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Abstract

Ivanov-Anderson (IA) model (and an earlier treatment by Kubo) envisages a decay of the orienta-

tional correlation by random but large amplitude molecular jumps, as opposed to infinitesimal small

jumps assumed in Brownian diffusion. Recent computer simulation studies on water and supercooled

liquids have shown that large amplitude motions may indeed be more of a rule than exception. Ex-

isting theoretical studies on jump diffusion mostly assume an exponential (Poissonian) waiting time

distribution for jumps, thereby again leading to an exponential decay. Here we extend the existing for-

malism of Ivanov and Anderson to include an algebraic waiting time distribution between two jumps.

As a result, the first (ℓ = 1) and second (ℓ = 2) rank orientational time correlation functions show

the same long time power law, but their short time decay behavior is quite different. The predicted

Cole-Cole plot of dielectric relaxation reproduces various features of non-Debye behaviour observed

experimentally. We also developed a theory where both unrestricted small jumps and large angular

jumps coexist simultaneously. The small jumps are shown to have a large effect on the long time

decay, particularly in mitigating the effects of algebraic waiting time distribution, and in giving rise to

an exponential-like decay, with a time constant, surprisingly, less than the time constant that arises

from small amplitude decay alone.

PACS numbers: 05.40+jc, 64.70.Pf, 66.20.+d, 66.10.-x
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1. INTRODUCTION

Because orientational relaxation of molecules is relatively easily accessed by a variety of

experimental techniques (NMR, IR, fluorescence depolarization, optical Kerr effect, to name a

few) [1, 2, 3, 4, 5, 6], many theoretical models and microscopic studies have addressed various

aspects of molecular rotation in dense liquids and glasses [6, 7, 8, 9, 10, 11]. The most celebrated

of these studies is the one carried out by Debye many years ago, in terms of a simple rotational

diffusion equation.[3, 4] The theory assumes that rotational correlation in liquids decay by small

amplitude rotational Brownian motion, with a rotational diffusion coefficient, DR. The theory

makes simple prediction that the decay of the correlation functions of all ranks of Legendre

function is exponential and is given by

Cℓ(t) ≡ 〈Pℓ [cos θ(t)]〉 = exp(−ℓ(ℓ+ 1)DRt). (1)

The Debye model of rotational diffusion has played a pivotal role in most of the discussions

on rotational diffusion in the condensed phases. Many theoretical studies have attempted to

improve upon Debye model, using for example, a generalized Langevin equation approach which

ultimately leads to a time or frequency dependent diffusion coefficient. But all these approaches

use the general assumption of infinitesimal rotation of Brownian motion.

Recent experimental and theoretical studies on supercooled liquids and surprisingly, liquid

water, have shown a marked departure from the classical Debye behaviour. [12, 13] In these

cases, rotational diffusion is found to occur by large amplitude jumps. In supercooled liquids

and glasses, the orientational relaxation is often markedly non-exponential. [12] In liquid water,

the non-exponentiality, at room temperature, is weak but relaxation becomes progressively

non-exponential at low temperatures. [13] The rotational relaxation (and also translational

diffusion) seems to occur primarily through rare but large amplitude jumps. A quantitative

understanding of the origin of such jumps has remained a subject of great interest, though

largely unsolved.

A model of rotational jump diffusion was actually proposed by several workers in the past,

most notably by Kubo [14, 15] and Ivanov [7]. In Kubo’s model of jump diffusion, the rotator
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was restricted to jump in a circle, that is restricted to two dimension. (See Figure 1(a)) Ivanov’s

model was more general where jumps were isotropically distributed in three dimension. (See

Figure 1(b)) Ivanov’s model has found increasing use in describing experimental results. In

this model, the waiting time between jumps obey an exponential distribution and as a result,

the decay is single exponential, with the first and second rank correlation functions which are

given by

C1(t) = exp [−(1 − cos ∆)t/τ ] , (2)

C2(t) = exp

[

−3

2
(1 − cos2 ∆)t/τ

]

, (3)

where ∆ is the constant amplitude of jump and τ is the average time interval between any two

jumps. The probability that there are n jumps in a time interval t is assumed to be given by

Poisson distribution

P (n, t) =
(t/τ)n

n!
exp (−t/τ) . (4)

For small jumps, equations 2 and 3 go over to the Debye behaviour, with τ1/τ2 = 3, where τ1 and

