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Abstract. We show that experimental data on inclusive neutrino reactions can
be used to obtain general bounds on the ccupling constants of the isovector part
of the hadronic weak neutral current provided this isovector current is related
to the charged current by isospin rotation. These bounds are free from the assump-
tion of a specific model for the neutral current as well as any dynamical assump-
tion on the hadronic structure functions. We derive upper bounds on the coupling
constants which involve only the cross sections for isospin-averaged nucleon target
as well as lower bounds which require a knowledge of the cross sections for proton
and neutron separately.
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1. Introduction

An entirely new class of weak interactions, namely, the neutral-current weak
fnteraction was discovered more than two years ago (Hasert efal 1973). Both
in the experiments at CERN as well as at FNAL (Aubert et a/ 1974, Benvenuti
et al 1974, Barish et al 1975), a large number of events have been seen which can
be interpreted as the following inclusive neutral-current reaction

vy (7,) + nucleon — v, (5,) + hadrons.

A.dthou.gh other neutral-current processes such as 7, -e scattering as well as
single pion production have also been seen, the inclusive processes still remain
as our most copious source of data on the neutral current.

. The irr}portaqce of these data on the elucidation of the nature of the neutral-current
mtergctnon has prompted many calculations on the inclusive neutral-current
reactions (Budny and Scharbach 1972, Pais and Treiman. 1972, Riazuddin and
Fayyazuddin 1972, Sehgal 1973 and 1974, Palmer 1973, Albrigh’t 1973, Paschos
and Wolfenstein 1973, Pakvasa and Tuan 1974, etc). Most of these ca’lculations
were bz_tsed on specific models for the neutral-current weak interaction such as
thed\f\{en‘g?rg-Salam gauge model (Weinberg 1967 and 1972, Salam 1968) or other
::?d e Izlgn elggg.lg’d eZt:fa) 1973, Sakurai 1974, Adler and Tuan 1975, Mathur, Okubo
t.a]lrlfzwever,l when new ph.enomena are experimentally discovered, it is also essen-
1al to analyze the experimental results within a sufficiently general theoretical
104
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framework rather than . interpret the data using a.particular model of the new
phenomenon. This is the point of view we have pursued in two earlier papers
(Rajasekaran and Sarma 1974 @ and b). In these papers the hadronic neutral
current was taken to be a general combination of vector and axial vector parts
each having an isoscalar piece as well as an isovector piece and thus the problem
amounted to determining the four coupling constants from experimental data.
Although these analyses were sufficiently general with respect to the form of the
- neutral current, they depended on assumptions on the hadronic structure func-
tions following from parton model, chiral symmetry, etc.

~ As was recently pointed out in a brief note (Rajasekaran and Sarma 1975) it
is in fact possible to derive results on the hadronic neutral current which are free
from both kinds of assumptions—namely assumption of a specific model for the
neutral current as well as dynamical assumptions on the hadronic structure functions.
These results are in the form of bounds on the neutral-current coupling constants.
Some of these results and a sketch of their derivation have already been reported
in the above mentioned note which contains the general upper bounds on the iso-
vector coupling constants as well as the model-dependent bounds involving also
one of the isoscalar coupling constants. The purpose of the present paper is
two-fold: to present a more complete description (with details of derivation) of
the general upper bounds and to derive /ower ‘bounds on the 1sovector couplmg
constants,

We should also mention that now there are many excellent articles on the neutral-

current reactions (Gourdin 1975, Sakurai 1975, Sehgal 1975) which review some
of the model-independent results

In section 2 we introduce the cross-sections and kinematics and derive powerful
" inequalities for the vector-axial-vector interference terms which play a crucial
role in the subsequent considerations. For the benefit of the reader who may
not be interested in the details of their derivation, these basic inequalities are
summarized at the end of section 2. Section 3 presents the derivation of the
general upper bounds on the “sovector coupling constants which are based on
the cross sections for isospin-averaged nucleon target. This section also contains a
discussion of some of the weaker inequalities included for illustrative purposes
(section. 3.4) aswellas some comments on the isovector matrix elements and chiral
symmetry (section 3.5). We next show, in section 4, how one can obtain lower
bounds on the isovector coupling constants if neutral current ‘cross sections are
available on proton and neutron separately. In section 5 we summarize our
results and critically evaluate how good our bounds are. In the appendix, we
prove by adopting a variational procedure that with the given input data, our
upper bounds are the strongest that can be obtained. |

2, Cross sections and Schwarz irequalities
2.1 The interaction

-We shall assume that the interactions of the neutrino® involve only vector and
axial vector covariants. This would follow, for instance, if the neutrino were a

* Neutrino. here stands for the muonic-neutrino vu- However, all the general results of
this paper are obviously valid for v, also,
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two-component field. The part of the effective weak interaction which is rele-
vant for our purposes can then be written as

@
V2
| + Fya (1 4 vp) v (xoa® + yap® -~ zo\® + wa 0}, 2.n

‘where G is the Fermi coupling constant and the vector and axial vector currents
are denoted by v, and ay respectively. The superscripts 1, 2, 3 refer to the iso-
spin index of the isovector currents and the superscript O refers to isoscalar
currents. We have restricted the isospin of the weak currents to 0 and 1 only.
The neutral-current interaction involves four coupling parameters x, ¥, z and w
which we shall take as real, and our object is to obtain restrictions on these para-
‘meters using experimental data.

Lo = —{aya (1 + ) v (o0a! + iva? + @t + ian® + hc.

We have assumed that the isovector currents )3 and a)\® belong to the same iso-
multiplets as the charged currents v3* and ayx*. This is a minimal and a natural
assumption without which we cannot relate the neutral to the charged-current

processes.

Also, we have ignored the strangeness-changing part of the interaction. This
means that the cross-section occurring in our expressions refer to the chanmnel
S = 0 where S is the total strangeness of the final hadronic state. In any case,
strangeness-changing part is very small for the charged current interaction and
is most probably absent (in order G) for the neutral-current interaction. These
remarks can be extended to the possible excitation of new quantum numbers such
as charm.

2.2 Differential cross-sections on isospin-averaged nucleon

We' now consider the inelastic cross-sections for mneutrinos (denoted by v*) and
antineutrinos (denoted by »-) on the isospin-averaged nucleon target &, oc (¥* &)

which are due to the charged-current interaction and oy (v &) which arise
from the neutral-current interaction

oy (VEN) = o (vt gy — y + hadrons)
oc (VEHN) = o (vE O — #F + hadrons),
and by isospin-averaging we mez.m for instance,
oc(VF ) =310 (vp -y - hadrons) + o (¥ — p— + hadrons)].
The corresponding double-differential cross-sections which are functions of the

° . 2 . . v
standard variables QF and v, can be expressed in terms of the current-matrix-
elements in the following manner

d?oc (v: ¥ v 9
———‘_—;Qz dv )--' 3+A3i]33 ’ ( -2)
dzo'N (v :W) 1 o

dO% & =3 (x2 ¥V, + YEAg 4 22 Vo4 w2 A, - xyls® 4z wiy®). (2.3)
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Here, V, and 4 stand for the contributions to the cross-sections arising from
the currents v® and a® respectively ; similarly ¥V, and A4, are the contributions from
»? and a° The symbol I3® denotes the contribution from the interference term
corresponding to the product v®a® while I is that corresponding to v® a% We
have already used isospin invariance in writing the charged current cross sections
also in terms of the third component of the isovector currents. Note that iso-
scalar-isovector interference terms do not occur in (2.3) since the target nucleon
is averaged over isospin.

