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Abstract. The quality of finite element computational results can be assessed
only by providing rational criteria for evaluating errors. Most exercises in this
direction are based on a posteriori error estimates, based primarily on expe-
rience and intuition. If finite element analysis has to be considered a rational
science, it is imperative that procedures to compute a priori error estimates
from first principles are made available. This paper captures some efforts in
this direction.
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1. Introduction

The finite element method (FEM) provides numerical results to physical problems which
are already described by mathematical models. The answer may be wrong because the
physical model was wrongly described by the mathematical model. We are not interested
in this issue here. Further, as our computational models are now created and manipulated
using digital computers, there are errors which occur due to the fact that information in
the form of numbers can be stored only to a finite precision (“word length” as it is called)
at every stage of the computation. These are called round-off errors. We shall assume here
that in most problems we deal with, word length is sufficient so that round-off error is not
a major headache.

The real issue for us to grapple with now is that the computational model prepared to
simulate the mathematical model may be faulty and can lead to errors. In the process of
replacing the continuum region by finite elements, errors originate in many ways. From
physical intuition, we can argue that this will depend on the type, shape and number
of elements that we use, the grading or density of the mesh used, the way distributed
loads are assigned to nodes, the manner in which boundary conditions are modelled by
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specification of nodal degrees of freedom etc. These are the discretization errors that can
occur. '

Most of such errors are difficult to quantify analytically or determine in a logically
coherent way. We can only rely on heuristic judgement (based on intuition and experience)
to understand how best to minimize errors. However, we shall now look only at that category
of discretization error that appears because the computational or discretized model uses
trial functions which are an approximation of the true solution to the mathematical model.
It seems possible that to some extent, analytical quantification of these errors is possible.

The finite element method is based on variational procedures, like the minimum to-
tal potential principle and Hamilton’s principle, which offer a powerful methodology to
replace continuum structures with approximate systems from which one can compute
quantities of interest such as displacements, strains and stresses. However, the minimum
total potential principle by itself is unable to assess the quality of the solution; how the
approximations made during the derivation process lead to errors or ensure a certain degree
of accuracy. It is therefore necessary to introduce first principles axiomatised from a gener-
alised principle called the Hu~Washizu principle (Hu 1955), and this provided considerable
explanatory power in assessing the quality of solution using finite element models. The
stress correspondence paradigm (Prathap 1996) shows that the FEM procedure intrinsically
samples stresses first and produces displacement fields only in a secondary manner. Simi-

larly, a momentum correspondence paradigm can be introduced to evaluate elastodynamic
problems. ‘ ‘

2. The stress correspondence principle and error estimates

The central issue in error analysis of the finite element method is to determine how exactly
the finite element discretisation process responds to the actual continuum situation. We
show (Prathap 1993, 1996) that in a sub-domain region covered by a finite element in

an elastostatics problem, one can predict that the finite element solution (u, €,0) will

correspond to the actual (u etc.) according to the orthogonality condition expressed by,
/65T(€ —€)dV =0. ‘ (D

This can serve as the basis for engineering error estimates for static structural problems.
We shall briefly see how this is done here. :

If displacement fields are chosen so that strains € (or stresses &) are complete to order
x"~1 (for simplicity, a one-dimensional problem with x, or non-dimensional co-ordinate

£ is chosen), the finite element can represent a more accurate continuum field of order x™
in the best-fit manner shown in figure 1.

Let us assume that,

o =ag+ahLi() + ah*Ly(@) + -+ + aph" Ly (0), (2)

where L, (¢) are suitably normalised Legendre polynomials. This form is specially chosen

to exploit the orthogonality condition given by (1). The best-fit argument represented by
(1) now leads to a finite element estimate

o =ao+a1hLi(t) + ah®Lo(t) + - + an_ " Lp_1 (0). (3)
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CorT

Figure 1. Best-approximation nature of stress and momen-

=1 E=x/1 ' tum correspondence principles.