τ2 are the decay time constants of C1(t) and C2(t), respectively. However, the relaxation pattern

is different for long jumps. The difference is most acute when the jump angle ∆ is close to π. A

jump by ∆ ∼ π relaxes C1(t) but not C2(t). therefore, τ1/τ2 becomes much smaller than 3 and

approaches zero. Interestingly, for intermediate values of jump length parameter (∆ ≈ π/2), the

ratio of the two time constants approach unity. Simulations have often found that the values of

the ratio τ1/τ2 lies close to unity in supercooled liquids which has been taken as an indication of

the emergence of jump diffusion as a contributing mechanism of rotational relaxation. On the

other hand, in a notable development, recently Déjardin and Jadzyn have extended the Debye

rotational diffusion model to fractional rotational diffusion case to treat events that are non-

local in time due to the existence of extensive memory effects. [16] Under fractional rotational

Brownian motion, the decay of the relevant orientational correlation functions is no longer

exponential (or, sum of a few exponential terms). It was shown that the decay can be described

as a combination of Mittag-Leffler temporal pattern, behaving like a stretched exponential at

short times and an inverse power law in the long time limit. Fractional equations provide an

anomalously slow decay at long times, often referred to as subdiffusive regime. As pointed
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out by many, fractional Fokker-Planck or Smoluchowski equation is a natural generalization of

normal diffusion to disordered systems with scale free memory effects. [17, 18, 19, 20] Déjardin

and Jadzyn obtained analytic expressions of the frequency (ω) dependent electric birefringence

spectrum, χ(ω). They plotted Cole-Cole diagram for various cases to demonstrate the effects

of fractional diffusion. Fractional diffusion gives rise to markedly non-Debye Cole-Cole plot

which now varies from Cole-Davidson skewed arc behaviour to Cole-Cole depressed circle. The

treatment of Déjardin and Jadzyn is still based on rotational diffusion equation, and does not

contain the effects of finite jumps. However, as already discussed, in many complex systems,

rotational relaxation occurs by large amplitude jumps. For example, in liquid water, it has

recently been discussed how much of the relaxation of orientational correlation occurs by jumps

which are of the order of 60◦. [13] Such motions cannot be treated as a Brownian diffusion. In

addition, in many complex systems, the waiting time distribution between jumps may not be

approximated by Poissonian distribution. [12, 17, 18, 19, 20, 21, 22] In the present work we have

extended the theory of Kubo, Ivanov and Anderson to treat jump diffusion with an algebraic

waiting time distribution. Since the treatments of Kubo are different from that of Ivanov and

Anderson, separate solutions have been obtained. As is usually the case for relaxation with

fractional diffusion, an analytical solution of the orientational time correlation function has

been obtained only in the frequency domain. However, we have been able to obtain asymptotic

solution in all the cases. The decay of the correlation of the first and the second rank harmonic

follow power law. This signifies a breakdown of Debye behaviour in dispersive medium. We

have also developed a theory where the large amplitude jumps simultaneously coexist with

small amplitude jumps. Interestingly, the exponential kinetics is recovered even under the

small fraction of small amplitude jumps but the decay is accelerated by large amplitude jumps.
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2. GENERALIZATION OF JUMP MODEL

A. Kubo model

We consider a 2-dimensional rotator which makes the series of jumps. The model was

originally proposed by Kubo for rotational relaxation of spin under the presence of pulsed

magnetic fields. [14, 15] The angle changes by the jump with the amount, ∆n. According to

Kubo we define,

f(t) =

〈

∞
∑

n=0

exp

(

i

n
∑

m=0

∆m

)

P (n, t)

〉

, (5)

where P (n, t) represents the probability of having n jumps up to time t and 〈· · · 〉 denotes the

ensemble average of scattering angles. The correlation functions are obtained by,

Cℓ(t) = Re
[

f ℓ(t)
]

, (6)

where ℓ = 1, 2. It should be noticed here that the ℓ−th rank correlation function is defined in

terms of cos ℓθ(t) for two dimensional rotator. Even when the second rank correlation function

is defined in terms of Legendre function of three dimensional isotropic rotator, the right hand

side of eq. (6) is equal to (Cℓ(t) − Cℓ(∞)) / (Cℓ(0) − Cℓ(∞)), which still expresses the decay

of correlation function. We calculate Re
[

f ℓ(t)
]

and represents it by Cℓ(t) of 2 dimensional

rotator for Kubo model. The waiting time distribution of each time interval τn = tn − tn−1,

is assumed to be statistically independent and it is represented by, ψ(τ). We also introduce

ϕ(t) =
∫

∞

t
dt1ψ(t1) as a probability that a molecular rotor will not make a jump for the time

interval between 0 and t. The probability of having n jumps up to time t is given after the

Laplace transformation, P̂ (n, s) =
∫

∞

0
exp(−st)P (n, t), as [23]

P̂ (n, s) = ϕ̂(s)ψ̂n(s), (7)

where ϕ̂(s) = (1 − ψ̂(s))/s. The amount of each jump is also assumed to be statistically

independent,

〈exp(i
∑

n

∆n)〉 = exp(in∆). (8)
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Then, we have,

