the magnitude of electric field .i'faser beam since the difference in the angle between any two

r}%ys falling on a different part of a single molecule is negli-
gible. In addition to this the entire simulation box occupies a
small volume in comparison with the region of cluster for-
mation in experimental arrangements u&etthence the ap-
proximation used here is quite justifiable.
_ZrSj Other details of the simulation are as follows: A system
Uj=Up €X T) 4 consists of 500 molecules are selected for simulation. The
0 simulation is carried out inside a cubical bttke schematic
whererd;=x’+y?, rq; is the displacement gth molecule ~ diagram of the simulation box is given in Fig); this box is
from the radiation axis in tha-y plane.wy is the spot size placed in the positive quadrant of the coordinate system.
which is much larger thamy;. u, is the intensity at the Hence the position coordinates along they, andz axis
center of the beam. Then the corresponding magnitude ofary from zero tol, wherel is the length of the simulation
electric field is described bE=E, exp(—rgjlwg). The force  box. In this simulation the box length is computed from the
experienced on thgh molecule by this stable potential well density of solute molecules and it is approximately 14 is
created by this laser beam can be derived by substituting thikle molecular diametgrin this simulation. Intermolecular

the laser beams is in the TElmode!® Hence the intensity
distribution function is a Gaussian in tle-y plane with the
direction of beam propagation along thdirection. Intensity
of the beam as experienced by file molecule is

relation in Eq.(3) interaction is modeled through a Lennard-Jones potential
) or2 with a cutoff atr;;=2.5¢. The intermolecular interactions is
ro' - I’O- H b
Fi(r)= —aES—zJ exp( > J). (5 9ivenby
Wo Wo
(o o
Sincew;o>rg;| the Gaussian can be expanded in powers of ~ Uii =4e ﬁr r_léj’ : (10

2rgj/W(2)* . ,
) Hence total potential energy; on theith molecule due to
2rg; ( 2rg; ) the intermolecular interaction is given by

(6)
Vi=> vij - (11)
]

with in zeroth order approximation it can be written as
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=./e/mc?t. The simulation is performed at a high concen-
tration of the solute molecules at' =0.2 and atT*=1.2.
Here this external potential has the symmetry of a cylinder.
That is, all the molecules situated on the curved surface of a
cylinder, which is centered at the radiation axis, will experi-
ence a force equal in magnitude toward the center. Hence the
bins which are used for recording the density are concentric
cylindrical shells centered at the radiation axis. These shells
are constructed such that all of them have equal volume.
The simulation starts from an fcc configuration and it is
equilibrated with 20 000 simulation steps. Periodic boundary
condition is used in all the three directions. The equation of
motion is integrated with the time stép=0.005. Positions
of solute molecules are recordédithout perturbatioh in
the next 18 steps, from this the radial distribution function
[g(r)] is calculated, which can be defined in terms of delta
function ag®

1 N
g(r):N—p<z ;] 5(r+rj—ri)>.

g(r)=g(r) in a homogeneous system. The conventional ra-
dial distribution function gives the distribution of the mol-
ecules in a homogeneous solution. Since the application of
radiation pressure create a strong inhomogeneity in the solu-
tion, here the conventiong(r) cannot say much about the

(15

FIG. 1. The schematic diagram of the simulation box is shown in the figuredistribution of molecules ox—y plane and in the direc-

The disk and the cylinder used for calculatig¢r*¥) and g(rizj) are sche-
matically drawn here. The thickness of the disk and the diameter of th
cylinder are samea=o).