Thus, a finite element computation produces approximate stresses and strains which are
accurate to O (h"). Itis possible to proceed from this to show that the error in the potential

energy due to finite element discretisation is of the form: (using € and ¢ interchangeably
for simplicity)

%/(02—&2)dx=%f(a——5)(G+c'r)dx
=%/6(o’—&)dx+%/a(a~6‘)dx
=O+%—fa(cr—5)dx

= 1aZn® f L2(7) dx, 4)

where the condition that & is a best-fit of o as well as the orthogonality of the Legendre
polynomials has been used. Thus if approximate strain or stress fields are accurate to
O (h™), the potential energies are accurate to O (h2"), after the process of finite element
discretisation. The quality of the stiffness matrix is therefore governed by this order of
accuracy and the overall gross errors (predictions of displacements, say) are removed at
the optimal rate of O(h?"). This is of course the optimal rate of convergence expected
in an elastostatics problem; convergence rate may worsen due to errors in representing
loads approximately, and may even improve due to fortuitous cancellation of errors! These
predictions have been made possible because of the orthogonality conditions that emerged
by using the generalised Hu—Washizu theorem instead of the minimum total potential
energy principle.

3. The momentum correspondence principle

Mass matrices are derived rationally from the kinetic energy of an elastodynamic system
by using Hamilton’s principle. Just as the Hu-Washizu principle allowed the minimum
total potential energy principle to be generalised to a three-field statement based on si-
multaneously varying displacement, strain and stress fields, a similar generalisation can
be attempted of the kinetic energy.

If u and & are the displacement fields, the velocity fields are v and ¥ (where v indicates
velocity obtained by differentiating u with respect to time), the kinetic energies before and

‘!
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after discretisation are % fvTpvdx and —21— [ 5T pv dx respectively, where p is the density.
Let the generalised functional representing the discretisation process be written as

M= %fﬁ?‘pa dx —i—/c:rT(v — ) dx, (5)

where one can interpret & as the Lagrangian multiplier removing the dislocation of the
velocity potentials introduced by the discretisation process. There are three fields now, v, v
and &, and the variation leads to an orthogonality condition of particular significance for
us here, namely '

f(SﬁTp(v — 7)dx = 0. | (6)

This condition implies that in the finite element discretisation process, momentum or
velocity fields are preserved in a best-fit manner. It follows from this that if v is replaced in
a discretisation process by # by choosing trial functions which are complete to order x”, the
procedure will have an accuracy of O (h™+1) in representing displacements and velocities.

Then, the kinetic energies, arguing by analogy from (4), are accurate after discretisation
to O(h2 Dy,

4. Error estimates from the Rayleigh quotient

Clearly, in any consistent mass formulation involving the use of trial functions for dis-

placements « (and hence velocities v) complete to x", the potential energy (and hence the
quality of the stiffness matrix) is accurate to O (h?") whereas the kinetic energy (and hence
the quality of the consistent mass matrix) is of O (h2+1))_If the mass matrix is derived

in an extra-variational way (non-consistent, as in a lumped matrix), this order of accuracy
cannot be assured.

We can now use the Rayleigh’s quotient approach to show how the quality of a finite -

element solution to a dynamic problem can be interpreted in terms of the qualities of the
stiffness and mass matrices.

The Rayleigh quotient approximation (of which the finite element method is a piece-
wise version) is based on the description of the fundamental frequency as a minimum of the
Rayleigh quotient. The piecewise element trial functions can be substituted and assembled
directly into the quotient to obtain stiffness and mass matrices leading to the discretised
eigenvalue problem, Kd = AMd, or in Rayleigh quotient form,

7 d'Kd

—d™Md’ @
where A is the approximate eigenvalue and d, the eigenvector of displacements. This
quotient can now be used to investigate the quality of the eigenvalues in terms of the order
of error or rate of convergence, by independently assessing the errors in the strain (potential)
energy of dT Kd and kinetic energy dTMd, using results from the stress correspondence
and momentum correspondence principles we have described earlier.

We have seen above that in a finite element formulation using trial functions for dis-
placements (velocities) complete to x™, the potential energies (where, for simplicity, strains
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are assumed to be first derivatives of the displacements) after discretisation are accurate
to O(h*"), whereas the kinetic energies are accurate to O (h2*t1) if a consistent mass
approach is strictly observed in formulating the mass matrix. From this, it can be argued
that if A, K and M are the quantities pertaining to an exact analytical solution, then the
discretised solution A is given by,

L={d"Kd + 0(h*™)}/{d"Md + 0 (R2"+Dy)
=L+ O™ — O(h20 D)y, (8)

if A is a good approximation of A.