Cℓ(t) = Re

[

∞
∑

n=0

exp(iℓn∆)P (n, t)

]

. (9)

By substituting eq. (7) into eq. (9), the Laplace transform of it becomes,

Ĉℓ(s) =
1 − ψ̂(s)

s
Re

[

1

1 − exp(iℓ∆)ψ̂(s)

]

. (10)

The above equation holds for an arbitrary waiting time distribution function and an arbitrary

jump amplitude. When the waiting time distribution decays exponentially with the charac-

teristic time of the jump interval, τ , the well known result for the Poisson noise is recovered,

i.e.,

Cℓ(t) = exp [−(t/τ) (1 − cos(ℓ∆))] cos [(t/τ) sin(ℓ∆)] . (11)

Eq. (10) is the generalization of Kubo model to the case of an arbitrary waiting time distri-

bution. Eq. (11) was given by Kubo for the Poissonian waiting time distribution for ℓ = 1.

[14, 15] In 2 dimensional rotational diffusion, eq. (1) is replaced by exp (−ℓ2DRt) [24] since the

correlation function is defined by 〈cos (ℓθ(t))〉. Eq. (11) gives τ1/τ2 = 4 in the limit of small

amplitude jump, which is consistent with the result of conventional 2-dimensional rotator.

B. Ivanov-Anderson model

For dielectric relaxation, however, Ivanov-Anderson model is more popular to describe the

random scattering of angle. [7, 8] Ivanov-Anderson model is, however, similar in spirit to Kubo

model. Ivanov-Anderson model assumes for simplicity an isotropic reorientation by random

angular jumps. If we denote the angular change by n-th jump by ∆n and assume that it is

statistically independent as in Kubo model, we have,

L1 = cos ∆ = 〈cos ∆n〉, (12)

L2 = (3 cos2 ∆ − 1)/2 = 〈
[(

3 cos2 ∆n − 1
)]

/2〉. (13)
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It is known that the correlation function is expressed in the form similar to eq. (9) as,

Cℓ(t) =
∞
∑

n=0

Ln
ℓP (n, t). (14)

By substituting the Laplace transform of eq. (7), the Laplace transform of the correlation

function, eq. (14), becomes,

Ĉℓ(s) =
1 − ψ̂(s)

s

1

1 − Lℓψ̂(s)
. (15)

Eq. (15) is valid for an arbitrary waiting time distribution. When the waiting time distribution

between jumps decays exponentially with the characteristic time τ , eq. (15) recovers the well

known results of eqs. (2)-(3). Here, the Ivanov-Anderson model is generalized to the case of an

arbitrary waiting time distribution.

3. ALGEBRAIC WAITING TIME DISTRIBUTION OF JUMP

Now, we study the influence of the power law waiting time distribution ψ(t) ∼ 1/tα+1 on

the correlation functions. A well-known and popular waiting time distribution function which

is normalizable is given by,

ψ(t) =
αγ (α + 1, γrt)

γα
r t

α+1
, (16)

where γ(z, p) ≡
∫ p

0
e−ttz−1d t for (Rez > 0) is the incomplete Gamma function. [25] Eq. (16)

can be derived from a model in which the hopping rate depends on a parameter exponentially

(for example activation energy) and the value of this parameter has an exponential distribution.

[26] γr is a parameter characterizing the hopping frequency. The waiting time distribution of

eq. (16) can be written approximately in a more transparent form,

ψ(t) ≈ αΓ (α + 1)

γα
r t

α+1
, (17)

where Γ(z) is the Gamma function. [25] The Laplace transform of the waiting time distribution

is obtained as,

ψ̂(s) = 1 − 2F1 [1, α, α+ 1,−γr/s] . (18)
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Eq. (18) is useful because the following property of the hypergeometric function is known [25],

2F1 [1, α, α+ 1,−γr/s] ≈
πα

sin πα

(

s

γr

)α
s

γr
< 1. (19)

By substituting eq. (18) into eq. (10), extended Kubo model leads to,

Ĉℓ(s) ≈ 2F1 [1, α, α+ 1,−γr/s]

s
Re

(

1

1 − exp(iℓ∆)

)

(20)

≈ πα

sin πα

[

1 − cos(ℓ∆)

(1 − cos(ℓ∆))2 + sin2(ℓ∆)

]

1

s1−αγα
r

. (21)

By performing the inverse Laplace transformation, we find the asymptotic time dependence for

extended Kubo model,

Cℓ(t) ≈
πα

sin πα

[

1 − cos(ℓ∆)

(1 − cos(ℓ∆))2 + sin2(ℓ∆)

]

1

Γ(1 − α) (γrt)
α . (22)

