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When radiation is scattered by a medium, a part of its momentum is transferred to the target
particles. This is purely a mechanical force which comes into effect when radiation is not coherently
interacting. This force is known in literature as radiation pressure. Recent experimental studies have
demonstrated the feasibility of using radiation pressure of a laser beam as a tool for cluster
formation in solution. In this paper we describe the Brownian dynamics simulation of solute
molecules under the perturbation induced by laser radiation. Here the force field generated by a laser
beam in the fundamental mode is modeled as that of a two-dimensional harmonic oscillator. The
radial distribution function of the perturbed system gives indication of high inhomogeneities in the
solute distribution. An explicit analysis of the nature of these clusters is carried out by calculating
the density–density correlation functions in the plane perpendicular to beam directiong(r xy); and
along the direction of beamg(z), they give an average picture of shell structure formation in the
different directions. The relaxation time of the first shell structure calculated from the van Hove
correlation function is found to be relatively large in the perturbed solution. This is the signature of
formation of stable nanoclusters in the presence of the radiation field. Our study on the dynamics of
solute molecules during the cluster formation and dissolution gives the duration of collective
relaxation, far away from the equilibrium to an equilibrium distribution. This relaxation time is
found to be large for a perturbed solution.
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I. INTRODUCTION

Study of cluster formation in the solution is a subject
great current interest.1,2 Often the route used is a chemic
reaction, followed by aggregation.3 Recently, however, an
interesting technique has been developed where radia
pressure is used to selectively bring together specific
ticles and form a cluster. The merit of this technique is t
clusters of desired shape can be formed which gives
technique a special advantage. In this work, we prese
Brownian dynamics simulation of such a cluster formation
a uniform solution. This study reveals microscopic aspect
such a cluster formation.

Interaction of electromagnetic radiation with atoms a
molecules via absorption and emission gives insight into
structure and dynamics of inner degrees of freedom. If
incoming radiation is not resonantly interacting, this intera
tion gives rise to a pure mechanical pressure which could
independent of the internal structure of atoms and molecu
The radiation pressure is the mechanical pressure exerte
radiation due to the partial transfer of the momentum of
diation while it is reflected or refracted. Alternatively, radi
tion pressure can be defined microscopically as the fo
experienced by a particle, when the dipole induced by ex
nal field on the particle tries to minimize its energy by r
positioning. Debye in 1909 carried out a complete study
radiation pressure on spherical particles of arbitrary size
optical constants.4,5 The most general derivation of the ma
nitude of force generated by the radiation can be done by

a!For correspondence: bbagchi@sscu.iisc.ernet.in
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principle of conservation of momentum of incide
radiation.5,6 There are two kinds of forces arising from th
scattering of radiation. One is along the direction of prop
gation of radiation and the second one gives the transv
component, which is due to the scattering of a beam of
diation with an asymmetric distribution of intensity by th
target particle. This creates a net force on the particle du
the difference in the momentum transferred at different pa
of the target particle. The first experimental evidence of
diation pressure using sophisticated experiments after the
vent of the lasers can be found in the celebrated work
Ashkin, where he reported acceleration of a single mic
particle by radiation pressure. His successive works c
firmed the effect of radiation pressure on huge biomolecu
latex particles, etc.7

This work pursues a different aspect of the proble
namely the statistical behavior of a collection of interacti
molecules under the stable external force field created b
laser beam. Recently Masuharaet al.8–11 carried out exten-
sive experimental work on microparticle formation in th
solution by a radiation field. They also reported an analy
of the potential arising from the radiation which is found
be harmonic in nature. These experiments look into the c
sical many-body problem of cluster formation under an
homogeneous force field. Another interesting aspect of
problem is the dynamics of formation of such clusters un
the radiation field and dissolution of them when radiation
switched off.

The organization of the rest of the paper is as follow
Section II gives the details of modeling of radiation press
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as a harmonic potential. The details of the Brownian dyna
ics simulation are given in Sec. III. Results obtained from
simulation are described in Sec. IV. Some concluding
marks are presented in Sec. V.