It is apparent that the error that dominates is due to the formulation of the stiffness
matrix. This accounts for the well-known upper bound nature of the eigenvalues obtained
when consistent mass matrices are used. In any non-consistent (such as a lumped mass)
formulation, the order of accuracy associated with the kinetic energy would be poorer
than O (h**+1) By careful manipulation, it is possible to obtain a lumped mass matrix
that has an accuracy O (h?"), which is the accuracy of the potential energy term in the
numerator of the Rayleigh quotient. It is further possible that the rate of convergence of
the eigenvalue is as good as that obtained with a consistent mass formulation. It is also
possible that lumping procedure can be so chosen that the errors from the numerator and
the denominator of O (h?") cancel out giving a higher rate of convergence. The so-called

higher-order masses actually achieve such accuracy by this process of cancellation of
errors.

5. Types of discretisation errors and a methodology for error estimation

We can recognize two kinds of discretization errors due to trial function approximation.
The first arises because a problem with an infinitely large number of degrees of freedom
is replaced by a model with a finite number of degrees of freedom. Therefore, except in
very rare cases, the governing differential equations and boundary conditions are satisfied
only approximately. The second appears due to the fact that by overlooking certain essen-
tial requirements beyond that specified by continuity and completeness, the mathematical
model can alter the physics of the problem. In both cases, we should be able to satisfy our-
selves that the discretization process which led to the computational model has introduced
a certain predictable degree of error and that this converges at a predictable rate, i.e. the
error is removed in a predictable manner as the discretization is improved in terms of mesh
refinement. Error analysis is the attempt to make such predictions a priori, or rationalize
the errors in a logical way, a posteriori, after the errors are found.

To carry out error analysis, new procedures have to be invented. These must be set apart
from the first-order tradition procedures that carry out the discretization (creating the com-
putational model from the mathematical model) and solution (computing the approximate

- results). Thus, we must design auxiliary procedures that can trace errors in an a priori fash-

ion from basic paradigms (conjectures or guesses). These error estimates or predictions
can be seen as consequences computed from our guesses about how the FEM works. These
errors must now be verified by constructing simple digital computation exercises. This is
what we seek to do now. If this cycle can be completed, we can assure ourselves that we
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have carved out a scientific basis for error analysis. This is a very crucial element of our
study. The FEM, or for that matter, any body of engineering knowledge, or engineering
methodology, can be said to have acquired a scientific basis only when it has incorporated
within itself, these auxiliary procedures that permit its own self-criticism. Therefore, error
analysis, instead of being only a posteriori or post mortem studies, as it is usually prac-
tised, must ideally be founded on a priori projections computed from intelligent paradigms
which can be verified (falsified) by digital computation.

We next take note of the newly established paradigm that the Ritz-type and FEM ap-
proximations seek strains/stresses in a ‘best-fit’ manner. From such an interpretation, we
examine if it is possible to argue that errors, whether in displacements, stresses or ener-
gies, due to finite element discretization must diminish rapidly, at least in an (/L)% manner
or better, where a large structure (domain) of dimension L is sub-divided into elements
(sub-domains) of dimension /. Thus, with ten elements in a one-dimensional structure,
errors must not be more than a few percent. This is the usual range of problems where
the continuity and completeness paradigms explain completely the performance of finite
elements. We shall discover that a class of problems exists where errors are much larger —
the discretizations fail in a dramatic fashion. Convergence and error analysis must now be

founded on a more complex conceptual framework —new paradigms need to be introduced
and falsified.

6. Cantilever beam idealized with linear Timoshenko beam elements

The example that is ideally suited for demonstrating how error analysis can be founded on
first principles is a uniform beam with a tip load as shown in figure 2. We shall model it
with linear (two-node) Timoshenko beam elements which represent the bending moment
within each element by a constant. Since the bending moment varies linearly over the beam

for this problem, the finite element will replace this with a stairstep approximation. Thus,

with increase in number of elements, the stress pattern will approach the true solution more
closely and therefore the computed strain energy due to bending will also converge. Since
the applied load is at the tip, it is very easy to associate the load with the deflection under
it using Castigliano’s theorem. It will then be possible to discern the convergence trend for
the tip deflection. Our challenge is therefore to see if the best-fit paradigm can be used to
predict the convergence rate for this example from first principles.