We can obtain the solution of the extended Ivanov-Anderson model in a similar fashion. By

substituting eq. (19) into eq. (18), eq. (15) becomes,

Ĉℓ(s) =
1

Lℓ

sα−1

sα +
1 − Lℓ

Lℓ

sin πα

πα
γα

r

. (23)

In the long time limit,

(γrt)
α >

Lℓ

1 − Lℓ

πα

sin(πα)
, (24)

we find, in the small s limit, the following asymptotic result,

Ĉℓ(s) ≈ πα

sin πα

1

s1−αγα
r

1

1 − Lℓ

. (25)

By performing the inverse Laplace transformation, we find the asymptotic time dependence of

extended Ivanov-Anderson model as,

Cℓ(t) ≈
πα

sin πα

1

(1 − Lℓ)

1

Γ(1 − α) (γrt)
α . (26)

Both Kubo and Ivanov-Anderson models predict exactly the same time dependence of the

correlation functions, which is described by the algebraic time dependence with the exponent

α. As we can see from eq. (24), the above asymptotic dependence is hardly attained when
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Lℓ ≈ 1. This case can be examined more rigorously. By the inverse Laplace transformation of

eq. (23), we find the correlation functions expressed in terms of Mittag-Leffler function,

Cℓ(t) = Eα

[

−1 − Lℓ

Lℓ

sin πα

πα
(γrt)

α

]

, (27)

where the Mittag-Leffler function is defined by, Eα(z) =
∑

∞

0 zk/Γ(αk + 1) and Lℓ ≈ 1 is

introduced. Mittag-Leffler function is approximated by the stretched exponential function,

Cℓ(t) ≈ exp

[

− 1 − Lℓ

Γ(1 + α)Lℓ

sin(πα)

πα
(γrt)

α

]

, (28)

except the final component showing algebraic decay of eq. (26) which appears at very long

times when Lℓ ≈ 1. Lℓ ≈ 1 occurs when ∆ ≃ 0 for both ℓ = 1 and ℓ = 2. When ∆ ≃ π,

L2 ≈ 1 but L1 < 1. Therefore, when ∆ is small, both C1(t) and C2(t) mainly decay according

to stretched exponential law. As ∆ is increased into the range, 0 ≪ ∆ ≪ π, both C1(t) and

C2(t) exhibit algebraic decay of eq. (26). When ∆ is closed to π, C2(t) mainly decays by the

stretched exponential law and the final small components of both C1(t) and C2(t) are described

by algebraic decay.

By the known identity of the Mittag-Leffler function for α = 0.5, eq. (27) can be expressed

as,

Cℓ(t) = exp

[

(

2 (1 − Lℓ)

πLℓ

)2

γrt

]

erfc

[

2 (1 − Lℓ)

πLℓ

√
γrt

]

, (29)

for α = 1/2, where the complementary error function is defined by erfc(z) =

(2/
√
π)
∫

∞

z
exp(−y2)dy. [25] We compare these analytical results with the numerical Laplace

inversion of the exact results (eqs. (10) and (15) with eq. (18)) in section 5.
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4. SIMULTANEOUS COEXISTENCE OF LARGE AND SMALL AMPLITUDE

JUMPS

In many situations, jumps with large amplitudes are rare and they are superimposed on

the small amplitude jumps which occur frequently. We denote the waiting time distribution of

large amplitude jump by, ψa(t) and that of small amplitude jump by ψb(t). Theoretically, they

are related with each other. By denoting the waiting time distribution of large amplitude jump

in the absence of small amplitude jump by, ψ
(0)
a (t), and that of small amplitude jump in the

absence of large amplitude jump by, ψ
(0)
b (t), the waiting time distribution under the presence

of both types of jumps is expressed as, [27]

ψa(t) = ψ(0)
a (t)

(

1 −
∫ t

0

dtψ
(0)
b (t)

)

, (30)

ψb(t) = ψ
(0)
b (t)

(

1 −
∫ t

0

dtψ(0)
a (t)

)

. (31)

since the large amplitude jump occurs before the occurrence of small amplitude jump and vice

versa.

First we consider the case of Kubo model. The Laplace transform of the correlation function

is generalized from eq. (10) as,

Ĉℓ(s) =
1 − ψ̂a(s) − ψ̂b(s)

s
Re

[

∞
∑

n=0

(

exp (iℓ∆a) ψ̂a(s) + exp (iℓ∆b) ψ̂b(s)
)n

]

(32)

=
1 − ψ̂a(s) − ψ̂b(s)

s
Re

[

1

1 − exp (iℓ∆a) ψ̂a(s) − exp (iℓ∆b) ψ̂b(s)

]

, (33)

where we assume that each jump belonging to either large or small amplitude is statistically

independent and the average is denoted by, exp (iℓ∆j), where j = a, b.