II. THEORETICAL FORMULATION

Here we are interested particularly in the incoherent
teraction of the molecules with radiation. For a coher
beam of radiation having Gaussian intensity distribution
the plane of cross-section the force field experienced b
molecule can be modeled analogous to that of a tw
dimensional harmonic oscillator with force constantk. When
the electromagnetic radiation interacts with a dipole it ex
riences a Lorentz force12

F5~p•¹!E1
1

c

]p

]t
3E, ~1!

where E is the electric field in the plane of beam cros
section andp is the dipole moment. This expression can
arranged using the vector identityE•¹E5 1

2¹E22E3(¹
3E) and p5aE, a is assumed to be the positiv
polarizability12

F5aS 1

2
¹E21

1

c

]~E3B!

]t D . ~2!

Due to the heavy mass of the scatterer, the force in the
rection of beam can be neglected, hence the total force
be approximated by first term of Eq.~2!

F.a 1
2¹E2. ~3!

It is evident from this equation that the force due to radiat
depends on the gradient of the magnitude of electric field
the transverse direction of the beam. Here we are assum
the laser beams is in the TEM00 mode.13 Hence the intensity
distribution function is a Gaussian in thex2y plane with the
direction of beam propagation along thez direction. Intensity
of the beam as experienced by thejth molecule is

uj5u0 expS 22r0 j
2

w0
2 D , ~4!

wherer 0 j
2 5xj

21yj
2, r 0 j is the displacement ofjth molecule

from the radiation axis in thex-y plane.w0 is the spot size
which is much larger thanr 0 j . u0 is the intensity at the
center of the beam. Then the corresponding magnitude
electric field is described byE5E0 exp(2r0j

2 /w0
2). The force

experienced on thejth molecule by this stable potential we
created by this laser beam can be derived by substituting
relation in Eq.~3!

Fj~r !52aE0
2 2r0 j

w0
2 expS 22r0 j

2

w0
2 D . ~5!

Sincewj 0@ur0 j u the Gaussian can be expanded in powers
2r0 j

2 /w0
2,

Fj~r !52aE0
2 2r0 j

w0
2 S 12

2r0 j
2

w0
2 ••• D , ~6!

with in zeroth order approximation it can be written as
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Fj~r !.22aE0
2 r0 j

w0
2 , ~7!

or

Fj~r !.2kr0 j , ~8!

where

k5
2aE0

2

w0
2 . ~9!

Hence the force due to the radiation pressure of a laser b
in the fundamental mode can be approximated by a harm
potential. The magnitude of the electric field can be cal
lated from the power of the laser.13

III. SYSTEM AND SIMULATION DETAILS

In the model simulated here, the solute molecules m
in the solution under the force field generated by the sum
mutual interactions and the external field generated by
radiation pressure. Hence the motion of the solvent is an
gous to that of a Brownian particle which moves under
random forces in a potential well. Hence a Brownian dyna
ics simulation,14,15is the most suitable method for tracing th
dynamics of solute molecules in the solution. In the Brow
ian dynamics simulation the solute molecules are selectiv
simulated as moving under the friction or resistance gen
ated by solvent molecules. In our simulation the equation
motion is obtained by integrating the single particle Lang
vin equation, hence all the hydrodynamic effects are
glected. Simulation is confined to the particle rays of t
laser beam since the difference in the angle between any
rays falling on a different part of a single molecule is neg
gible. In addition to this the entire simulation box occupies
small volume in comparison with the region of cluster fo
mation in experimental arrangements used,8–11 hence the ap-
proximation used here is quite justifiable.