The dimensions of a cantilever under tip load (figure 2) are chosen such that the tip
deflection under the load will be w = 4.0. The example chosen represents a thin beam so
that the influence of shear deformation and shear strain energy is negligible.

We shall now discretize the beam using equal length linear elements based on Tim-
oshenko theory. We use this element instead of the classical beam element for several
reasons. This element serves to demonstrate the features of shear locking which arise from

E=10° P=1-0

X Je=ro

L =100 b=1-0 Figure 2.  Cantilever beam under tip load.
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Figure 3. Bending moment dia-
grams for a one-, two- and four-
element idealisations of a cantilever
X beam under tip load.

an inconsistent definition of the shear strains (which we examine in § 7). After correcting
for the inconsistent shear strain, this element permits constant bending and shear strain ac-
curacy within each element — the simplest representation possible under the circumstances

- and therefore an advantage in seeing how it works in this problem.

We shall restrict attention to the bending moment variation as we assume that the po-

tential energy stored is mainly due to bending strain and that we can neglect the transverse

shear strain energy for the dimensions chosen.

Figure 3 shows the bending moment diagrams for a 1, 2 and 4 element idealizations
of the present problem using the linear element. The true bending moment (shown by the
solid line) varies linearly. The computed (i.e. discretized) bending moments are distributed
in a piecewise constant manner as shown by the broken lines. In each case, the elements
pick up the bending moment at the centroid correctly — i.e. it is doing so in a ‘best-fit’
manner. What we shall now attempt to do for this problem is to relate this to the accuracy of
results. We shall now interpret accuracy in the conventional sense, as that of the deflection
at the tip under the load. Table 1 shows the normalized tip deflection with increasing
idealizations (neglecting a very small amount due to shear deformation). An interesting
pattern emerges. If error is measured by the norm {w — w(FEM)}/w, it turns out that this
is given exactly by the formula 1/4N? where N is the number of elements. It can now be
seen that this relationship can be established by arguing that this feature emerges from the
fact that strains are sought in the ‘best-fit’ manner shown in figure 3.

Consider a beam element of length 2/ (figure 4). Let the moment and shear force at
the centroid be M and V. Thus the true bending moment over the element region for our
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Table 1. Normalized tip
deflections of a thin can-
tilever beam, L/t = 100.

N  Predicted Computed

1 0.750 0.750
2 0.938 0.938
4 0.984 0.984

problem can be taken to vary as M + Vx. The discretized bending moment sensed by our
linear element would therefore be M. We shall now compute the actual bending energy
in the element region (i.e. from a continuum analysis) and that given by the finite element
(discretized) model. We can show that

‘Energy in continuum model = (/EI)(M* + V42/3), )
Energy in discretized model = (I/EI)(M?). (10)

Thus, as a result of the discretization process involved in replacing each continuum segment
of length 2/ by a linear Timoshenko beam element which can give only a constant value
M for the bending moment, there is a reduction (error) in energy in each element equal
to (I/EI)(V?12/3). It is simple now to show from this that for the cantilever beam of
length L with a tip load P, the total reduction in strain energy of the discretized model
for the beam is U/4N? where U = P2L3/6EI is the energy of the beam under tip
load.

We are interested now in discovering how this error in strain energy translates into an
error in the deflection under load P. This can be very easily deduced using Castigliano’s
second theorem. It is left to the reader to show that the tip deflections of the continuum
and discretized model will differ as {w — w(FEM)}/w = 1/4N>.

Table 1 shows this predicted rate of convergence. Our foregoing analysis shows that this
follows from the fact that if any linear variation is approximated in a piecewise manner
by constant values as seen in figure 3, this is the manner in which the square of the error

M(x)

1
-i (o] IL

Figure 4. Bending moment variation in a linear beam
X element.
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in the stresses/strains (or, equivalently, the difference in work or energy) will converge
with idealization. Of course, in a problem where the bending moment is constant, the
rate of convergence will be better than this (in fact, exact) and in the case where the
bending moment is varying quadratically or at a higher rate, the rate of convergence will
be decidedly less.

