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Electron-electron interactions in polyacetylene

S RAMASESHA .
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Abstract. Experimental evidence for strong electron-eléctron interactions in polyacetylene is
presented. These include (i) observation of a dipole forbidden state below the optical gap,
(ii) observation of negative spin densities at sites at which noninteracting models predict zero
spin density (iii) vanishing optical gap, in. the infinite chain limit, in the closely related
symmetrical linear cyanine dyes. To correctly explain these features it is necessary to solve
correlated model Hamiltonians. Using diagrammatic valence bond method model exact
solutions of correlated models of finite-size systems can be obtained and various physical
properties of the low-lying states can be computed. These properties, when extrapolated to the
infinite chain limit explain many of the experimental features observed in polyacetylene.

Keywords. Electron cotrelation; valence bond method; polyacetylene; optical gap; spin
densities.

1. Introduction

Chemists have long been interested in polyenes, both from experimental and theoretical
standpoints. For instance, it was known from extrapolations of experimental data on
optical gaps of finite polyenes that an infinite polyene should have a finite optical gap of
~225eV (Murrell 1963). There was also much interest concerning the bond
alternation in infinite polyenes, since in finite systems, aromatic molecules like benzene
had equal C-C bond lengths while linear chain molecules like hexatriene had
alternating short and long C-C bonds. While Coulson (1938) predicted uniform bond
lengths for infinite polyenes, Kuhn (1948) predicted dimerization of the carbon chain to
account for the finite optical gap. Later calculations by Longuet-Higgins and Salem
(1959) showed that the ground state energy per carbon atom varied as &% In |8}, for
small 8, where  is the alternation in the transfer integral. Because of this logarithmic
dependence of the ground state energy on the bond alternation, it is to be expected that
the ground state is always dimerized, independent of the stiffness of the carbon chain or
the strength of electron-lattice coupling constant. This also follows from a more general
argument put forth by Peierls (1955) which leads to the conclusion that partially filled
one-dimensional bands in the ground state are unstable with respect to a 2k distortion
of the lattice. Polyacetylene, being a half-filled one-dimensional band should undergo a
Peierls dimerization in the ground state. Experimentally, x-ray (Fincher et al 1982) and
nMR (Yannoni and Clarke 1983) investigations-have, in fact, conclusively demonstrated
bond alternation of 0-03+001 A in polyacetylene. .
The spurt in theoretical and experimental interest in this area in recent times has been
mainly due to the work of Su et al (1979, 1980) who showed that bond alternation
. domain walls first suggested by Pople and Walmsley (1962) can be viewed as solitons

and that they constitute elementary excitations of the polyene chain. The soliton states
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are_located in the middle of the optical gap. Neutral solitons possess spin while charged
solitons are nonmagnetic. Electron spin resonance studies on undoped all-trans
polyacetylene have indeed shown the presence of paramagnetic defects (Goldberg et al
1979). However, firm evidence for midgap absorption in all-trans polyacetylene is
lacking.

All the theories of polyacetylene mentioned above start from the Hiickel limit.
.E]ectromlattice interaction leading to alternation in the Hiickel transfer or resonance
fntegral Is introduced along with a static strain energy contribution. Electron-electron
fnteractions have been considered to be very weak and either neglected or included only
in a perturbative scheme (Kivelson and Heim 1982). However, there is considerable
experimental evidence in favour of strong electron-electron interactions in poly-
acetylene. The importance of electron correlations in polyenes has been stressed among,
c(:;lt;l;g by Cizek et al (1969), Ovchinnikov et al (1972), Honig et al (1975) and Matsen

It has long been known from extrapolations of experimental data that the optical gap
in symmetrical cyanine dyes vanishes in the limit of infinite chain length (Brooker et al
1945). This is rather puzzling since symmetrical cyanine dyes differ from polyenes only
in the end groups and in the limit of infinite chain length this difference should be
negligible (Platt 1956). Hence, attributing the optical gap in polyenes entirely to bond
alternation is incorrect. The Hiickel based models also fail to expldin the existence of
optically forbidden states below the optical gap in polyenes with four or more double
bonds (Hudson et al 1982; Ohmine et al 1978). The observed oscillator strength for the
transition across the optical gap is smaller, by at least a factor of two, than that
predicted by the Hiickel theory (Salem 1966). Recent Esr studies (Thomann et al 1983)
have shown the presence of negative spin densities in polyacetylene radicals on sites
where the Hiickel theory predicts zero spin density. These experimental results clearly
bring out the inadequacy of Hiickel type models and show the importance of electron-
electron interactions in polyacetylene.