For Ivanov-Anderson model, the Laplace transform of the correlation function is generalized

from eq. (15) as,

Ĉℓ(s) =
1 − ψ̂a(s) − ψ̂b(s)

s

[

∞
∑

n=0

(

L
(a)
ℓ ψ̂a(s) + L

(b)
ℓ ψ̂b(s)

)n

]

(34)

=
1 − ψ̂a(s) − ψ̂b(s)

s

[

1

1 − L
(a)
ℓ ψ̂a(s) − L

(b)
ℓ ψ̂b(s)

]

, (35)
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where we again assume that each jump belonging to either large or small amplitude is statisti-

cally independent and the average is denoted by,

L
(j)
1 = cos ∆j , (36)

L
(j)
2 =

(

3 cos2 ∆j − 1
)

/2, (37)

where j = a, b.

When the both amplitude jumps occur according to the exponential waiting time distribu-

tion,

ψa(t) =
1

τa
exp (−t/τa − t/τb) (38)

ψb(t) =
1

τb
exp (−t/τa − t/τb) , (39)

Kubo’s result of eq. (11) is generalized to,

Cℓ(t) = exp

[

−
∑

j=a,b

(t/τj) (1 − cos(ℓ∆j))

]

cos

[

∑

j=a,b

(t/τj) sin(ℓ∆j)

]

. (40)

While, Ivanov-Anderson’s results, eqs. (2)-(3) are generalized to,

C1(t) = exp

[

−
∑

j=a,b

(1 − cos ∆j) (t/τj)

]

, (41)

C2(t) = exp

[

−
∑

j=a,b

3

2

(

1 − cos2 ∆j

)

(t/τj)

]

, (42)

as expected from the Markovian kinetics.

When, the large amplitude jump obeys the algebraic waiting time distribution,

ψ(0)
a (t) =

αγ (α + 1, t/τa)

t(t/τa)α
, (43)

and the small amplitude jump obeys the exponential kinetics,

ψ
(0)
b (t) =

1

τb
exp (−t/τb) , (44)

the waiting time distributions under the presence of both types of jumps are given by,

ψa(t) = ψ(0)
a (t) exp (−t/τb) , (45)

ψb(t) =
1

τb
exp (−t/τb)

∫

∞

t

dt1ψ
(0)
a (t1). (46)

11



The Laplace transform is obtained as,

ψ̂a(s) = ψ̂(0)
a (s+ 1/τb) (47)

ψ̂b(s) =
1/τb

s + 1/τb

[

1 − ψ̂(0)
a (s+ 1/τb)

]

, (48)

where ψ̂
(0)
a (z) is expressed as,

ψ̂(0)
a (z) = 1 − 2F1 [1, α, α+ 1,−1/ (τaz)] . (49)

By substituting eqs. (47) and (48) into eqs. (33) and (35), the exact solutions are obtained in

the Laplace domain. However, the inverse Laplace transform is too complicated for analytical

calculation and will be performed numerically.

Since we are interested in the case where the characteristic time of small amplitude jump is

much shorter than that of large amplitude jump, the approximate solutions can be obtained by

taking the limit, 2F1 [1, α, α+ 1,−1/ (τa(s+ 1/τb))] ≈ 2F1 [1, α, α+ 1,−τb/τa], which leads to

ψ̂
(0)
a (s + 1/τb) ≈ ψ̂

(0)
a (1/τb). In the approximation, the s-dependence in the Laplace transform

of waiting time distribution is dropped out. The s-dependence can be ignored when we are

interested in the time scale larger than that of small amplitude jumps. The quantity is just

the time integration over waiting time distribution of large amplitude jumps and represents

the probability of occurrence of large amplitude jumps, i.e. the escape probability from small

amplitude jumps by a large amplitude jump. By introducing the approximation, we find that

the correlation functions decay exponentially,

C1(t) = exp

[

− (t/τb)

(

1 − cos (∆b) ψ̂b(0)

1 − cos (∆a) ψ̂a(0)

)]

, (50)

C2(t) = exp

[

−3 (t/τb)
1 − cos(2∆a)ψ̂a(0) − cos(2∆b)ψ̂b(0)

3 + ψ̂b(0) − 3 cos(2∆a)ψ̂a(0)

]

. (51)

When ∆a is close to ∆b ≃ 0, we recover eqs. (2)-(3) with ∆ = ∆b and τ = τb by substituting

ψ̂b(0) ≈ 1 and ψ̂a(0) ≈ 0 into the above expressions. The exponential kinetics of eqs. (50)-(51)

even under the algebraic waiting time distribution of the rare but large amplitude jumps is the

important result of this article.
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5. NUMERICAL RESULTS

Fig. 2 shows the relaxation of correlations of Ivanov-Anderson model for ∆ = 60◦. For this

value of ∆, C2(t) decays faster than C1(t) for any values of α. Compared to the decay by normal

diffusion, decay of both C2(t) and C1(t) is slowed down when the waiting time distribution has

an algebraic time dependence. At long times, all decay curves are well represented by algebraic

decay of eq. (26) with the exponent α. The long time tail in the decay of correlation originates

from the algebraic time dependence of the waiting time distribution. The exponent is the same

for both ℓ = 2 and ℓ = 1 components.