We also notice that convergence in this instance is from below. This can be deduced from
the fact that the discretized potential energy U is less than the actual potential energy U for
this problem. It is frequently believed that the finite element displacement approach always

‘underestimates the potential energy and a displacement solution is consequently described

as a lower bound solution. Howeyver, this is not a universally valid generalization. We can
see briefly below (the reader is in fact encouraged to work out the case in detail), where
the cantilever beam has a uniformly distributed load acting on it using the same linear
Timoshenko beam element for discretization, that this is not the case. It turns out that tip
rotations converge from above (in a 1/2N? rate) while the tip deflections are fortuitously
exact. The lower bound solution nature has been disturbed because of the necessity of
altering the load system at the nodes of the finite element mesh under the ‘consistent load’
lumping procedure. :

As promised above, we now extend the concept of “best-fit” and variationally correct
rate of convergence to the case of uniformly distributed load of intensity ¢ on the can-
tilever with a little more effort. Now, when a finite element model is made, two levels
of discretization error are introduced. First, the uniformly distributed load is replaced
by consistent loads which are concentrated at element nodes. Thus, the first level of
discretization error is due to the replacement of the quadratically varying bending mo-
ment in the actual beam with a linear bending moment within each beam element. Over
the entire beam model, this variation is piecewise linear. The next level of error is due
to the approximation implied in developing the stiffness matrix which we had consid-

) . ered above — this effectively senses a “best-approximated” constant value of the bending
moment within each element of the linear bending moment appearing to act after load

discretization.

With these assumptions, it is a simple exercise using Castigliano’s theorem and fictitious
tip force and moment P and M respectively to demonstrate that the finite element model
of such a problem using two-noded beam elements will yield a fortuitously correct tip
deflection (w = gL* /8EIT) for all idealizations (i.e. even with one element!) and a tip
rotation that converges at the rate 1/2N?2 from above to the exact value (6 = gL3 JOEI).
Thus, as far as tip deflections are concerned, the-two levels of discretization errors have
nicely cancelled each other to give correct answers. This can deceive an unwary analyst into
believing that an exact solution has been reached. Inspection of the tip rotation confirms
that the solution is approximate and converging.

We see from the foregoing analysis that by using linear Timoshenko beam elements
for the tip-loaded cantilever, the energy for this problem converges as O (h?), where h =
2l = L/N is the element size. We also see that this order of convergence carries over to
the estimate of the tip deflections for this problem. Many text-books are confused over
such relationships, especially those that proceed on the order of error analysis. These
approaches arrive at conclusions, such as that the strain error is proportional to element
size, i.e. O(h), and displacement error is proportional to the square of the element size,

|
|
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i.e. O(h?), for this problem. We can see that for this problem (see figure 3) this estimate
is meaningful if we consider the maximum error in strain as occurring at element nodes
(at centroids the errors are zero as these are optimal strain points). We also see that with
element discretization, these errors in strain vanish as O (k). We can also see that the
strain energies are now converging at the rate of O (42) and this emerges directly from the
consideration that the discretized strains are ‘best-fits’ of the actual strain. This conclusion

is not so readily arrived at in the order of error analysis methods, which often argue that

if strains are accurate to O (h), then strain energies are accurate to O(hz) because strain
energy expressions contain squares of the strain. This conclusion is valid only for cases
where the discretized strains are ‘best-fit” approximations of the actual strains, as observed
in the present example. If the ‘best-fit’ paradigm did not apply, the only valid conclusion
that could be drawn is that the strains which have O () error will produce errors in strain
energy which are O (24).

Itis also possible to argue that errors, whether in displacements, stresses or energies, due
to finite element discretization must converge rapidly, at least in a O (k%) manner or better.
If a large structure (domain) of dimension L is sub-divided into elements (sub-domains)
of dimension /, one expects errors of the order of (I/ L)?. Thus, with ten elements in a one-
dimensional structure, errors must not be more than a few percent. We discover however
that a class of problems exist where errors are much larger — the discretizations fail in a
dramatic fashion, and this cannot be resolved by the classical (pre-1977) understanding
of the finite element method. A preliminary study of the issues involved will be taken up
next; the linear Timoshenko beam element serves to expose the factors clearly.

7. The locking phenomena

By and large, finite elements work without difficulty. However, there are spectacular fail-
ures as well. These are what are now called the ‘locking’ problems. By locking, we mean
that finite element solutions vanish quickly to zero (errors saturating quickly to nearly
100%!) as certain parameters (the penalty multipliers) become very large. It was not clear
why the displacement type method, as it was understood around 1977, should produce for
such problems, answers that are only a fraction of a percent of the correct answer with
a practical level of discretization. Studies in recent years have established that an aspect
known as consistency must be taken into account (Prathap 1993).