Explicitly, we have

G*E Q* .
Vy= 2 E % z l,(l | L2 [ p) |2 (2n) 0 (pi —py — 4)

Aszg%%zI(illyay“lpﬂz(zﬂ)"34(114—-179“—4) 2.4

‘ 2 g 02 _ o .
[8&=%~ %ZZRe{(tlh%“lﬁ)"‘(lllm“|P)}

i

X (2m)? 8% (ps —p, — 1)

andlexactly analogous expressions for the isoscalar parts. Here, J, is the leptonic
current relevant for neutrino scattering written in terms of the initial and final
leptonic spinors

b= 1 (ky) Yu (1 + y5) u(ky),

| p ) is the spin-averaged protont state with momentum p,, | i) is a fina] hadronic
state with momentum p; which is summed over, and ¢ is the four-momentum
transfer of the lepton (see figure 1). We have also defined

Q2E._q2; vK‘pp=E____El
. P

where E and E’ are the initial and final energies of the lepton in the laboratory
system., We shall neglect throughout the terms involving the muon mass.

v\\n g

Figure 1. Inelastic neutrino scattering on a proton target giving rise to a finat
neutrino or muon. The symbol i denotes a final state of hadrons with total four-
momentum p;.

1 Note that all our matrix elements are defined with respect to the proton target. The
c_gi'responding matrix elements for the neutron target are obtainable using charge symmetry.

,;
;
|
i
]
1
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Of central importance to our analysis are the inequalities relating V, 4 and I,

By applying the Schwarz mequahty to the expressions in eq. (2. 4) we 1mmed1ately
get

(133)2 < 4V34; ' o _ : . (2'.5,)_
(102 < AV A,. S (2.6)

However, from a knowledge of the helicity structurc of the currents, it is possible
to obtain more powertul inequalities, as we shall now proceed to show.

2.3 Helicity decomposition

We decompose the leptonic current into its right-handed (R), left-handed (L)
and scalar () components and define the absorption cross sections corresponding
to these helicity componeénts of the current (Bjorken and Paschos 1970):

C\XV ., .. .. .
w=3 > Kili2—ij*1p)[?
oA LA
=§z 12+ 5,2 ) |2 | @.7

oA U
= EEAVAS DN
where the meaning of the primed summation. symbol is

z T(}”) 8t (p; —p, —q),

and
,i,;;“lv"—’;—(z"
;3
J"—/Q{(—‘" ).Io‘]}
T 1
C="
11-(Q2/2mv)

Here, the - axis has been chosen along ¢
In terms of o,

or and os the double-differential cross section. can be written as

v IT {“1(0L+0R) o %y Og :f:"/s(U'L”“‘UR)}

: (28)
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where

1 :
%E%E«E+Ey+ﬁ+Q%

ay = 2(1 4EE | : 2.9
= oo (E+ E) (0 + QY1

Next, one can study the behaviour of the matrix elements in eq. (2.7) in the lab
frame, ‘i.e., p,=0. The transformation properties under rotation arourid the

z axis and reflection in the y-z plane (see Lee and Yang 1962), allow us to arrive
at the following useful forms for o, s:

=20y z (4 A =110, —3,% | p,0, )
Li— A t

°R:"”Cz Z Goge A —1103 + a2 | poo, W 2 (2.10)
i x

os = czz QG g A w8120, M+ (g, Al g [ pyo, )y [3:
i Py ' |

Here the notation isas follows: The state | i, g, A} denotes the final hadronic state
labelled i with total 3-momentum ¢ in the lab frame and the component of the
total angular momentum along the z-axis (which is parallel to ) having the value
A; the state | p, 0, A) refers to the state of target proton, with zero 3-momentum,
with z-component of spin to be A; the symbol Z;" denotes the average over the

target spin. Thus, as expected, o and o, differ only by the sign of the va inter-
ference term and o5 does not involve the interference term at all.

Substitution of eqs (2.10) into eq. (2.8) and comparison with eq. (2.2) yields
the formulae:

V:}":-D z S {Zali(laqu'__l !va3|p’0’ }\>l~’ +
4 :

i

9"2 I (i, q, A I"-’s3 l]), 0, A) lz}

A3~D§ Z{2a1k<uq,f\~lla“lp 0, )\H

+52 (b g, 2] o lp,o,m}

—“'-—‘-’—‘2(13 z Z Re{(’ qs/\_llvslpaas /\)*

><<l,q,)\*‘llf’; ]p’o’)O} o

2.11)
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where

2r E V¢ 1 - (Q%v?)
Notice the absence of the interference term v® a® in the expression for I5°.

An important feature of the expressions in eq. (2.11) shou.ld.be noted. In
contrast to eq. (2.4), the diagonal terms and the interference term m.(Z. 11) occur
with different weighting-factors oy, as, ag. This is what leads to our 1mprc_3‘ved -
equality. These kinematic factors o, defined in eq. (2.9) are never negative, zv:ud
hence an application of the Schwarz inequality to eqs (2.11) yields the following
inequality

(I3%)?% < K® V34, (2.12)
where K is defined by
Ko 2 _4(E+ E) (0 + 0 (2.13)

a (E+EP + v+ 0%

Since K < 2, we see that (2.12) is a better inequality than (2.5). By folloxzfing
exactly the same procedure with the isoscalar hadronic current j,° = v,° + @,° we
get the analogous inequality for the isoscalar structure functions:

(L") < K? VoA, - (2.14)

We should emphasize that the inequalities (2.12) and (2.14) are quite.powel’ful
and follow from kinematics alone, independent of any dynamical assumption. From
these it is easy to see that

gl l=2(4p @19

<V, F A4 (a=0,3). (2.16)

Obviously the inequality (2.15), which shall henceforth be referred to as the 110_'11—
linear inequality, is stronger than the inequality (2.16) to be called the linear in-

equality. The linear inequality for the case of charged currents was first derived
by Paschos and Wolfenstein (1973).