Here radiation is passing symmetrically through the center of

the x-y plane of the simulation box and its direction of
propagation is along the axis. Therefore the Gaussian in-
tensity distribution of radiation is situated symmetrically
around the center of the-y plane. The radiation force from

this Gaussian beam is modeled as generated by a tw
dimensional harmonic potential and it can be written as

V= k2, (12
The total potential energy is given by
Viota= 2 Vj+ ViR, (13)

tions explicitly. To overcome this difficulty we have calcu-
Sated the density—density correlation function in tkey
plane, which can be defined in terms of delta function as

, (16)
|Az|<0.50

N
1
g =g5| 2 2 arHr=r)
Np =y !

wherer®=r—z (or r¥ is the projection of displacement in
thex—y plane andAz is the projection of displacement be-
é\fveen two molecules along theaxis). In the homogeneous
Solution the distribution function is related to thér) by the
relation lim,,_og(r*¥)=g(r), since all the directions are
equivalent in a homogeneous solution. Similarly a distribu-

tion function along thez axis can be defined as

1 N
g(z)zN—p<E ; 5<z+zj—zi>> (17)

|ArXY|<0.50

By integrating the single particle Langevin equation, equawherez is the projection of displacement along thaxis and

tion of motion is obtained as

A DfAt
r(t+At)=r(t)+ KaT

wheref is the total deterministic force is the diffusion
constant, andtg is the Boltzmann constant. The random dis-

+R(AY), (14)

Ar*®Y is the projection of displacement between two mol-
ecules in thex—y plane. Similar to the previous caggz)
also related to the conventiona(r) by the relation
lim sy —.09(2) =9(r). For the calculation of thg(r*) and
g(z) we have chosen the limitfAz|<0.50 and |Ar™|
<0.50, respectively, rather than thidz|—0 and |Ar*Y|

placements coming from the solvent molecules as sampled-0 for better convergence. For calculating the correlation
from Gaussian distribution whose mean is zero and varianctinctiong(r*Y) on thex—y plane, we have considered a disk

is 2Dt in all three directiongx, y, andz). The force con-
stant k is expressed as a dimensionless quantitykas
=ko?/e and its value used in this simulation is 80.0. All

(shown schematically in Fig.)Which lies in thex—y plane
around each molecule, whose axis is along zhdirection
and having a thickness of one molecular diameter. The dis-

other quantities used in the simulation are in reduced unitsribution of molecules whose center of mass lies in the disk

using Lennard-Jones parameters. They are dep$itypo?,
temperatureT* =kgT/e, distancer*=r/o and time t*

gives the planar distribution function around each molecule
in the x—y plane. Similarly for calculating the linear distri-
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FIG. 2. () Radial distribution func-
o i tion of the solute molecules with an
absence of radiation pressure is given.
g(r) without radiation pressure is
given by dashed line, solid line gives
the corresponding(r) with radiation
1F 7] pressure. Note that the solid line goes
below 1.0 indicating the inhomogene-
ity in the distribution. (b)g(r*¥) and
theg(z) are drawn to find the average
0 ! ! ! ! ! ! density—density distribution in the&
0 1 2 3 4 5 6 7 —y plane and in thez direction, re-
(@) v spectively. The dotted curve represents
g(r®) without perturbation. The dot-
6 K ' ' ' ' ' ted curve almost coincides with the
] bold line which isg(z) without RP.
N When perturbation is applied the
M change ing(r*¥) shown in the dotted—
5 i . dashed curve. The corresponding
';i change ing(z) is shown as dashed
M curve. Note thag(r*¥) under pertur-
I bation goes below 1 at shorter dis-
l!|! tances indicating the fi ti f in-
¢ g the formation of in
4r By I homogeneity in thex—y plane. The
: ] shell structure formation in thedirec-
— | ! '! tion under perturbation is indicated by
i N :l the second peak in the dashed curve.
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(b) r
bution functiong(z) we considered a cylinder whose diam- 1 N
eter is that of one molecule with reference molecule inside  Ggy(r,t)=— 2 E S(r+ri(0)—r;i(t)) ), (18
. . . . . . N E3] !
this cylinder(shown schematically in Fig.)1The density—