The consistency paradigm requires that the interpolation functions chosen to initiate
the discretization process must also ensure that any special constraints that are anticipated
must be allowed for in a consistent way. Failure to do so causes solutions to lock to
erroneous answers. The paradigm showed how elements can be designed to be free of

these errors. It also enabled error-analysis procedures that allowed errors to be traced to
the inconsistencies in the representation to be developed.

1.1 Locking and the linear Timoshenko beam element

The two-noded beam element based on the shear flexible Timoshenko beam theory will
need only C? continuity and can be based on simple linear interpolations. It was therefore
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very attractive for general purpose applications. However, the element was beset with
problems, as we shall presently see.

The strain energy of a Timoshenko beam element of length 2/ can be written as the sum
of its bending and shear components as

1 1 ,
f (EEIKTIC + 5kGAyTy) dx, (11)
where
K=0,y , (12a)
y=0—w,;. (12b)

In (12a) and (12b), w is the transverse displacement and @ the section rotation. E and G are
the Young’s and the shear moduli and k the shear correction factor used in Timoshenko’s
theory. I and A are the moment of inertia and the area of cross-section respectively.

~ In the conventional procedure, linear interpolations are chosen for the displacement field
variables as,

Ni=(1-1¢)/2, (13a)
Ny=(14+17)/2, (13b)

where the dimensionless coordinate { = x// varies from —1 to +1 for an element of
length 21. This ensures that the element is capable of strain-free rigid body motion and can
recover a constant state of strain (completeness requirement), and that the displacements are
continuous within the element and across the element boundaries (continuity requirement).
We can compute the bending and shear strains directly from these interpolations using the
strain gradient operators given in (12a) and (12b). These are then introduced into the strain
energy computation in (11), and the element stiffness matrix is calculated in an analytically
or numerically exact (a 2-point Gauss—Legendre integration rule) way.

We shall now model a cantilever beam under a tip load using this element, considering
the case of a “thin” beam with £ = 1000, G = 37,500,000, t = 1, L = 4, using a
fictitiously large value of G to simulate the “thin” beam condition, Table 2 shows that the
normalized tip displacements are dramatically in error. We can carefully examine table 2 to
see the trend as the number of elements are increased. The tip deflections obtained, which
are several orders of magnitude lower than the correct answer, are directly related to the
square of the number of elements used for the idealization. In other words, the discretization
process has introduced an error so large that the resulting answer has a stiffness related to

Table 2. Normalised tip deflec-

tions.
No. of elements  “Thin” beam o
1 0.200 x 107
2 0.800 x 10—
4 0.320 x 10~
8 0.128 x 1073

16 0.512 x 1073
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the inverse of N2. This is clearly unrelated to the physics of the Timoshenko beam and is
also not the usual sort of discretization error encountered in the finite element method. It
is this very phenomenon that is known as shear locking.

The error in each element must be related to the element length, and therefore when

a beam of overall length L is divided into N elements of equal length &, the additional |

stiffening introduced in each element due to shear locking is seen to be proportional to
k2. In fact, numerical experiments showed that the locking stiffness progresses without
limit as the element depth ¢ decreases. Thus, we now have to look for a mechanism that
can explain how this spurious stiffness of (k/¢)? can be accounted for by considering the
mathematics of the discretization process.

Itis clear from the formulation of the linear Timoshenko beam element using exact inte-
gration (we shall call it the field-inconsistent (FI) element) that ensuring the completeness
and continuity conditions is not enough in some problems. We shall propose a requirement

for a consistent interpolation of the constrained strain fields as the necessary paradigm to
make our understanding of the phenomena complete.