When ∆ is increased to ∆ = 170◦, C2(t) decays slower than C1(t) for any values of α as

shown in Fig. 3. As α is decreased, the relaxation becomes slower. Long time asymptotic decay

is again represented by the algebraic decay of eq. (26). C2(t) decays according to Mittag-Leffler

function at intermediate times and the fitting becomes better as α is lowered. Since the Mittag-

Leffler function is approximated by the stretched exponential decay of eq. (28) in this time

range, C2(t) is well fitted by the stretched exponential function. The stretched exponential

decay appears when ∆ is close to 180◦ for C2(t) and ∆ is close to 0◦ for both C2(t) and C1(t).

For other values of ∆ the analytical form of the decay is not obtained but as we can see from

Fig. 4 the decay curves are very different from the single exponential decay when α < 1. Only

when α = 1, the correlations decay fast with exponential time dependence which is shown by

the straight line in the log-linear plot.

The results for different values of ∆ with α kept constant are summarized in Fig. 5. For

any value of ∆ asymptotic time dependence is described by the algebraic time dependence with

the exponent α. The relaxation of C1(t) slows down monotonically as ∆ is decreased. Since

C2(t) is given by the square of cos ∆, the decay is the same when ∆ is changed to π − ∆. As

∆ is increased from 0◦, the decay of C2(t) becomes faster. The fastest decay is obtained for

∆ = 90◦. When ∆ is further increased from ∆ = 90◦, the decay is slowed down.

In order to facilitate comparison with dielectric relaxation experiments in dispersive medium,

we investigated the behavior of the Cole-Cole diagram as a function of system parameters (like

jump angle and value of the power law exponent). The Cole-Cole diagram is obtained from the
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complex dielectric function, ǫ(ω), which satisfies, [15, 28]

ǫ(ω) − ǫ∞
ǫst − ǫ∞

= 1 + iωĈℓ (−iω) , (52)

where ǫst is the static dielectric constant and ǫ∞ is the optical dielectric constant. The semi-

circle of Debye relaxation is obtained for normal diffusion. As α is decreased, the maximum of

ǫ′′ is decreased and the Cole-Cole diagram is depressed. When ∆ is relatively small, the Cole-

Cole diagram is symmetric, as shown in Fig. 6 for any value of α. Such change of Cole-Cole

diagram by decreasing α has been already noticed, but without paying much attention to the

influence of the jump amplitude. [29, 30]

Now, we investigate the influence of the jump amplitude on the Cole-Cole diagram. For

the same value of α, the Cole-Cole diagram is skewed and becomes asymmetric as the jump

amplitude ∆ is increased as shown in Figs. 7-8. The asymmetry is larger for smaller values of

α.

The results of Kubo model are quite similar to those of Ivanov-Anderson model. In Kubo

model, however, an oscillation is observed, in addition to the algebraic or stretched exponential

decay, as shown in Figs. 9-10. In Kubo model of oscillator [14, 15] it has been pointed out

that the jump contributes both to the damping and the oscillation of correlation functions.

Dipoles rotate in a direction with an average amplitude ∆, which gives rise to oscillation in

correlation functions. In the case of magnetic resonance as originally studied by Kubo, the

oscillation corresponds to the shift of resonant frequency found in the more elaborate theory.

In the case of electric dipoles, oscillation is due to rather unphysical modeling of rotator, which

has a preferable direction of rotation.

The oscillation disappears by decreasing α values. When the jump amplitude is small, C1(t)

oscillates more than C2(t). For ∆ = 60◦, C1(t) oscillates even when α is decreased to α = 0.8.

In the case of ∆ = 170◦, C2(t) oscillates for normal diffusion while other decay curves exhibit

essentially monotonic decay.

So far, we have investigated the effect of long algebraic waiting time on the rotational

relaxation with large jump amplitude. Large amplitude jumps are normally superimposed by

small amplitude jumps. Therefore, we study the case when both large and small amplitude

jumps are simultaneously present. As shown in Fig. 11, in this case the kinetics is found to
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be almost exponential and the decay is well represented by eq. (50) for C1(t) and eq. (51) for

C2(t). The exponential kinetics is also confirmed from the Cole-Cole diagram shown in Fig. 12,

where semi-circle of Debye relaxation can be seen. The decay curves obtained by multiplying

eqs. (2)-(3) for small amplitude jump with the inverse Laplace transform of eq. (15), where

eq. (18) for large amplitude jump is introduced, are different from the exact numerical results.