Other details of the simulation are as follows: A syste
consists of 500 molecules are selected for simulation. T
simulation is carried out inside a cubical box~the schematic
diagram of the simulation box is given in Fig. 1!; this box is
placed in the positive quadrant of the coordinate syste
Hence the position coordinates along thex, y, and z axis
vary from zero tol, wherel is the length of the simulation
box. In this simulation the box length is computed from t
density of solute molecules and it is approximately 14s ~s is
the molecular diameter! in this simulation. Intermolecular
interaction is modeled through a Lennard-Jones poten
with a cutoff atr i j 52.5s. The intermolecular interactions i
given by

v i j 54eS s

r i j
122

s

r i j
6 D . ~10!

Hence total potential energyVi on the ith molecule due to
the intermolecular interaction is given by

Vi5(
j

v i j . ~11!
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Here radiation is passing symmetrically through the cente
the x-y plane of the simulation box and its direction
propagation is along thez axis. Therefore the Gaussian in
tensity distribution of radiation is situated symmetrica
around the center of thex-y plane. The radiation force from
this Gaussian beam is modeled as generated by a
dimensional harmonic potential and it can be written as

Vj
rad5 1

2kr0 j
2 . ~12!

The total potential energy is given by

Vtotal5(
j

Vj1Vj
rad. ~13!

By integrating the single particle Langevin equation, eq
tion of motion is obtained as

r ~ t1Dt !5r ~ t !1
DfDt

kBT
1R~Dt !, ~14!

where f is the total deterministic force,D is the diffusion
constant, andkB is the Boltzmann constant. The random d
placements coming from the solvent molecules as sam
from Gaussian distribution whose mean is zero and varia
is A2Dt in all three directions~x, y, andz!. The force con-
stant k is expressed as a dimensionless quantity ask*
5ks2/e and its value used in this simulation is 80.0. A
other quantities used in the simulation are in reduced u
using Lennard-Jones parameters. They are densityr* 5rs3,
temperatureT* 5kBT/e, distance r * 5r /s and time t*

FIG. 1. The schematic diagram of the simulation box is shown in the fig
The disk and the cylinder used for calculatingg(r xy) and g(r i j

z ) are sche-
matically drawn here. The thickness of the disk and the diameter of
cylinder are same (a5s).
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5Ae/ms2t. The simulation is performed at a high conce
tration of the solute molecules atr* 50.2 and atT* 51.2.
Here this external potential has the symmetry of a cylind
That is, all the molecules situated on the curved surface
cylinder, which is centered at the radiation axis, will expe
ence a force equal in magnitude toward the center. Hence
bins which are used for recording the density are concen
cylindrical shells centered at the radiation axis. These sh
are constructed such that all of them have equal volume

The simulation starts from an fcc configuration and it
equilibrated with 20 000 simulation steps. Periodic bound
condition is used in all the three directions. The equation
motion is integrated with the time stept* 50.005. Positions
of solute molecules are recorded~without perturbation! in
the next 105 steps, from this the radial distribution functio
@g(r )# is calculated, which can be defined in terms of de
function as16

g~r !5
1

NrK ( (
iÞ j

N

d~r1r j2r i !L . ~15!

g(r )5g(r ) in a homogeneous system. The conventional
dial distribution function gives the distribution of the mo
ecules in a homogeneous solution. Since the application
radiation pressure create a strong inhomogeneity in the s
tion, here the conventionalg(r ) cannot say much about th
distribution of molecules onx2y plane and in thez direc-
tions explicitly. To overcome this difficulty we have calcu
lated the density–density correlation function in thex-y
plane, which can be defined in terms of delta function as

g~r xy!5
1

Nr K ( (
iÞ j

N

d~r xy1r j
xy2r i

xy!L U
uDzu,0.5s

, ~16!

wherer xy5r2z ~or r xy is the projection of displacement i
the x2y plane andDz is the projection of displacement be
tween two molecules along thez axis!. In the homogeneous
solution the distribution function is related to theg(r ) by the
relation limuDzu→0g(r xy)5g(r ), since all the directions are
equivalent in a homogeneous solution. Similarly a distrib
tion function along thez axis can be defined as

g~z!5
1

Nr K ( (
iÞ j

N

d~z1zj2zi !L U
uDrxyu,0.5s

, ~17!