A comparison of inequalities (2. 15) and (2.16) is facilitated by figure 2, wherein,
according to the nonlinear inequality the allowed values of ¥, and 4, lie to the
right of the hyperbola (marked H), while according to the weaker inequality (2.16)
all the values to the right of the straight line (marked L) are allowed. More
generally, we have the following linear inequalities

,
I WIS IS MV, +u2 4, (2.17)

where A and p are arbitrary real constants, and o = 0, 3. For various values of

A and p we have to counsider the region to the ri ght of the tangent at various pionts
on the hyperbola.
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0

Figure 2. A comparison of the inequalities (2.15) and (2.16). Allowed values
of V, and A, (in arbitrary units) according to the nonlinear inequality (2.15) lie to
the right of the rectangular hyperbola (marked H)_ while according to the linear
inequality (2.16) lie to the right of the straight line (marked L).

Using the inequality (2.17) in eqs (2.2) and (2.3) we have the lower and upper
bounds on the ratios of double-differential cross sections

2—K _dioc (v)dQ*dy _2+K

TR S Bog NI D SI—K’ (2.18)
2—K dzaN(V‘cW)/dQ2dv<2+K 9
TTE S Fog (WO (AP ST—K" (2.19)

2.4 Total cross sections and the assumption of Bjorken scaling

Aualogous' to eqs (2.2) and (2.3) we have the following expressions for the total
cross-sections.

o () =V, + 4y £ I (2-20)

ay (V) = $[x® Vot A+ 2V, + w? Ao+ xp 12 + 2wl 0],  (2.21)

where the tilde on a function means that we have performed the integration
over the variables Q% and v; for example

hsfn@w%

What are the inequalities satisfied by these integrated quantities, 173, A';,. o !
Now the right-hand-sides of eq. (2.11) have to be integrated over Q% and v,
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Since a; and a, are different functions of Q% and v we can get usable inequali-
ties only by replacing oy by its upper bound a;; thus we obtain the inequalities:

T2 <4V, 4, (2.22)
(02 <4 ¥,y A, (2.23)

These are the analogous of the original weaker version for differential cross sections,
namely eqs (2.5) and (2.6). Thus the helicity-decomposition does not seem to
help us in obtaining stronger inequalities in the case of total cross sections.

" We can, however, get better inequalities for the total cross sections provided
we make the dynamical assumption of scaling (Bjorken 1969). We first define the
Bjorken variables,

Q2 v
xB——Zrnp ] yB="E (2.24)

Then we split up the transverse and scalar cross sections given in eq. (2.10) into
the contributions from vector current, axial-vector current and the interference :

o, = o7’ + o7° 4+ o

op =0 + 01" —0 8 (2.25)
—— ” ] a

ocs = 05" + os

where

'\_‘ll‘valp,o A)[®

vost = 2 Zl(z g, X —1]a3|p; 0, A) 12

"GS l-—-\. zz‘(lqs as3|p,o A)l.' . '
 (2:26)
l‘as'“;:;l_YBZ z(l q’}\lasalp,o A)l
y ot - - 2 ’ -?RC f(i A 1 3 . -
- I —xp e A—=1vl [ p, 0, 1)
A

t

X4 A1 a? [ pro, 23},

According to the assumption of
the structure functions F, F,,

Bjorken scaling for large Q“’ and v

but finite xp,
F, are functions of only the varlable Xp .

(see Bjorken,
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and Paschos 1970). This implies that vo,". ... vo, depend only on xp as can
be seen from the following connection between the scaled-structure functions

F’s and the cross-sections defined above:

= ”ZE (1 —xg) (vor* + vor*) : '
“ i ¥
Fg ‘—"ZXB F1 = %xB (l _"xB) (VUSU ']' 1’05")
_ . - (2:27)
Fy= " (1~ xy) (vO

In terms of the scaled cross sections, we have from eq. (2.11)

-
Vo= ﬁ“(;,x”B‘) [(1 =y + 3y ver’ + (1 —yg5) v og']
X ‘ .
Ay = E%'Q[(l — e + 1757 vor' + (I —ya) v os”] (2.28)
X ' - ‘
ﬁ( ) [(yvg —% 8 vor],
where for convenience we have defined
B () = xB (L — xg).
We can now integrate the above expressions over ypg, so that ’
1 ' \

v, = ff dQdv V, = j dxg f dyg (2mpEv) V,

" 2
=2m, E f dxg B (x5) [§ Vol éVc’sv]

0

. \
1
. 2 (
= 2m, Ef dxg B (x5) [3 Vo + % voS“J i
|
|
|

= m,,Ef deﬁ(xB)[ a’”‘].

With the help of the above expressions which assume the validity of Bjorken
scaling, we can now derive a strong inequality. For this, we first note that

Schwarz inequality applied to eq. (2.26) reads as.
a)1/2_ ‘ ' . (2.30)

T <2(or o7
For the integrated functions, since the scalar-contrlbutlons are positive definite
we have
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1 1 ‘
B 2 n 2 l :
Ay = @m,E)* [ dxs B (x5) [§ vor ] [ o B (xa) [3- vy J
0 0

1
2 v _ a 2
> [Zm,Ef dxg B (xz) 3 v (o7’ oy )”2] .
o

On making use of (2.30) we at once obtain the inequality

(32 < V,4,, and similarly, (2.31)
(F)2 < Vod,. (2.32)

These are the improved inequalities for total cross sections which may be com-
pared with inequalities (2.22) and (2.23). An inequality closely related to (2.31)
was derived and used by Paschos ard Zakharov (1973).

For the total cross sections also we can write down the linearized versions of the
inequalities (2.22), (2.23), (2.31) and (2.32):
%If\ufa"l<f\2 Vo+np2d,; (a=0,3), (2.33)
t

where A and u are arbitrary real numbers and K,; = 1 or 2 depending on. whether

Bjorken scaling is used or mot. Again we can derive from (2.33) with K, = 1
the well-known. result

b ogy (v o) 2.34
3 S poy (o) S (239

The case K,= 2, on the other hand, does not lead to any nontrivial bound on the
ratio of total cross sections.

It summary, we have derived the following inequalities:

(i) For the differential cross sections, strong inequalities;
|17 | < K(Vad)2; (a =0, 3),
where K is a kinematical function defined in eq. (2.13).
(it) For the total cross sections,
L) <K (DAY (a=0, 3),
where, K,==1 coiresponds to astrong ine

and A, =2 gives
we have linear v

quality based on the assumption of scalirg,
4 weak irequality free from any dynamical assumption. Further,
ersions of each of these inequalities given in (2.17) and (2.33).