If we start with linear trial functions for w and 8, as we had done in (13) above, we can

associate two generalized displacement constants with each of the interpolations in the
following manner.

w=ag+ ai(x/1), (14a)
0 =>by+ bi(x/]). (14b)
We can relate such constants to the field-variables in this element in a discretized sense;
thus, a1/] = w,y atx = 0, by = @ and b1/l = 0,4, at x = 0. This denotation would
become useful when we try to explain how the discretization process can alter the infinites-

imal description of the problem if the strain fields are not consistently defined.
If the strain-fields are now derived from the displacement fields given in (14), we

get
k= (1/1), : (152)
y =(bo—a1/D)+ bi(x/D). (15b)
An exact evaluation of the strain energies for an element of length 4 = 2/ will now yield
the bending and shear strain energy as,
Up = 5(ED@D{(b1/ DY, | (16a)
Us = 3(kGAY2D{(bo — a1/1)* + 163}, (16b)
It is possible to see from this that in the constraining physical limit of a very thin beam

modelled_by elements of length 2 and depth ¢, the shear strain energy in (16b) must vanish.
An examination of the conditions produced by this requirement shows that the following

constraints would emerge in such a limit,
bop—ai/l =0,

(17a)
bl - 0.

(17b)

Constraint (17a) is field-consistent as it contains constants from both the contributing
displacement interpolations relevant to the description of the shear strain field. These
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constraints can then accommodate the true Kirchhoff constraints in a physically meaningful
way, 1.e. in an infinitesimal sense this is equal to the condition (6 —w,, ) — 0 atthe element
centroid. In direct contrast, constraint (17b) contains only a term from the section rotation
6. A constraint imposed on this will lead to an undesired restriction on f. In an infinitesimal
sense, this is equal to the condition 6,, — 0 at the element centroid (i.e. no bending is
allowed to develop in the element region). This is the ‘spurious constraint’ that leads to
shear locking and violent disturbances in the shear force prediction over the element, as
we shall see presently.

1.1a An error model for the field-consistency paradigm: We must now determine that
this field-consistency paradigm leads us to an accurate error prediction. We know that
the discretized finite element model contains an error which can be recognized when
digital computations made with these elements are compared with analytical solutions,
where available. The consistency requirement has been offered as the missing paradigm
for the error-free formulation of the constrained media problems. We must now devise an

- operational procedure that will trace the errors due to an inconsistent representation of

the constrained strain field and obtain precise a priori measures for these. We must then
show by actual numerical experiments with the original elements that the errors are as
projected by these a priori error models. Only such an exercise will complete the scientific
validation of the consistency paradigm. Fortunately, a procedure we shall call the functional
re-constitution technique makes it possible to do this verification. o

1.1b  Functional re-constitution: 'We have postulated that the error of shear locking
originates from the spurious shear constraint in (17b). We must now devise an error model
for the case where the inconsistent element is used to model a beam of length L and depth
t. The strain energy for such a beam can be set up as,

L "
= / (3EI18.2,+1kGA® — w,,)*} dx. (18)
0 .

If an element of length 2! is isolated, the discretization process produces an energy for the
element of the form given in (16). In this equation, the constants which were introduced
due to the discretization process can be replaced by the continuum (i.e. the infinitesimal)
description. Thus, we note that in each element, the constants in (16a) and (16b) can
be traced to the constants in (14a) and (14b) and can be replaced by the values of the
field variations 6, 6, and w,, at the centroid of the element. Thus, the strain energy of
deformation in an element is,

Te=3(EDQ@D0.2)%} + (kGO — w,x)* + LkGAL) @, ).
(19)

. Thus the constants in the discretized strain energy functional have been re-constituted into

an equivalent continuum or infinitesimal form. From this re-constituted functional, we can
argue that an idealization of a beam region of length 2! into a linear displacement type
finite element would produce a modified strain energy density within that region of

fle = 5 (EI + (KGAI*/3)(8,5)1) + A kG A)® — w2 (20)
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This strain energy density indicates that the original physical system has been altered due
to the presence of the inconsistent term in the shear strain field. Thus, we can postulate

that a beam of length L modelled by equal elements of length 2/ will have a re-constituted
functional

L
fl = ]0 (L(EI + (kGAI?/3)(8.:)* + S(KGA) O — w,x )} dx. @1)

We now understand that the discretized beam is stiffer in bending (i.e. greater flexural
rigidity) by the factor kG Al%/3E1. For a thin beam, this can be very large, and produces
the additional stiffening effect described as shear locking. '

7.1c  Numerical experiments to verify error prediction: Our functional re-constitution
procedure (note that this is an auxiliary procedure, distinct from the direct finite element
procedure that yields the stiffness matrix) allows us to critically examine the consistency
paradigm. It indicates that an exactly-integrated or field-inconsistent finite element model
tends to behave as a shear flexible beam with a much stiffened flexural rigidity I’. This

can be related to the original rigidity I of the system by comparing the expressions in (18)
and (21) as,