wherez is the projection of displacement along thez axis and
Dr xy is the projection of displacement between two m
ecules in thex2y plane. Similar to the previous caseg(z)
also related to the conventionalg(r ) by the relation
limuDrxyu→0g(z)5g(r ). For the calculation of theg(r xy) and
g(z) we have chosen the limitsuDzu,0.5s and uDr xyu
,0.5s, respectively, rather than theuDzu→0 and uDr xyu
→0 for better convergence. For calculating the correlat
functiong(r xy) on thex2y plane, we have considered a dis
~shown schematically in Fig. 1! which lies in thex2y plane
around each molecule, whose axis is along thez direction
and having a thickness of one molecular diameter. The
tribution of molecules whose center of mass lies in the d
gives the planar distribution function around each molec
in the x2y plane. Similarly for calculating the linear distri

.
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FIG. 2. ~a! Radial distribution func-
tion of the solute molecules with an
absence of radiation pressure is give
g(r ) without radiation pressure is
given by dashed line, solid line give
the correspondingg(r ) with radiation
pressure. Note that the solid line goe
below 1.0 indicating the inhomogene
ity in the distribution. ~b!g(r xy) and
theg(z) are drawn to find the average
density–density distribution in thex
2y plane and in thez direction, re-
spectively. The dotted curve represen
g(r xy) without perturbation. The dot-
ted curve almost coincides with the
bold line which is g(z) without RP.
When perturbation is applied the
change ing(r xy) shown in the dotted–
dashed curve. The correspondin
change ing(z) is shown as dashed
curve. Note thatg(r xy) under pertur-
bation goes below 1 at shorter dis
tances indicating the formation of in
homogeneity in thex2y plane. The
shell structure formation in thez direc-
tion under perturbation is indicated b
the second peak in the dashed curve
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bution functiong(z) we considered a cylinder whose diam
eter is that of one molecule with reference molecule ins
this cylinder~shown schematically in Fig. 1!. The density–
density distribution function of molecules whose center
mass lies in this cylinder is calculated. These steps are
peated with perturbation to get the corresponding correla
functions. The distinct part of van Hove correlation functi
is defined as16
e

f
e-
n

Gd~r ,t !5
1

N K ( (
iÞ j

N

d~r1r j~0!2r i~ t !!L , ~18!

which gives the information about average lifetime of sh
structure around each molecule. The van Hove correla
function in the unperturbed and the perturbed states are
culated for comparing the lifetime of shell structures in the
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FIG. 3. Corresponding variation in the
density plotted from an imaginary ra
diation axis ~along thez-axis at the
center of thex2y plane! to the sides
of the simulation box. In the presenc
of RP the density acquires an inhomo
geneity.
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states. Since the perturbation is introduced by a position
pendent external field the two body correlation function
not a reliable source of information about spatial distribut
of molecules. Hence the density distribution of molecules
perturbed state is calculated from the stored positions wh
gives the spatial distribution of density.

For monitoring the variation of density with time, in th
transformation from the nonequilibrium to an equilibriu
state, immediately after the release of external perturbat
simulation starts from an equilibrated configuration with p
turbation which is preserved till the end of the simulatio
The simulation is performed for 10 000 steps without pert
bation and using the preserved positions as starting con
ration. During this time, the density is monitored in the i
terval after each ten consecutive steps. Next ini
configuration is generated by running the simulation
1000 steps in the initial equilibrated configuration starti
from the preserved positions. These simulation steps are
peated over 100 runs and the output data are average
obtain good statistics and to smooth the time evolution cu
of density. In a similar way, transformation from unperturb
to perturbed state is also recorded.