Besides explaining the above experimental results, introduction of electron-electron
interactions should not result in a uniform ground state as this would contradict
the x-ray and NMR results on polyacetylene. For this reason, an investigation of the
effect of electron-electron interactions on Peierls dimerization also becomes necessary.

Some of the theoretical methods employed for studying correlated models are the
Hartree-Fock (HF) and unrestricted Hartree-Fock (UHF) methods, perturbation
methods, quantum renormalization group methods, and extrapolations from exact
diagonalization of finite systems. The HF method gives qualitatively the same results as
the Hiickel model and hence is not suited to explain many of the features discussed
- above. While the UHF theory is better, it suffers from the drawback that the method does
not conserve total spin and consequently predicts spin density wave states even in
singlets (Fukutome and Sasai 1982). Perturbation methods work when the correlations
are weak and we will demonstrate that the correlations in polyacetylene are strong
thereby rendering perturbation method unsuitable in these systems. The quantum
renormalization group method (Chui and Bray 1978) is also not accurate since it
confines to a rather small part of the Hilbert space spanned by the Hamiltonian. Finite
system calculations offer a viable alternative provided reasonably large systems can be
solved exactly. Since in the minimum basis Hamiltonian, there are 4 possible states for
every site, the basis set increases with the system size N as 4% To be able to deal with
large systems (large N) the full symmetry of the Hamiltonian should be exploited. The
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correlated model Hamiltonians conserve total spin (So) besides SZ;. Therefore,
valence bond (vB) functions which are eigen functions of Sy, as well as S are the
natural choice of basis for finite system calculations.

2. VB method for finite model Hamiltonians

The Hamiltonian employed for modelling polyacetylene is the Pariser-Parr-Pople
(ppp) Hamiltonian given by

H=H,+Hey.

H = 2 t, (a;,aap-t— 1,0 a;+ 1.aap.¢r)’
p.o

Heppre = UY A, (A,—1)/2+ Y, Vop (i,—1) (A, —1), 1)
p >y

where a¥ , (a,, ,) creates (annihilates) an electron with spin ¢ in the orbital at site p. The
transfer integral t, is estimated to be 2:4+0-17 eV for double and single bonds for
polyacetylene. U is the on-site correlation energy which from gas phase ionization and
electron affinity data for carbon is 11-26 eV. Since polyacetylene chains are semi-
conducting, the screening of correlations is not very effective and long-range
interactions will also have to be included besides the on-site interactions U. The second
term in H,,, corresponds to such interactions and is given by the Ohno formula
(Ohno 1964) -

¥,y = UL +0-611713,) 712, @)

which interpolates between U for p= p and = (€*/r,,) for |p—p'| = . The
Hamiltonian with only on-site interactions is also useful in these studies, since for
uniform ¢, the model has been exactly solved for the infinite chain (Lieband Wu 1968)
and provides a stringent test of extrapolations. Since we are interested in comparing
results between correlated and uncorrelated models for the same lattice stiffness and
electron-lattice interactions, we have not considered the elastic term.

A normalized singlet vB function can be generated by operating on the vacuum state
with a}, aps for a doubly octupied site p and by (ak als—aps ak)/«/2 for singlet
pairing of electrons on sites p and g. A given VB function can be conveniently
represented as a diagram with dots () at empty sites, Crosses (x)at doubly occupied sites
and lines between pairs of sites at which electrons are singlet paired (figure 1). These
diagrams in turn can be coded in the binary system by associating two bits per site
(Ramasesha and Soos 1984a). The states of the bits are ‘00’ for any empty site, ‘10’ fora
site at which a line begins, ‘01" fora site at which a line ends and ‘11’ for a site that is
doubly occupied. The Rumer-Pauling rule states that linear independence and
completeness can be achieved by retaining all diagrams without intersecting lines, on
arranging the N sites at the vertices of a polygon. This rule makes the binary
representation of a vB diagram unique.