The exponential kinetics is of course different from the algebraic decay or stretched exponential

decay found for the large amplitude jump alone. The small amplitude jumps are more frequent

than the large amplitude jumps. The former gives rise to an exponential decay but in the

presence of large amplitude jump the correlation functions decay almost exponentially with

the time constant much smaller than that for the small amplitudes alone. Thus, although

the large amplitude jumps are rare, they contribute a lot to the relaxation. The waiting time

distribution of large amplitude jumps in the absence of small amplitude jumps has an algebraic

asymptotic time dependence which is easily interrupted by the more frequent small amplitude

jumps. The decay is exponential as a result of cumulative small amplitude jumps, but the

decay is accelerated by the large amplitude jumps.

As explained, the exponential kinetics of correlation functions, C1(t) = exp (−t/τ1) and

C2(t) = exp (−t/τ2), results from the interplay between the frequent small amplitude jumps and

the rare events of large amplitude jumps having algebraic waiting time distribution. Although

the results are not shown, substantially the same results are obtained even when α is lowered

to 1/2. For α < 1, τ1 and τ2 are obtained from eq. (50) and eq. (51), respectively, while the

results of normal diffusion are given by, eqs. (41)-(42).

We now investigate the jump amplitude dependence of the ratio of the correlation times,

τ1/τ2. As shown in Fig. 13, the result for α = 0.8 and that for normal diffusion are almost the

same, although the apparent functional forms are seemingly very different. When ∆a is small,

the ratio is close to 3 and it decreases monotonically to zero as ∆a is increased close to 180◦.

The small deviation between the two lines is increased as ∆a is increased. Since the results

among different values of α are very close, it could be difficult to judge from the correlation

functions whether the long amplitude jumps have algebraic long time tail in the waiting time

distribution.
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The exponential kinetics is robust as shown in Fig. 14. Even when the frequency of the

small amplitude jumps is the same as that of the large amplitude jumps, the decay is still

exponential. However, when the small amplitude jumps occur 10 times less frequently than

the large amplitude jumps, then non-exponential kinetics is observed in the short time regime,

t ≤ τb.

6. CONCLUSIONS

The models of Ivanov and of Kubo are well-known models of the decay of the orientational

correlation by random but large amplitude molecular jumps. These models are expected to

give rise to decay dynamics quite distinct from the Brownian diffusion by infinitesimal small

jumps. When the waiting time distribution for large jumps is Poissonian, even the models of

Ivanov and Kubo lead to exponential decay, making the detection of appropriate molecular

mechanism by experimental measurements rather difficult.

However, if the waiting time distribution is not Poissonian, then the difference between large

jumps and the Brownian diffusion can be significant. In the present work, we have extended

the models of Ivanov and Kubo to include such cases. In particular, we have employed an

algebraic waiting time distribution for large jumps, as such distributions can be useful to

describe supercooled liquids and glasses, and also in restricted geometries. Recent computer

simulation studies on water and supercooled liquids have indeed shown that large amplitude

motions may be more of a rule than exception.

In the present study, we have solved the theoretical models with algebraic waiting time

distribution analytically to obtain the first (ℓ = 1) and second (ℓ = 2) rank orientational time

correlation functions. As expected, the decay is non-exponential, with power law at longer

times. The correlation functions for ℓ = 1 and ℓ = 2 show the same long time power law

exponents, but the short time decay behavior is quite different for the two correlation functions.

In order to facilitate comparison with experiments on dielectric relaxation, we have calculated

Cole-Cole plots generated by the orientational decay for a wide variety of parameters, such

as jump amplitude and the power law exponent. The predicted Cole-Cole plot of dielectric
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relaxation reproduces various features of non-Debye behaviour observed experimentally.

In addition, We have developed a theory where both unrestricted small jumps and large

amplitude jumps coexist simultaneously. The small amplitude jumps are shown to have a

large effect on the long time decay, particularly in mitigating the effects of algebraic waiting

time distribution. Thus, in the limit of appreciable number of small jumps, we find the decay

to become single exponential. We find some what surprisingly that the decay time of this

exponential decay is much smaller than that given by small jumps alone.

In this work, we have not made any specific application of our theory but shown that several

features of Cole-Cole plot resemble the ones observed experimentally in complex systems. Since

algebraic waiting time distribution of jumps naturally gives rise to Davidson-Cole kind of fre-

quency dependence of dielectric function, the present formalism should find use in interpretation

of existing experimental results. Work in this direction is under progress.
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Fig. 1: a) Schematic illustration of Kubo model. Jumps are restricted on a circle.

b) Schematic illustration of Ivanov-Anderson model. Jumps are isotropically distributed on a

sphere.