3. Upper bounds on the isovector coupling constants

3.1, Derivation of the main inequality

[t is corvenient to define the sums and differences of the double differential c¢ross
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r the neutrino (v*) and antineutrino (v) on the isospin-averaged
Y):

= [d2 oo ¥) | ‘Efiﬂ@}
58 =5 T Ao dv dO* dv

1Td? o,y (Vb )  d?ogy (v )
cn EE[_”ZZQ%I'V T I0% :\ : (3.1)
(2.2) and (2.3) we have
r =V, + 4, (3.2)
c =1 (3.3)
p =4[V 2y + 22V + wh A (3.4)
n =73 +awly]. | (3.5)

he bounds, we shall use only the positivity of V5, 4,, ¥, and 4, and
ties derived in section 2:

32 < K2V, A, (3.6
P)ES KA Vod, (3.7

<inematical factor K has been defined in eq. (2.13). We may first
lowing consequences of the linearized version of the inequalities (3.6)

Ac IS K2g - (3.9)
An IS K2, | (3.9
the same content as inequalities (2.18) and (2.19).

tion we would like to pose now is as follows:

four equations (3-2)—(3.5) and the two inequalities (3.6) and (3.7),
information obtainable on the parameters x, y, z and w?

let us first study the mformation provided by the data on charged
ss sections. Using eqs (3.2), (3.3) and (3.6) we eliminate 4; and
inequality for V,:

: (V32 - Vazc) 'l' Acz < 0
be rewritten as

P (Ve = Vaw) (Vs — Vi) <0 (3.10)

O
"= Fra)]

o3[ (- )] o
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Inequality (3.10) implies that ¥, (and similarly 4, also) should satisty th; constraints.
Ve < Vo < Vit : o .
Vam <As< VsM- ; Lo - (3-]-2)
A discussion of the inequality (3.10) is given separately in subsection 3.5.

We now go back to eqs.(3.4) and (3.5). Multiplying eq. (3.4) by X and
eq. (3.5) by 2, and adding as well as subtracting the resulting equations, we gei

K22y —x*V, —y24,;) =2 (ZAN — Xy Ne)
= K(z2 Vo + w2 4dy) 4+ 2Zzwl°. | (3.13)
By virtue of (3.7), the right-hand-side of (3.13) is positive. Hence, rewriting
the left-hand-side of (3.13) using (3.2), we have
K[2Zy —y2Zc —(x* —y) V] 22QAxn —x¥A)=0. (3.14)
Note that we have, in effect used the linear version of (3.7), namely (2.17).
Clearly, V, in (3.14) can be replaced by the minimrum value V, for x2 > y* and
by the maximum value V,, for x2 < 2. Thus the solution to our problem can

be given in the form of an inequality involving the coupling x and ) and measur-
able experimental quantities [Rajasekaran and Sarma (1975)] :

22 4Ac® N 2 4 - Eﬁ
=1 =) |9 =0+ g 200 —whe | <57
(3.15)

We shall also write down explicitly the corresponding inequality for the total
cross sections:

o~

o s 4NN\ . 4 o~ e 4N
R (R W — | 2An— 3y Lo | < 52
K,chz } y ]+ Kt ZC] AN c ‘ == ZC

(3.15"

wherein, one sets K, = 1 if one wishes to assume the validity of Bjorken scaling,
whereas 1f. scaling werz not assumed one sets K, = 2 (see the end of section 2).
Here the tilde significs [as in eq. (2.20)] that the integratious over @2 and v have
?ecsz performed and thus the quantities involve the total cross sections; for
mstance, ‘ '
Lo = Vs 7 Ay = Lo (VP H) + oc (- )],

It 5119u1d be noted that the inequality (3.15) or (3.15') follows from completely
mogiel-mdependeut considerations. A natural question arises whether one could
derive a better result by following a different procedure. We prove in the appendix

that with the given input on neutrino cross sections, the inequality (3.15) is the
best that can be obtained.

3.2 The octagonal region

When the two mpdulii are unravelled one finds that the inequality (3.15) iméﬁéé
th?‘t_ the \falues of x and y are confined to the interior of an octagon. The eight
straight lines of the octagon are defined by the equation, -

—yee - i KX H '
U amty + el —apty + 2] Nj;ifz&v] =0 (3.16
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where

,_[,_iéci’f
p = K2xz2|>

6 =—1, for x?>y°
= -+ 1, for x2 < y*?
e=+1, for i=23.

The signs of €, distinguish the eight straight lines. If, however, p = 0 then the
octagon will become a rectangle. Clearly the inequality (3.15) also leads to an
octagon of the type defined above and for this reason we shall refer to (3.15) and
(3.15") as the octagonal inequalities.

We note that detailed neutrino data on differential cross sections are not avail-
able at the present time. Therefore for the sake of plotting we shall only deal

with the inequality referring to the total cross sections, and for this purpose
consider the CERN Gargamelle data:

_oc(v-9) .22 L () : '
R, = ) 0-38 -{- 0- 02, (Eichten. et al 1973)

- (.TN (v+ ) — . ' a

= ) 0°22 -+ 0° 03, (Hasert et al 1974) EERY)
- __Oxn (V* <W) . . ’
Fo= o () = 0'55 4 0-07, (Morfin, 1975).

These measurements utilize the Freon target and a neutrino beam whose spectrum
extends up to about 10 GeV. It is important to note that these data were obtained
after effecting a cut on the minimum total energy of the final hadrons and there-
fore do not refer to the true values of the total cross sections. Moreover the
energy spectra of neutrinos and antineutrinos are not identical. Since we would
like only to illustrate the efficacy of the inequalities derived in this paper, we shall
ignore the above complications in the experimental data and also ignore the quoted
errors in eq. (3.17).

Data on total cross sections are also available at much higher energies coming
from FNAL (Aubert et al 1974, Benvenuti ef al 1974, Barish et al 1975). How-
ever, due to the possible onset of new effects such as the excitation of new quan-
tum numbers at FINAL energies, we shall restrict ourselves to the Gargamelle data.

The octagon in the xy-plane implied by the eq. (3.16) is plotted in figure 3
using the median values of the data given in eq. (3.17), for two cases. The
inner octagon is for the case of K, = 1 and follows from the assumption of Bjorken
scaling whereas the outer octagon is for the case of K; = 2 which is independent
of any such dynamical assumption. The allowed values of x and y are constrained
to lie within the inner (outer) octagon if scaling is (is not) assumed.

In general, the octagon will be oriented asymmetrically with respect to the co-
ordinate axes with a tilt. However, for the input data used, because (Ay/Zy) is
very small (~ 0-03) this tilt isslight and hence is barely visible in our plot.

Secondly, it may be noted that if R, defined in eq. (3.17) has the value 1/3 the
inner octagon will reduce to a rectangle.

P—10
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Figure 3. The region within which the allowed values of the isovector couplings
X zlml' ¥ should lie according to the octagonal incquality (3.15°). CERN data on
heutrino and antincutrino  total cross sections are used. The outer octagon
I‘cf‘crs to the case K, == 2, and the inner octagon to the case K; = ! which assumes
Bjorken scaling. The point marked (X) refers to the Weinberg-Salam model.

We may also point out here that for Weinberg-Salam model (with the effects
of strunge and possible charmed hadrons ignored) the isoscalar axial vector current
wan® can be dropped, in which case, eqs (3.3) and (3.5) imply that x and y lie on
the rectangular hyperbola:

AP Ae = ZAn- (3.18)

The Weinberg-Salam point y = I, x = (2Axn/Ag) for the median values of the
data of ¢q. (3.17) is indicated in figure 3 by a cross (X).