All the vB diagrams with a given total spin S, a given number of sites N and a given
number of electrons N, on the N sites can now be generated in an increasing sequence

of integers that represent them, by simply examining whether the bit pattern of an
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Figure 1. Typical singlet vB diagrams for six electrons on six sites and their bit
representation.

integer in question corresponds to a vB diagram of the given characteristics. The total
number P,(2n, N) with spin S, N, = 2n < N is given by

25+1 [(N+1)]? 1 3
N+l S+ (=8) “N=n=s)I(N+5+1-mi |

P, (2n, N)is much smaller (usually by a factor of ~ 3-4) than the complete basis formed
by Slater determinants. The size of the basis can further be reduced by taking into
account electron-hole and spatial symmetries that may exist in the Hamiltonian.

The vB basis is diagonal in the correlation part of the Hamiltonian (1) but is off-
diagonal in the transfer part. The exact matrix representing the model Hamiltonian can
be obtained by operating on the vB functions by the Hamiltonian (Mazumdar and Soos
1979). The matrix elements are defined by

P,(2n,N) =

H|k>=zhkjij>’ @4

where 1i> represents a vB function. Determining the column index in hy; is made
efficient since the vB diagrams are arranged as increasing integers that allow binary
searching. The Hamiltonian matrix h is non-symmetric, because the v basis is non-
orthogonal. As with any configuration interaction calculations, the matrix h is sparse.
We are interested only in a few low-lying states, so that taking advantage of the
sparseness, it is possible to deal with upto ~ 60000 x 60 000 matrices on a supermini
computer like vax 11/780. The low-lying eigen values and corresponding eigen vectors
are obtained by coordinate relaxation and deflation where necessary (Ramasesha and
Soos 1984a). ‘

Calculation of matrix elements between correlated states first requires that the
correlated state be normalized, i.e., we need to evaluate

R= Z Cin Crn S,k - )

k, k'

The overlap matrix S, ,. is of the same order as the basis set. Bruteforce evaluation of
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S, is very time consuming. On the other hand, using charge orthogonality of vB
functions, the basis can be rearranged such that S, is block diagonal with blocks of the
same size being identical (figure 2) (Ramasesha and Soos 1984b). We are now left with
the simpler task of evaluating the overlap matrix elements within a block and that too
only once for a block of a given size. The overlap matrix elements are calculated using
Pauling’s island counting scheme (Pauling 1933). For instance, for a 10 electrons on 10
sites problem, the singlet basis has 19404 diagrams. The overlap matrix of this
basis when written in the block-diagonal form has one 42 x 42 block and several
14 x 14, 5x 5,2 x 2 and 1 x 1 blocks. The overlap matrix is calculated only once for
the 14 x 14, 5 x 5 and 2 x 2 blocks even though they appear several times.

Matrix element calculation for operators diagonal in the vB representation is straight-
forward. An example of such an operator is the dipole moment operator. The transition
dipole between eigen states |n[1,,> and |y, > of the Hamiltonian (1) is given by

1 1
Mnm = }i <llln “‘I ll’m> = E :L:" ‘Ck’m Ckn Hi Sk’k’ (6)

The matrix elements of operators which are not diagonal in the vB representation but
conserve total spin can also be calculated easily. However, in such calculations the
resultant state obtained by the effect of such operators on the eigen state of the
Hamiltonian requires reordering into the block-diagonal sequence. An example of such
an operator is the operator for obtaining bond orders,

bp = Z (a:+1,as ap,u+ a;,a' ap+1,u)' (7)
¢

Matrix elements of operators that do not conserve total spin and also do not transfer
electrons between sites such as the local spin density operator s;, the spin-spin

- P
3
No(2n)
| 0
'.
. p
S =
N (2n-2m)
o <.
(2n)!
o} (2n-2m)imiml
1

Figure 2. Overlap matrix § in the block-diagonal representation. No(2r) are the coyalent
singlets for 2r electrons on 2 sites. The expression below No(2r) gives the number of times a
block of No(2r) repeats. P is the size of the total basis.
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correlation operator s} s% can also be handled in this scheme by more general techniques
(Ramasesha and Soos 1985). ‘

Evaluation of such a variety of matrix elements between model exact eigen states of
Hamiltonians helps in a better comparison of the model with a wide range of
experimental results that exist for polyacetylene.