IV. RESULTS AND DISCUSSION

Figure 2~a! shows theg(r ) of 500 solute molecules. Th
dashed curve represents theg(r ) without any radiation and
the solid curve gives theg(r ) in the presence of radiatio
pressure~RP!. Change in the radial distribution function i
Fig. 2~a! follows from the clustering of the solute molecule
near the radiation axis. Theg(r ) curve with perturbation
shows a very high peak which is much higher than that of
ordinary solution. Since in the solution the solute molecu
e-

n
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are in low density, the second peak of theg(r ) is not much
visible in the absence of RP. But with the RP, the seco
peak becomes visible giving clear indication of the formati
of second shell structure. Note that between the first and
second peak the density is much higher than the ave
density which shows the random structure of the cluste
g(r xy) and g(z) are separately plotted in Fig. 2~b!. In the
absence of perturbation, these correlation functions sh
similar behavior allowing both curves to coincide one ov
the other. The dotted@g(r xy)# and the bold@(g(z)# lines in
Fig. 2 coincide almost one over the other, which is the s
nature of a homogeneous solution. Under the influence of
inhomogeneous perturbation due to the RP in the first pe
of theg(r xy) @dashed-dotted curve in Fig. 2~b!# and theg(z)
@dashed curve in Fig. 2~b!# rise to a very high value and the
second peaks also become visible. This is an indication
explicit shell structure formation in thex2y plane and in the
z direction, but their structures considerably differ from ea
other. This fact can be inferred from the difference in heig
between the first peak and the second peak positions ofg(z)
and g(r xy) with the RP. Also the position of peaks of bot
curves in the perturbed state shifts from each other and t
heights also differs giving different probability for positio
of nearest neighbors in different directions. Theg(r xy) with
RP goes below 1 at a distance of about 5, giving an indi
tion of high inhomogeneity in the distribution of molecule
in the x2y plane.g(z) behaves similarly to that of the un
perturbed case, but the peaks become more visible and
function decays tog(z)51.6 instead ofg(z)51 at large
distances, giving indication of the formation of a high de
sity region along the radiation axis. This fact is also su
ported by variation of density from the radiation axis radia
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FIG. 4. Snapshot of molecules in th
simulation box projected on thex2y
plane ~a! with radiation pressure,~b!
without radiation pressure. Circles ar
approximately the same size as mo
ecule.~a! clearly indicates the cluster-
ing of molecules.
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RP.
outward as shown in Fig. 3; this gives the arrangemen
clusters in the radiation field. The inhomogeneity in the fo
field is reflected in the rearrangement of density in the p
turbed state. These clusters are visible in the snapshot o
molecules in the simulation box. Figure 4~a! gives the snap-
shot after equilibrium with perturbation. Here the clusters
at the center of the simulation box in comparison with t
clusters in Fig. 4~b! which is the snapshot taken withou
perturbation.
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Figure 5~a! gives the van Hove correlation function in a
inhomogeneous solution; this gives the information about
collective dynamics of the molecules in the presence of
RP in equilibrium. In Fig. 5~a! Gd(r ,t) is plotted from time
0.5 t* in the successive intervals of 0.5t* . This gives infor-
mation about how fast the local shell structure of liquid r
laxes in the presence of the RP. Figure 5~b! gives the corre-
sponding van Hove correlation function in the absence of
These curves are plotted from time 0.05t* in the successive
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intervals of 0.05t* . The time interval used in Fig. 5~a! is ten
times greater than that used in Fig. 5~a! is ten times greate
than that used in Fig. 5~b!. Hence the shell structure break
down slowly in the perturbed state which essentially me
the stability of the clusters in the presence of the RP. Fig
5~c! gives the plot ofC(t) which is defined as

C~ t !5
Gd~r ,t !2Gd~r ,t5`!