3.3 Possible improvement by the usc of electron-scaitering data

So far we have used only the neutrino-scattering data. Since »3 is a part of the
clectromagnetic current by the conserved-vector-current hypothesis, we obviously
have the bound (Paschos and Wolfenstein 1973)

G2 QO d* o, ()
- ~ / - Tl s ey - (‘.‘)z"_ — - -
V;) , em T 477_2 ag sz dl} . (3 . 19)

Here the double-differential cross section on the right refers to the inelastic elec-
tron scattering on the isospin-averaged nucleon. target and the factor in frout
ariscs from the fact that electron-scattering involves the fine structure constaite
and the photon propagator 1/Q2? whereas neutrino-scattering involves G.

It the data on clectron-scattering andneutrino scattering (by charged currents)
are such that V., < Vi, then V,, provides a better upper bound for ¥, than
V,u- Therefore for x* < 32, for the maximum value of ¥, in the inequality (3.14)
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we may use V,,. As a result, the allowed region for x? < y? is restricted by the
following inequality:

2 - |
y226‘ _(yz __x2) Vem + ‘72 ’ ZAN — Xy Ac ]S ZZN > (320)

while for x2 > 2, the inequality (3.15) is left unaltered.
For the numerical work, we shall again be concerned only with the integrated

quantities. Defining f/m,, as in section 2.4 as the integral of the right-hand-side
of (3.19) over Q% and v, and using the electron-scattering data (Kendall 1972) as
well as the neutrino-scattering data (Eichten et al 1973), we get, neglecting errors,

~ -

Veom
Oc (V+'9V)

For comparison, we give here the values of I73m and V,y, derived from eq. (3.17)

= 0 36. (3.21)

~ ~

Vim Viy

ot =01 e = 050 (3.22)

For these values, we see that V,,, < VaM so that we can use the improved version
(3.20) for x2 < y%. The improvement achieved thereby is indicated in figure 4
for the case of K, = 1. Although the boundary given by eq. (3.20) is a pair of
conic sections, it is not far from a quartet of straight lines for the actual numerical
values used. However, because of sizeable errors in the above experimental

numbers we cannot decide at the present time which of the two quantities ¥,

and V,, is in fact the larger one, and hence whether the apparent improvement
depicted in figure 4 is a genuine one.

" Figure 4. Improvement of the octagon for K, = 1 by the use of electron scattering
data. The figure in solid line is the allowed region obtained for the case K; =1
by using the eN data. For comparison the inner octagon of figure 3 is indicated
here by dotted line, which coincides with the solid line for |x| > |y/|.
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3.4 Some inequalities weaker than the octagonal inequality

Here we shall consider some simple inequalities which may be of special interest

and help to put the octagonal inequality in perspective. It is convenient to develop
the discussion in the following three stages:

(A) If in the expression for Yy in eq. (3.4) one ignores the last two isoscalar
terms and utilizes the bounds (3.12) satisfied by 7, and A4,, one gets

2hn = XV, + 3P A,
= (3 -+ 3?) Vo (3.23)
Therefore the values of x and y are confined to the interior of a circle in t.he xy
plane. For the data on total cross sections (for using which one replaces in the

above expression Sy, by S etc.) given in eq. (3.17) assuming scaling, this circle is
shown in figure 3.

(B) We observe that when V, takes its maximum value Vg,, because of eq.
(3.2) 4, must equal V,,, and vice versa. Therefore instead of the second step

in eq. (3.23) we may consider two possibilities depending on whcther (x2 — y2)
is positive or negative:

258 = XV, 5= R (ZC — V)

< (&2 =)V, + y* Zo,  for x2= y?
TAE =) Vo + 32 e, forxt <yt

Thus we obtain the two inequalities defining a pair of intersecting ellipses in the
xy plane, which are also shown in figure 5 for the data on. total cross sections.

(3.24)

Figare 5. Content of some

The curve C is the circle of t
(3.24),

the oc

weak inequalities assuming Bjorken scaling (K, = 1).
he inzquality (3.23), curve E is the pair of ellipses on

tzi:urve Ig denot’&s the two pairs of hyperbolas of (3.26). Dotted curve O is
gon of (3.15") shown for the sake of comparison.
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(C) Further tightening of the above inequalities (3.23) and (3.24) occurs when
use is made of the linear inequality (2.17) satisfied by I°;

9 o 2
2y —xVy—ydy > 5| 2wl | (3.25)

Using the lower bounds on V4 and A4, and eqs (3.3) and (3.5), one obtains
2 2 22"
¥ + ) ‘KV:}PH [ 2/\N v /\C ‘ h Vﬂm (326)

which represents in the xy plane a domain bounded by two pairs of hyperbolas

as shown in figure 5. Note that if Ay = KV, the hyperbolas degenerate into two
pairs of straight lines.

As a next step, in view of the observation made in paragraph (B), improvement
over the hyperbola inequalities (3.26) leads to the octagonal inequality (3.15)
(shown by broken line in figure 5), which of course is the strongest as it uses the
non-linear inequality (2.15) for 7;® and the linear inequality (2.17) for I,°.

3.5 A comment on the isovector structure functions and chiral symmetry

Here we digress from our main enquiry for a brief discussion of the values of the
isovector structure functions V3 and 4, which are obtainable from the data on
charged-current cross sections. We recall that the bounds (3.12) provide us with
model-independent information. on Vy and A; and do not even depend on the
assumption of scaling.

The following bound on the difference between ¥V, and A4, follows from the in-
equality (3.10):

V—A 4/c*

and it can be used to test chiral symmetry (see Paschos and Zakharov 1973,
Rajasekaran and Sarma 1974 b). For total cross sections, one observes that under
the assumption of scaling (K is replaced by unity) chiral symmetry becomes exact,

ie. V,= 4, only if2] Mo |==Z~'c.
To elaborate further we rewrite the quadratic inequality (3. 10) for the integrated
quantities V, and A,:

(5) B g (7ay <o o
\ZC EC t ¢

where R is the ratio of charged-current total cross sections

_ o (Vo)
Re = o) (3.29)

‘The content of this inequality is displayed in figure 6 as a plot of (217,/2::,'6) versus
R, for both the cases K, = 1 (full line) and K, = 2 (broken line). In each case
there are two values of the ordinate for a given value of Rg and these denote the

R P
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2V,

S : =~

Figure 6. Allowed region of the values of (2'1'/"3/:2’0 ) as a function of R¢ rilcco.rding
to the inequality (3.27). Broken line corresponds to K; =2, and solid line to

 the case K; = 1 when scaling is assumed. This plot is also valid for (24a/Z ) as the
ordinate,

maximum and minimum values corresponding to the bounds (3.12). For the
case of K; =1 (i.e., scaling) we see that as R, approaches 1/3 or 3, the value of
(2173/5‘& approaches unity and hence Vs approaches 23.