Fig. 2: Correlation functions of Ivanov-Anderson model with ∆ = 60◦ against dimensionless

time, γrt. Red lines represent C2(t) and black lines represent C1(t). α = 0.5 and 0.8 from

top to bottom. Thin lines indicate the results of the normal diffusion. Dashed lines represent

asymptotic algebraic time dependence of Eq. (26).

Fig. 3: Correlation functions of Ivanov-Anderson model with ∆ = 170◦ against dimensionless

time, γrt. Red lines represent C2(t) and black lines represent C1(t). α = 0.5 and 0.8 from

top to bottom. Thin lines indicate the results of the normal diffusion. Dashed lines represent

asymptotic algebraic time dependence of Eq. (26). Dots represent the results of Mittag-Leffler

function of Eq. (27)

Fig. 4: Log linear plot of Fig. 2.

Fig. 5: Correlation functions of Ivanov-Anderson model for α = 0.8 with various values of

jump amplitude against dimensionless time, γrt. Red lines represent C2(t) and black lines and

symbols represent C1(t).

Fig. 6: Cole-Cole diagram of Ivanov-Anderson model for ∆ = 30◦.

Fig. 7: Cole-Cole diagram of Ivanov-Anderson model for α = 0.8. Solid lines indicate

∆ = 10◦, 60◦, 90◦, 150◦, and 180◦ (almost overlaps with the line of ∆ = 150◦) from bottom to

top at ǫ′ = 0.2. Dashed line represents the Debye relaxation of α = 1.0.
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Fig. 8: Cole-Cole diagram of Ivanov-Anderson model for α = 0.5. Solid lines indicate

∆ = 10◦, 60◦, 90◦, 150◦, and 180◦ (almost overlaps with the line of ∆ = 150◦) from bottom to

top. Dashed line represents the Debye relaxation of α = 1.0.

Fig. 9: Correlation functions of Kubo model with ∆ = 60◦ against dimensionless time, γrt.

Red lines represent C2(t) and black lines represent C1(t). α = 0.5, 0.8 from top to bottom.

Thin lines indicate the results of normal diffusion.

Fig. 10: Correlation functions of Kubo model with ∆ = 170◦ against dimensionless time,

γrt. Red lines represent C2(t) and black lines represent C1(t). α = 0.5, 0.8 from top to bottom.

Thin lines indicate the results of normal diffusion.

Fig. 11: Correlation functions of Ivanov-Anderson model for α = 0.8 against dimensionless

time, t/τa. Large amplitude jump of ∆a = 60◦ and small amplitude jump of ∆b = 5◦ coexist.

The frequency of small amplitude jump is 5 times larger than that of large amplitude jump,

τa/τb = 5. Red lines represent C2(t) and black lines represent C1(t). Thick lines indicate the

exact numerical results. Thin lines indicate the approximate results of eqs. (50)-(51). Short-

dashed lines indicate the result of small amplitude jump alone. Long-dashed lines indicate

the result of large amplitude jump alone. The dashed-dotted lines are the results assuming

independent superposition of two processes as explained in the text.

Fig. 12: Cole-Cole diagram of Ivanov-Anderson model for α = 0.8. The solid line represents

the result when large amplitude jump of ∆a = 60◦ and small amplitude jump of ∆b = 5◦

coexist. The frequency of small amplitude jump is 5 times larger than that of large amplitude

jump, τa/τb = 5. The dashed line indicates the result when only the large amplitude jump is

present.
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Fig. 13: τ1/τ2 against the amplitude of the large amplitude jumps for the fixed jump amplitude

∆b = 5◦ of small amplitude jumps. The frequency of small amplitude jump is 5 times larger

than that of large amplitude jump, τa/τb = 5. The solid line indicates the results of α = 0.8.

Dots indicate the results of α = 0.5. The red dashed line indicates the results for the normal

diffusion of α = 1.0.

Fig. 14: Correlation functions of Ivanov-Anderson model for α = 0.8 against dimensionless

time, t/τa. Large amplitude jump of ∆a = 60◦ and small amplitude jump of ∆b = 5◦ coexist.

The frequency of small amplitude jump is changed. Red lines represent C2(t) and black lines

represent C1(t). τa/τb = 0.1,τa/τb = 0.5, and τa/τb = 1.0 from top to bottom.
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Fig. 1, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 2, K. Seki, B. Bagchi, and M. Tachiya

0.01

2

3

4

5

6

7

8

9
0.1

2

3

4

5

6

7

8

9
1

C
or

re
la

tio
n 

fu
nc

tio
n

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Time

FIG. 2:

23



Fig. 3, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 4, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 5, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 6, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 7, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 8, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 9, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 10, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 11, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 12, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 13, K. Seki, B. Bagchi, and M. Tachiya
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Fig. 14, K. Seki, B. Bagchi, and M. Tachiya
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