Gd~r ,t50!2Gd~r ,t2`!
~19!

against time atr equal to the peak position of first shell. Th
s
re

stars in Fig. 5~c! shows the behavior ofC(t) in the perturbed
state and the circles gives the corresponding behavior in
unperturbed state. These curves give a quantitative comp
son between the lifetime of clusters in perturbed and unp
turbed solution, the relaxation time with RP is approximate
ten times greater than that of without RP. The plot of dens
variation with time gives a clear picture of the dynamics
density fluctuations and the relaxation of solute molecu
The density~relative! variation with time at different points
in the simulation box immediately after the application of t
-
d

-
s

FIG. 5. Distinct part of the van Hove
correlation function is calculated and
plotted against the position in~a! the
perturbed and~b! the unperturbed so-
lutions. In ~a! the successive curves
starting nearr 50 from bottom to top
are separated by time interval of 0.5t*
and the corresponding separation in~b!
is 0.05t* . The variation in time of the
shell structures are plotted and com
pared in perturbed and unperturbe
systems in~c!. Here C(t) is plotted
against time atr value equal to the
peak position of the first shell. The
circles give theC(t) without RP and
stars give C(t) with RP. The shell
structure breaks down slowly in the
presence of RP which signifies the ex
istence of relatively stabler cluster
than in the unperturbed solution.



FIG. 5. ~Continued.!
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RP is plotted in Fig. 6. Density fluctuations atr 0* 50.0, 1.7,
2.5, 3.0, 3.5, 4.0, 4.3, 4.6, 5.0, 5.3, 5.5, 5.8, 6.0, 6.3,
away from the radiation axis is the radial direction~of cyl-
inder representing the beam! shows a similar kind of relax-
ation behavior and their relaxation time also does not ap
ciably differ. It is interesting to compare this relaxatio
.6

e-

behavior of the solute molecules in perturbed state with t
experienced in the unperturbed state. Figure 7 shows the
responding density variation in the system after the RP
removed. Here, due to the absence of RP, the solution is
lower pressure state than the previous case. The densi
solute is found to have a shorter relaxation time than
r

n
f

3,
c-
FIG. 6. Density variation at the cente
of the radiation axis with time after RP
is applied. Different lines are plotted
for representing the density variatio
at the different positions. These set o
lines gives the density variation with
time from the radiation axis at dis-
tances 0.0, 1.7, 2.5, 3.0, 3.5, 4.0, 4.
4.6, 5.0, 5.3, 5.5, 5.8, 6.0, 6.3, 6.6 su
cessively from top to bottom~neart*
52! away from the radiation axis.
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FIG. 7. Density variation at center o
the radiation axis with time after RP is
removed the different positions. Thes
sets of lines give density variation
with time from the radiation axis at
distances 0.0, 2.5, 3.5, 4.3, 5.0, 5.
6.0, 6.5 successively from top to bot
tom ~at t* 50! away from the radia-
tion axis.
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previous case. Here also density fluctuations atr 0* 50.0, 2.5,
3.5, 4.3, 5.0, 5.5, 6.0, 6.5 are plotted which show a sim
kind of relaxation behavior.

V. CONCLUSION

In conclusion we have demonstrated the formation
nanoclusters under the radiation pressure. These cluster
found to be more stable than those formed in an unpertur
solution. We found that even though the force field resultin
from the RP is confined to thex2y plane, it modifies the
shell structure in thez direction also. Theg(z) is still found
to be homogeneous but a strong inhomogeneity exists in
g(r xy). The van Hove correlation calculated in the unp
turbed state will relax approximately ten times faster in
unperturbed state; this will substantiate the stability of cl
ters in the perturbed state. Moreover, we could observe
rich dynamical behavior during the formation and the dis
lution of clusters and could observe the variation in the
laxation time in the perturbed and the unperturbed states

It is interesting to note the oscillations in local dens
when the electromagnetic field is turned on or off. The
oscillations are manifestations of the viscoelasticity of
liquid. If the linear response is valid, then one could possi
describe these oscillations by using the dynamic struc
factor of the liquid.16 Such a calculation is nontrivial becaus
the system becomes inhomogeneous in the presence o
position dependence of the field. Thus, one would require
use the density functional theory in real~that is, position!
space. Such a calculation is computationally intensive,
may be worthwhile to perform.
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