An interesting feature of these inequalities may be pointed out here. Since the
bounds on R. given by (2.34) are directly obtained from the linear inequality
(2.33), the closeness of the experimental value of R, to the lower bound 1/3 sug-
gests that the linear inequality (2.33) witha =3, A =p = 1 and K, = 1is close

to being saturated. In other words, referring to figure 2, 173 and ffa lie very close

to the straight line L. But we already know that the physical values of f’g and A.;
have to lie to the right of the hyperbola H (given by the quadratic inequality) anp
cannot lie on the straight line L unless ¥V, = A, So we conclude that Va ~ A’;-
Thus, from the single experimental datum : Rz ~ 1/3, one can infer not only that

the quadratic inequality (2.31) is very nearly saturated but also that chiral sym .
metry is approximately correct,

A




.
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However, it is evident from figure 6 that the approach towards the chiral sym-
metric point is rather ¢ slow”. Even for small departures from R, = 1/3 the
deviations from exact chiral symmetry are sizable; for instance, if R, = 0-38
the right hand side of the inequality (3.27) (for total cross sections with K, = 1)
turns out to be 0-44.

4. Lower bounds on the isovector coupling constants

The bounds given in the previous section are in the nature of upper bounds for
the magnitudes of the isovector coupling constants x and y. For, given the iso-
spin-averaged nucleon. cross sections alone, we cannot rule out the case x = y = 0,
i.e., the possibility that the neutral current is a pure isoscalar. On the other hand,
since the difference between. cross sections for proton and neutron targets arises
from isovector-isoscalar interference term, it is clear that this difference can be
used to set lower bounds on | x| and |y | This is the purpose of the present

section.
The neutral-current cross sections for proton target and neutron target can be

written as

d2 'V:h 9 9 0 (
: ;‘35(35_) =% [.X" Vs + »*A4; + 22V, + wid, 4 xpI® 4 2wl
+ xwl? + yzI® + (xzl,, + yw]“)]
d* oy (vEn) _ )
sz dv %[x V + y* A + z2 Vo + W2A + xyl -+ x.W]‘

Foxwlp F yzl® —(xzl, + ywlso)] 4.1)

where vt denote neutrino and antineutrino as before, and all the interference
terms are defined in a manner similar to eq. (2.3)—the lower (upper) index of
of the interference term denotes the isospin character of the vector (axial vector)
current—for instance, I} is the interference arising from v)* and @,'. Similar to
the definitions of 3y and Ay in eq. (3.1) in terms of the sums of cross sections for
p and n, we now define Sy and DN in terms of the differences of p and n cross
sections:

Sy = %[y (vtp) — oy (v*n) + oy (v-p) — doy (v71)]
= I [Roy (vFp) — dog (vt 1) — oy (v~ p) 4 oy (v~ 1], (4.2)

where the symbol d stands for the double differential d%/dQ*® dv. From eqs (4.1)
and (4.2) we get

Sy = 1 (xzl50 + ywI*)
Dy = 4 (ewly® + 1), (4.3)
The interference terms occurring here satisfy the following inequalities:
|2 | < KV, A2 [ 13| < K(Viody)'? (4.4)
Ly | < 2(V V)2, | 0] < 2(4,40)" - (4.5)
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where K is the same kinematical factor defined in eq. (2.13). It should be noted
that whereas the (va) interference terms are bounded by the more powerful in-
equalities in (4.4), we should be content with the simple Schwarz inequalities (4.5)
for the (vv) and the (aaq) interference terms.

Before we proceed to derive the bounds involving Sy and Dg, we shall obtain
constraints on the isoscalar parts which involve only isospin-averaged cross
sections. By combining eqs (3.3), (3.5) and (3.7) we get the inequality,

1
72 CLn =X L) < 2202 Vod,, (4.6)
and using this in eq. (3.4) we obtain

V)2 —22 Vo (20 y —x2 Vy, — 2 4,) + %2 2Ly — Xy Ao)? < O.
: 4.7)

Eliminating 4, with the help of eq. (3.2) and replacing ¥, by its extreme values
(3.12) ore gets

. 1
(22V0)2 — 22V M + ke @ Dv—xy o) <O (4.8)

where
M=2)y—y* e —(*—»%) V,,, for x2> )2
=2y —32 Fe —(x? —Y*) Vau, for x2 << y2 (4.9)
The content of this quadratic inequality (4.8) is to force the variable (z2 V,) to lie
between the two roots y; and w,;
Y1 < 2V, <y, (4.10)

where

o ‘ \ 4 1/2
Vz,l:-%Mz%[Mz——F(ZAN“xy Ac)2] . (4.11)

Obvi.ously, w24, satisfies the same constraints as (4.10). It should be noted
that in, contrast to the bounds on the isovector parts given in (3.12), the constraints
(4.10) on the isoscalar parts depend also on the coupling strengths x and y.

- We shall make use of (4.10) in derivin i i L
[ m . g the bounds involving Sy and Dy. Usin
the inequalities (4.4) and (4.5) we obtain from eq. (4.3) ) ) ®

ZISk | <2 xz [ (VaVol2 + 2| yw | (Agd )12,

2IDy | < K xw [ (A2 + K | yz | (4,10 (4.12)
tl){eplac"mg Vs and A4, by .their upper bounds ¥, given in (3.12), and ¥V, and A4,
y their upper bounds given in (4.10), we get the desired constraints:

2 R TR N _,__Lf_S:’!.J_ .
el
gy 2 1 Dnl
x|+ qyi: K Ty (4.13)
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If it turns out that Vi, is larger than V,,, defined in eq. (3.19), then these bounds
can. be improved, as was discussed in section 3.3, by replacing ¥, both in
eq. (4.9) and inequalities (4.13) by V.

Regarded as bounds on x and y, the inequalities (4.13) are quite involved. Never-
theless they are very important as they constitute all the model-independent infor-
mation that can be extracted from a knowledge of oy (vtp) and oy (v¥n). The in-
equalities (4.13) contain not only the obvious lower bounds on | x | and |y |, but
also upper bounds on | x| and |y|. In fact, the requirement of reality of the
radical occurring in the definition of y, in eq. (4.11) leads precisely to our octa-
gonal upper bounds (3.15). Thus the region in the xy plane allowed by the in-
equalities (4.13) is expected to be a bounded region. with a hole at the center around
the origin provided either Sy or Dy does not vanish.