3. Results and discussion

Our method of obtaining results for the infinite chain is based on extrapolation of the
model exact finite system results to the infinite limit. Although it is known that complete
configuration interaction calculation is size consistent, there is no a priori theoretical
basis for extrapolations. Therefore, to have confidence in the extrapolation procedures,
it is necessary that we compare the extrapolated results with exact infinite chain results,
wherever they exist. Fortunately, in the present case, exact ground state energy per site
as well as the optical gap of infinite uniformm Hubbard chains (V,p =0 for p#p') is
known (Lieb and Wu 1968). Since U = 4t in the Hubbard model is the most difficult
regime in the parameter space for approximate methods, we compare our extrapolated
results for this case with the exact results for the ground state energy per site (figure 3)as
well as the optical gap (figure 4). The extrapolated value for the ground state energy per
site is —0-573 4 0-005 while the exact result is —0-57373, in units of ¢. The optical gap
from extrapolations is 1-20 4- 0-1 while the exact gap is 1-2867, again in units of t. These
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Figure 3. Ground state energy per site ¢ (0, U) in units of ¢ for the uniform Hubbard model,
vs N1 for chains and N ~2 for rings. :
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results, besides giving confidence in the extrapolation methods also show that in such
schemes, ground state energy per site has smaller error than the optical gap. This is
important since in studying the effect of correlations on dimerization of the half-filled
one-dimensional band, we would be comparing the difference in ground state energies
per site between 6 = 0 and & # O cases, which are rather small for small 4.

Although exact results do not exist for & s 0 case of the Hubbard model, our results
show that the optical gap widens by ~ 0-20 (in units of t), in clear disagreement with the
meanfield result (Bychkov et al 1966) which predicts the gap to widen by only 0:03 (in
units of t) on introducing this dimerization. This once again illustrates that the
predictions of mean field theory should be viewed with caution.

In the case of the full Hamiltonian of (1), there are no known exact results for the
infinite system. However, we can compare exact results for finite chains with
experimental quantities since finite chains correspond to small polyenes. Using the
same values of U, t and 6, we find our results for all-trans N = 8 and N = 10 chains to
be in very good agreement with the spectroscopic data for octatetraene and
decapentaene (table 1). The optical gaps in pentadienyl and heptatrienyl ions from the
theory are 3-456 eV and 279 eV while experiments yield a gap of 3-42 +0-12 ¢V and
288+ 004 eV respectively. The correlation diagram in figure 5 shows that the
correlations split the degenerate excited states in the Hiickel model. States with
electron-hole symmetry in which covalent vB diagrams appear with nonzero coefficients
are lowered relative to the states with opposite electron-hole symmetry in which the
covalent diagrams have strictly zero weight. In the limit of very large correlations, all the

3.0+
Hubbard, U= 4lti

r =00 —
6=0.07 -~---—

Exact

1 1 i ]
0.0 0.05 010 015

-1

N

Figure 4. Optical gap in unitsof t vs N~ for uniform and dimerized Hubbard chains. The
exact result is for the uniform Hubbard model.

&
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Table 1*. Exact PPP and experimental excitation energies of all-trans octatetraene
(N =N, =8) and decapentaene (N = N, = 10). Covalent and jonic labels designate the
electron-hole symmetry. The lowest dipole-allowed excitation is underlined.

State Decapentaene Octatetraene
S=0 S=1 ppP (V) Experimental (¢V) pPP (¢V) Experimental (eV)
114, (cov) — — — —
1 3B, (cov) 1756 — 1920 21
1 34, (cov) 2:566 — 2929 —
2 3B, (cov) 3388 — 3-844 —
214, (cov) 3404 310 3775 3-59
1 'B, (cov} 4210 — 4718 —
1 !B, (ion) 4234 402 4561 440
2 'B, (cov) 5323 — 6-644 —
134, (ion) 5494 — 5977 —
114, (ion) 5-589 — 6086 —
1 3B, (ion) 6458 — 7072 —

* From Ramasesha and Soos (1984b); cov = covalent; ion = jonic.
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Figure 5. Correlation of Hiickel and ppp excitation energies for all-trans decapentaene with
alternation & = 0:07, also shown is the theoretical transition moment for the lowest dipole
transition.
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covalent states descend below the optical gap and form spin-wave excitations of the
chain. Figure 5 shows that for decapentaene, with our parameters, there exist two
optically forbidden states below the optical gap. Existence of the 24) state in
decapentaene is experimentally confirmed from gas phase optical studies and is located
310 eV above the ground state, to be compared with the model exact value of 3404 eV.
Figure 5 also indicates that the transition moment for the lowest optical transition is
lowered substantially from the Hiickel value and is in much better agreement with
experiments (Soos and Ramasesha 1983a). It appears that our parameters slightly
overestimate the correlations. Nonetheless, our calculations convincingly prove that
correlations are very strong in polyacetylene and cannot be neglected or even included
reliably within a perturbative scheme. ;

The extrapolations from finite-size system to the infinite system has been done for
both rings and chains (Soos and Ramasesha 1984). Ideally, the ring and chain
extrapolations for N — o0 should give the same values. However, because of small
system sizes the two extrapolations do not converge to the same value. The mismatch in

" these extrapolations gives an estimate of the error involved in these procedures.