I'/I =1+kGAI*/3EI (22)

We must now show through a numerical experiment that this estimate for the error, which
has been established entirely a priori, starting from the consistency paradigm and introduc-
ing the functional re-constitution technique, anticipates very accurately, the behaviour of
a field-inconsistent linearly interpolated shear flexible element in an actual digital compu-
tation. Exact solutions are available for the static deflection W of a Timoshenko cantilever

beam of length L and depth ¢ under a vertical tip load. If Wrgym is the result from a numer-
ical experiment involving a finite element digital computation using elements of length 2/,

the additional stiffening can be described by a parameter as

ereM = W/ Wrem — 1. (23)
From (22), we already have an a priori prediction for this factor as

e=1/I —1=kGAI*/3EI (24)

We can now re-interpret the results shown in table 2 for the thin beam case. Using (23)
and (24), we can argue a priori that the inconsistent element will produce normalized tip
deflections (Wrpm/ W) = 1/(1 + e). Since e > 1, we have

Weem/ W = (N2/5) x 107>, (25)

for the thin beam. Table 3 shows how the predictions made, thus compare with the re-
sults obtained from an actual finite element computation using the field-inconsistent (FI)
element. ,

This has shown us that the consistency paradigm can be scientifically verified. Tradi-
tional procedures such as counting constraint indices, or computing the rank or condition

]
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Table 3. Normalised tip deflections for the thin beam computed
from FEM model and predicted from error model, (25).

No. of elements Computed (FEM) Predicted
1 0.200 x 1073 0.200 x 1073
2 0.800 x 1073 0.800 x 10~3
4 0.320 x 10™* 0.320 x 10~%
8 0.128 x 1073 0.128 x 1073
16 0.512 x 1073 0.512 x 1073

number of the stiffness matrices could offer only a heuristic picture of how and why locking
sets in.

It will be instructive to note here that conventional error analysis norms in the finite
element method are based on the percentage error or equivalent in some computed value
as compared to the theoretically predicted value. We have seen now that the error of
shear locking can be exaggerated without limit as the structural parameter that acts as
a penalty multiplier becomes indefinitely large. The percentage error norms therefore
saturate quickly to a value approaching 100% and do not sensibly reflect the relationship
between error and the structural parameter even on a logarithmic plot. A new error norm
called the additional stiffening parameter, e can be introduced to recognize the manner in
which the errors of the locking kind can be blown out of proportion by a large variation
in the structural parameter. Essentially, this takes into account the fact that the spurious
constraints give rise to a spurious energy term and consequently alters the rigidity of the
system being modelled. In many other examples (e.g. Mindlin plates, curved beams etc.),
it was seen that the rigidity, 1, of the field consistent system and the rigidity, 7', of the
inconsistent system, were related to the structural parameters in the form, 1’ /T =a(l/t)?
where [ is an element dimension and ¢ is the element thickness. Thus, if w is the deflection

- of a reference point as predicted by an analytical solution to the theoretical description

of the problem and wggy is the deflection predicted by a field inconsistent finite element
model, we would expect the relationship described by (24). A logarithmic plot of the
new error norm against the parameter (//¢) will show a quadratic relationship that will
continue indefinitely as (//¢) is increased. This was found to be true of the many constrained
media problems. By way of illustration of the distinction made by this definition, we shall
anticipate again the results above. If we represent the conventional error norm in the
form E = (W — Wrem)/ W, and plot both £ and the new error norm e from the results
for the same problem using 4 field inconsistent elements against the penalty multiplier
(I/t) on a logarithmic scale, the dependence is as shown in figure S. It can be seen that
E saturates quickly to a value approaching 100% and cannot meaningfully show how
the error propagates as the penalty multiplier increases indefinitely. On the other hand, e
captures this relationship very accurately.

8. Concluding remarks

We have attempted to show here that if the first principles are carefully identified, it is
possible to set up error estimates on an a priori basis. This would enhance the validation
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of new design of finite elements so that not only are computed results compared with
analytical results, it is also possible to give a measure to the quality of the solution by
assigning rates of convergence and order of error estimates which have been arrived at
from first principles using simple engineering analysis.
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