However, as we have already discussed the upper bounds in the preceding sec-
tion and also since we do not yet have data on Sy and Dy, we shall restrict our-
selves to illustrating the lower bounds implied by the inequalities in (4.13). For
this purpose we shall replace y, by its maximum possible value 23y and thus
obtain the weaker versions of (4.13):

¥+ 1| g e @1
Jxl 112 E g

K 28y Ve

These inequalities imply that, provided Sy and Dy are nonvanishing, a diamond-
shaped region in. the xy-plane around the origin is scooped out. Since no data
on Sy and Dy are available at the present moment, we cannot plot these lower

bounds en Sy and Dy. However, if we take the hypothetical values | Sy | =2
‘or |13N|= 1/2 5y, allowed by the inequalities

| Sy | <Zy
K
|DN1<72N

which follow from simple manipulations of eq. (3.4) and the inequalities (4.12),
then, the diamond-shaped region is asindicated in figure 7 for the total cross section
data assuming scaling. We should stress that the lower bounds indicated by
the diamond-shaped region in figure 7 are hypothetical and they should be replaced
by the genuine bound, once data on Sy and Dy are available.

A detailed plot of the better inequalities (4.13), which contain both the upper
and lower bounds on the values of x and y, will have to await the experimental
data on neutral current cross sections of neutrinos and antineutrinos on protons
and neutrons separately, We should also remark that whereas the upper bound
given in (3.15) can be proved to be the best ones with the given in-put data,
no such proof is available for the lower bound contained in (4.13),
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034 ~

Figure 7. Schematic representation ol the lower bounds_(*?.'l-*) for l‘b'l“i‘”;c‘“:;i
values of Sy and Dj (see text). Values of x and y Iying within the dmtnmu ~:§;‘1;4§:
region are forbidden. The broken linc is the octagonal upper bound of e, (3-137)
for K; = 1, show here for comparison.

5. Summary and discussions

We have derived the consequences of the twin assumptions that the neutral weak
current consists of only vector and axial-vector currents and that the is'ovcctor
part of the neutral current is related to that of the charged curreit by isospin rc}til-
tion. The results have been given in the form of bounds satisfied by the Iso-
vector coupling constants x and y of the neutral currennt. The upper bounds for
x and y utilize neutrino cross sections only for isospin-averaged nuclecon whercis

the lower bounds for x and y require a knowledge of the cross sections for proton
and neutron separately.

The evaluation of these bounds require data on inclusive necutrino scattering
experiments either in the form of double differential cross sections or total Cross
sections. In the case of double differential cross sections our results arec quite
general as their derivation is independent of any dynamical assumption. IFor
total cross sections we have a choice: bounds which are not so restrictive but

assumption-free, and bounds which are very stringent but depend on the vali-
dity of Bjorken scaling.

For numerical illustrations we have used only the bounds involving total cross
sections. Use of the bounds with differential cross sections should be reserved
for the future. It should be emphasized that our bounds can also be used for
exclusive cross sections, such as elastic and quasi-elastic neutrino scattering,
single pion production processes, as well as for partially integrated cross sec-
tions. The only requirement is that the neutral current cross sections Dy, Aw

fmd the charged current cross sections Y, A should refer to related reactions
m each of which a sum over the char

ge states of the final hadronic system is
understood. ;
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The bounds obtained in this paper do not involve the isoscalar coupling con-
stants z and w. One can study the limitations on these couplings only if the
isoscalar currents are related to the isoscalar currents occurring in some other
physical processes. In our considerations so far ithad not been necessary to define
the normalization of the v,® and a,° relative to v)% and @)® and hence z and w could
well have been absorbed into )% and )% Since the bounds were obtained by elimi-
nating isoscalar contributions, z and w disappear along with ,°% and )% Itis
worth mentioning that a natural, but nonetheless additional, assumption is to
relate v, to the isoscalar electromagnetic current from which it is possible to derive
bounds involving z in addition to x and y (Rajasekaran and Sarma 1975).

Finally we shall discuss the important question: how good are the bounds
derived in this paper? We shall restrict our comments to the upper bounds
implied by the octagonal inequalities. These inequalities (3.15) are consequences
of two basic inequalities; the nonlinear inequality (2.12) for the isovector parts
and the linear inequality (2.17) for the isoscalar parts with A = z and p =w. As
noted in section 3.5, the closeness of the experimental value of R to 1/3 indicates
that the nonlinear inequality (2.31) constraining the isovector contributions is
almost an equality at high energies. To that extent, the octagonal bound can
be regarded as a tight bound. The loosening of the bound due to the use of the
linear inequality (2.33) for the isoscalar contributions could be avoided provided
some additional assumption is made such as the relationship of »° with the iso-
scalar electromagnetic current referred to in the previous paragraph. The
resulting inequalities involving x, » and z will then be so tight that they may
even become equalities, as will be elaborated upon in a subsequent paper. On
the other hand, without making any such assumption, the octagonal bounds
are the best that can be obtained, as we have shown in the appendix through a
variational procedure. Thus, we may conclude that the octagonal inequalities
derived in this paper constitute the most stringent bounds on the isovector
coupling constants of the neutral current that can be obtained in a general model
independent framework.

Appendix
It is the purpose of this appendix to demonstrate that the octagonal inequality
(3.15) is the best one under the given input by deriving it from a variational

procedure. Our notation here will, to a large extent, conform to that of the sub-
section 2.3. We start by rewriting eq. (2.11) in a compact form:

:E:/
V:J = [vn3 v“3>k + z[1r13 un3*]
- .

— K Z Re (v,* a,°%)

A

Ay

I

il
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where

7)“3 = (ZalD)li"‘)’ z {Il, q, A—1 l v13 l/,, o, ’\>
A

(lnﬁ‘ (2'a|_D)! 2 <l7~. q. A1 I U.r:k il,‘ 0. A)

2
1/2 A
A
2

(1, q, N a® | pyoos N

a . ((22DY'"?
e ()

The isoscalar parts ¥, 4,, I,® can also be concisely expressed i a similar minng
in terms of »,% 4,% u,° b,°

n -

In terms of these current matrix elements we may now express the el trine Cross
section combinations eqs (3.2)~(3.5) as follows:

2w = (w3 24 |2 ]2) ovr (et |t 1] 6,0

+ 22 (0,012 [, ]2 - (a0 |2 A0 ) (A
2Ay = — KX [xy Re (v,3 @) -|- zw Re (v,° a2’ )] (A-2)
Ze=2"[lv. 2+ | @ |2+ |10, 21| 5% %) (AY
Ac=—KI'Re (»,2 at") (A4

Our.problem is to obtain bounds on the coupling parameters x, y,. .. such s
to satisfy the relations (A.1)~(A.4). We shall, equivalently, choose to (‘)bt'fllll
bounds on 2Yy defined by (A.1) under the constraints (A.2)-(A.4), by usiug

the method of Lagrange multipliers. For this purpose we define the Lagrang
function

L=25y+ M[2Ax + K5 {xy Re (v, a") 4- zw Re (v,° ap Y]
T Ml =2 {{v 2+ a2+ 1w’ ]2+ |5, 3]
+ A [Ac + KX Re (v,® a2™)] (A.5)

where A;, Ay and A, are Lagrange multipliers which are real parameters and for
2y we should ‘substitute from eq. (A.D.