Figure 6 shows the extrapolated optical gap for a single strand of polyacetylene. The
& = 0 extrapolation is also indicated on the figure to show that most of the optical gap
arises from electron correlations rather than from dimerization. The extrapolated gap
of 2:8+02eV should be compared with the observed solid state gap of 19eV.
Considering that the gas phase optical gap will be red shifted by ~ 0-5¢eV in the solid
state, we find that the correlations we have assumed slightly -overestimate the
correlations in polyacetylene.

It is well known that correlations introduce negative spin densities on sites where the
uF theory predicts zero spin density (McConnel and Chesnut 1957). Indeed, as already

mentioned, negative spin densities have been observed in radicals of all-trans
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Figure 6. Optical gap E; vs N-1 for chains and rings in the correlated model.
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polyacetylene (Thomann et al 1983). In figure 7, we have plotted the ratio of total
negative to positive spin density, calculated from the correlated ground state wave
function, versus inverse system size (Soos and Ramasesha 1983b). The same ratio
calculated for uniform Heisenberg chains with odd numbers of spins is shown to
delineate the large U limit. Experimentally observed ratios for polyacetylene radicals
with N ~ 50 is also shown. The comparison between the theoretical and experimental
results once again confirms our view that we have only slightly overestimated the
correlations in polyene chains.

Figure 8 shows the dependence on system size of optical gaps of uniform chains, ions
with odd numbers of carbon atoms and cyanine dyes, as well as of covalent gaps of
radicals. The optical gaps of uniform chains fall on the same line for both even and odd
chains. This shows that the mid-gap state does not exist in the correlated models. This is
to be expected since the optical gap is primarily due to correlations and only weakly -
dependent on dimerization. Cyanine dyes are similar to ions of the carbon chain with
odd number of carbon atoms and show vanishing optical gap in the finite chain limit. In
both the systems, in the infinite chain limit the ground and optically excited states can
be described as incommensurate charge density waves shifted in phase and therefore
they have the same energy. The covalent gap also vanishes for uniform chains,
consistent with the result for uniform Heisenberg chains where the ground state singlet
and lowest excited singlet are degenerate to O(1/N ) (Ramasesha and Soos 1983).

Effect of correlations on the dimerization of one-dimensional half-filled bands has
been of considerable interest. Qualitative arguments based on the concept of resonance
put forth by Mazumdar and Dixit (1983, 1984) leads to the conclusion that on-site
correlations tend to stabilize the dimerized state. This is borne out by their calculations
on rings of six and ten carbon atoms. Mazumdar and Campbell (1985) have extended
this argument to long-range coulomb interactions. Soos and Ramasesha (1984) have
compared the stabilization of the infinite dimerized chain in the presence of both on-
site and extended range interactions, obtained from extrapolations of exact results for
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Figure 7. Absolute ratio of total negative to positive spin density vs N~! for Heisenberg
spin chains and the ppp Hamiltonian, (CH), value is from Thomann et al (1983).
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1 of uniform PPP chains, ions of odd segments and linear
s is dipole forbidden.

— £(0) where &(8) is the ground state energy per site for alternation &
1 Hiickel value for the infinite chain is indicated by the arrow.
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both rings and chains of upto twelve carbon atoms, with the stabilization in the Hiickel
model (figure 9). It is seen that correlations indeed stabilize dimerization. Therefore
existence of correlations is consistent with both the observed dimerization and the
other experimental results already discussed. However, what remains to be included ina
more complete theory of polyacetylene is the interchain interactions and effects of
dopants. Further work in this direction is currently in progress.

The diagrammatic vs method together with bit representation provides a powerful
technique for exact diagonalization of diverse types of finite model Hamiltonians. It can
also be used together with different types of approximation schemes such as Lanczo’s
scheme (Roomany et al 1980) or the quantum Monte Carlo method (Hirsch et al 1982).
Work in these directions is in progress. However, the success of finite system
calculations in predicting the properties of infinite systems may not be as dramatic as in
the simple case of polyacetylene unless reliable scaling methods are developed for
quantum systems.
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