density distribution function of molecules whose center of

mass lies in this cylinder is calculated. These steps are rewhich gives the information about average lifetime of shell
peated with perturbation to get the corresponding correlatiostructure around each molecule. The van Hove correlation
functions. The distinct part of van Hove correlation function function in the unperturbed and the perturbed states are cal-
is defined a¥ culated for comparing the lifetime of shell structures in these
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2 density plotted from an imaginary ra-
2 diation axis (along the z-axis at the
3 center of thex—y plane to the sides
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states. Since the perturbation is introduced by a position deare in low density, the second peak of ) is not much
pendent external field the two body correlation function isvisible in the absence of RP. But with the RP, the second
not a reliable source of information about spatial distributionpeak becomes visible giving clear indication of the formation
of molecules. Hence the density distribution of molecules inof second shell structure. Note that between the first and the
perturbed state is calculated from the stored positions whicBecond peak the density is much higher than the average
gives the spatial distribution of density. density which shows the random structure of the clusters.
For monitoring the variation of density with time, in the g(r*Y) and g(z) are separately plotted in Fig(8. In the
transformation from the nonequilibrium to an equilibrium ahsence of perturbation, these correlation functions show
state, immediately after the release of external perturbatiorsimilar behavior allowing both curves to coincide one over
simulation starts from an equilibrated configuration with per-the other. The dottefig(r*¥)] and the bold (g(2)] lines in
turbation which is preserved till the end of the simulation.ijg. 2 coincide almost one over the other, which is the sig-
The simulation is performed for 10 000 steps without perturnatyre of a homogeneous solution. Under the influence of the
bation and using the preserved positions as starting configysnomogeneous perturbation due to the RP in the first peaks
ration. During this time, the density is monitored in the in- the g(r*Y) [dashed-dotted curve in Fig(8] and theg(z)

terve_ll aftgr gach ten consecutivg steps. Next. initiaI[dashed curve in Fig.(B)] rise to a very high value and their
configuration is generated by running the simulation for

of density. In a similar way, transformation from unperturbed

XYY 1o o
to perturbed state is also recorded. and g(r*Y) with the RP. Also the position of peaks of both

curves in the perturbed state shifts from each other and their
heights also differs giving different probability for position
of nearest neighbors in different directions. Tag*¥) with
Figure Za) shows theg(r) of 500 solute molecules. The RP goes below 1 at a distance of about 5, giving an indica-
dashed curve represents the) without any radiation and tion of high inhomogeneity in the distribution of molecules
the solid curve gives thg(r) in the presence of radiation in thex—y plane.g(z) behaves similarly to that of the un-
pressurg(RP). Change in the radial distribution function in perturbed case, but the peaks become more visible and this
Fig. 2(a) follows from the clustering of the solute molecules function decays tay(z)=1.6 instead ofg(z)=1 at large
near the radiation axis. Thg(r) curve with perturbation distances, giving indication of the formation of a high den-
shows a very high peak which is much higher than that of arsity region along the radiation axis. This fact is also sup-
ordinary solution. Since in the solution the solute moleculegorted by variation of density from the radiation axis radially

IV. RESULTS AND DISCUSSION



121 O . OO 8
A .

10F

1‘\ ‘. N
A
<0

i

TR

N
<] “

<l

,.

TS
1Y

.

£ 0
N,
XAXTR
5

1

FIG. 4. Snapshot of molecules in the
simulation box projected on the—y
plane (a) with radiation pressure(b)
without radiation pressure. Circles are
approximately the same size as mol-
ecule.(a) clearly indicates the cluster-
ing of molecules.