Extrel?n'zation of L with respect to the set of 16 variables, v, a®®, w3 b}
and their complex conjugates, leads to the following conditions:

2 (x2— ) v, + K (Asxy + Ay @, = (A6

2 (}’2 — /\'i) 61"3 + K(’\ny 'I‘ ’\4) v“3 == 0 (A7)

—-——-.—
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(a2 At 0 (A.8)
(e A B0 (AY)
TR W ICIT (A.10)
mrat A0 (A.11)
a0 (A.12)
Wi b (A.13) ‘

and eight more conditioas wineh wre merely complex conjugates of the above
cquations, and hence pecd not be considered separitely.

Before we provecd to salve  the above equittions, 1t is worth noting  that we
should avoid those solntions  which require the viwdshing of any of the A's. For,
vanishing of a particular A, corresponds to not using the s-th constraint at all and
the resulting bound will therefore be & weiher one, More generally, we should
avoid solutions of the above cquations which demand refations of the type

AR ST PR (A.1d) o
4

where €'y are constints mdependent of the A's ;

Equation (A.¥) immednttely unphes that 2, 07 because i we were to require
xt s Ay then from (AL6) we hane either Apvy Ay O which s of the form (A 14)
and hence unaceeptable, or a0 which v mconsistent with o nouvanishing “
Ae Similar reasonitge with (A 9) vields B0 0, whole egs (A1) and (AL 1Y)
trivially imply that the cortesponding isoscabive parts also vanish;

wt b bt (A.15)

Thus the solution which extremizes the tunction dehined e (AL 5) must have all
the scalar matrix clements set sero, o fact which has an obvious parallel in the
omigsion of positive-defitate sealar terms, e (2011,

We next come to the eygs (AL60 (A7), (A10) and (A1), For a nontrivial
solution. of the transverse varsables 9, @®® the A's have o satisfy the following
two determinautal conditions:

4{x* A0 (v Ay At {A.]16)
K*A2 4 (A 17)
We are thus left with two relations among the four vatiables
Yy
0,8 AM(E‘:u “‘j\’s} b, (A.IR)
Yo
alt - K:;;'wv,“. (A.19)

The procedure now is to use the tour ey (AL 16)-(A 1Y) together with the three
constraint equations (A.2) {A.4) to determine the four variables v%° a®9 ay
well ag the three parameters Ay, Ay, A Actually only sums of the bilinear products
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of the matrix clements can be determined and these alone are relevant for our pur-
pose.  Substitution of (A.18) and (A.19) into (A.4) and (A.2) gives

rlu {l ) I\OX}’T’
n 2 (}VJ /\ ) AC (A.zﬂ)

n

N, 8 2 (x% — 2y
e Mg
‘_{/_, ] (l,, ]\ (/\23\)) __’_ /\ ) / . C (A.Zl)
2 2. 1% 55 QAN —xr AL
Kz~ | 288 —xyAc | (A.22)
2’ l (1“0 I“ o ”Avi’: K2 A‘) (‘2 [-\-N' — A‘y /CC)
n l
K | 208 —xpLc . (A.23)

substitution of Lhcsc in the constraint (A.3) and use of (A.16) yields an equa-
lion involving X's .
K2 (Agxy - /\,1) Lo = 2Z(x® - P —2X) Ac. (A.24)
With the help of the threec eqs (A.16), (A.17) and (A.24) we can now deter-
mine the three Lagrange multipliers A, A3, A, in terms of Zg, Agand Ag. Substi-
tuting for them in (A.20)~(A.23) we determine X | v |2, etc., which when inserted
into (A.l) give us the extremum of X,

- %_79 2 g LR — 12 AR
(2 =% rrse—n(—za5)]
"““ | 248 — Xy Ac | (A.25)

It may be noted that the two possibilities of the sign above arise from the two
possible values of A;:

K] » 4A2 —-"'5.‘
20 = — (e b ) & G2 =) (1 — 2 ) (A.26)

To ascertain whether this extremum corresponds to a maximum or minimum
we have to examine the second derivatives of L with respect to the matrix elements
v,%:0, etc. The matrix J formed by the second derivatives consists of the follow-

ing pieces:
Using tor brevity the notation,

" o* L

L (GL, /3) babﬁ
L’ (03, v L (v3, aa)) (x“ — Az K(Asxy+ /\4)/2) (A.20)
L” (a?, 'v“) L" (a3, K@Qaxy + 22 y2—A '

L” (v°, 0% L"(v° a°% ( K /\22w/2) (A.29)
L" (a®% v® L" (a® ao)) KXpzwf2 w2 _
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L7 (W, ud) = 52— (A.29)
L (8% B%) = 32—\, (A.30)
L' (0 u%) = 22 (A.31)
L7 (B8, %) = wh. | (A.32)

All other second derivatives of L are zero. Consequently, the nontrivial part of
the second-derivative matrix J is a 8 X 8 matrix having a block-diagonal form
comprizing of two 2 X 2 blocks along the diagonal given by (A.27) and (A.28)
and four diagonal elements given by (A.29)-(A.32).

The eight eigenvalues of the matrix J can easily be listed—
(XZ + J’IZ ~2A3)9 O, (22 -+ wg), 0’ (x2 - /\3)a (y2 - /\3)3 22: w2, (A33)

Barring the particular values z= w = 0 (which correspond to specific models),
we conclude that due to the presence of the third and the last two eigenvalues
above, the matrix J cannot be negative-definite. Tn other words the extremum
(A.25) cannot refer to a maximum. This is obvious otherwise also from the
structure of the expression for Y. We can imagine 7y to be arbitrarily large by
choosing large values for the parameters |u® | and | 5% | in eq. (A.1) which are
unrestricted for any given set of valves of Ay, Ac, and .

The necessary condition for the extremum to be a minimum is that all the
eigenvalues are non-negative at the point of extremum. This implies the two
conditions

X2 A, | (A.34)
iz A (A.35)

which will be satisfied if we choose the upper (lower) sign. in the formula (A.26)

for A, when x2—y?>0(< 0). We therefore conclude that the extremum we
obtained is a minimum,

Zn= (D)o - (A.36)

provided we choose for x% > y?(x* < »% the upper (lower) sign in eq. (A.25).
The inequality (A.36) is the octagonal inequality (3.15).

For obtaining the bounds involving the total cross sections 2:’N, AN, E’c, and

[30, the integrals over Q2 and v may be regarded as sums over discrete values of
Q% and v and then the above variational procedure can be followed. One then

finds that there are many minima of E’N which are given by the same expression
(A.25) written in terms of total cross sections, each minimum corresponding to
the function K evaluated at any given pair of values of the kinematic variables

Q% and v. However, only the absolute or the lowest mmimum of ﬁ’N is relevant
for us and this is obtained for the maximum value of K, namely 2. Thus we
recover the bound (3.15") evaluated for K, =2. If Bjorken scaling is used,

however, the y-integration can be done as before and we get the stronger bound
(3.15) with K, replaced by unity.
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