outward as shown in Fig. 3; this gives the arrangement of Figure 5a) gives the van Hove correlation function in an
clusters in the radiation field. The inhomogeneity in the forceinhomogeneous solution; this gives the information about the
field is reflected in the rearrangement of density in the pereollective dynamics of the molecules in the presence of the
turbed state. These clusters are visible in the snapshot of tHeP in equilibrium. In Fig. 88) Gq4(r,t) is plotted from time
molecules in the simulation box. Figuréai# gives the snap- 0.5t* in the successive intervals of &t5. This gives infor-
shot after equilibrium with perturbation. Here the clusters arenation about how fast the local shell structure of liquid re-
at the center of the simulation box in comparison with thelaxes in the presence of the RP. Figufe)5gives the corre-
clusters in Fig. &) which is the snapshot taken without sponding van Hove correlation function in the absence of RP.
perturbation. These curves are plotted from time 0.05in the successive



intervals of 0.0%*. The time interval used in Fig.(8&) isten  stars in Fig. &) shows the behavior @E(t) in the perturbed
times greater than that used in Figapis ten times greater state and the circles gives the corresponding behavior in the
than that used in Fig.(6). Hence the shell structure breaks unperturbed state. These curves give a quantitative compari-
down slowly in the perturbed state which essentially meanson between the lifetime of clusters in perturbed and unper-
the stability of the clusters in the presence of the RP. Figureurbed solution, the relaxation time with RP is approximately
5(c) gives the plot ofC(t) which is defined as ten times greater than that of without RP. The plot of density
Gy(r 1) — Gy(r t=) variaj[ion with time gives a clear pic'Fure of the dynamics of
(190  density fluctuations and the relaxation of solute molecules.
Ga(r,1=0) = Gqy(r,t==) The density(relative variation with time at different points
against time at equal to the peak position of first shell. The in the simulation box immediately after the application of the

C(t)=
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FIG. 5. Distinct part of the van Hove
correlation function is calculated and
plotted against the position ifae) the
perturbed andb) the unperturbed so-
lutions. In (a) the successive curves
starting near =0 from bottom to top
are separated by time interval of G’5

0o 1' é é "1 é é and the corresponding separatior(if
. is 0.05t*. The variation in time of the
@ r shell structures are plotted and com-
0.35 . . : : . . pared in perturbed and unperturbed

systems in(c). Here C(t) is plotted
against time atr value equal to the
peak position of the first shell. The
1 circles give theC(t) without RP and
stars give C(t) with RP. The shell
structure breaks down slowly in the
presence of RP which signifies the ex-
istence of relatively stabler clusters
than in the unperturbed solution.
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RP is plotted in Fig. 6. Density fluctuationsigf=0.0, 1.7,  behavior of the solute molecules in perturbed state with that
2.5, 3.0, 3.5, 4.0, 4.3, 4.6, 5.0, 5.3, 5.5, 5.8, 6.0, 6.3, 6.@&xperienced in the unperturbed state. Figure 7 shows the cor-
away from the radiation axis is the radial directi@f cyl- responding density variation in the system after the RP is
inder representing the bearshows a similar kind of relax- removed. Here, due to the absence of RP, the solution is in a
ation behavior and their relaxation time also does not apprdower pressure state than the previous case. The density of
ciably differ. It is interesting to compare this relaxation solute is found to have a shorter relaxation time than the
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FIG. 6. Density variation at the center
of the radiation axis with time after RP

is applied. Different lines are plotted

for representing the density variation
at the different positions. These set of
lines gives the density variation with

— N e D e S . time from the radiation axis at dis-

tances 0.0, 1.7, 2.5, 3.0, 3.5, 4.0, 4.3,
4.6,5.0,5.3,5.5,5.8, 6.0, 6.3, 6.6 suc-
cessively from top to bottontneart*

O e o - — =2) away from the radiation axis.
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FIG. 7. Density variation at center of
the radiation axis with time after RP is
removed the different positions. These
sets of lines give density variation
with time from the radiation axis at
distances 0.0, 2.5, 3.5, 4.3, 5.0, 5.5,
6.0, 6.5 successively from top to bot-
tom (at t*=0) away from the radia-
tion axis.
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previous case. Here also density fluctuationsgat 0.0, 2.5, ACKNOWLEDGMENTS
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