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Poisson formulae of Hecke type

By

S RAGHAVAN and S S RANGACHARI

1. Introduction

In his lectures on “ Forms of higher degree ”, Igusa [10] gave a simple proof of a
Poisson formula due to Yamazaki [19] associated with coefficients of Dirichlet
series with functional equations involving a single I-factor, by introducing an
operator of order 2 in a function space, via the Mellin transform. Our object
here is to show that this Poisson formula can be generalised a little, so as to bring
within its ambit, functional equations of Dirichlet series involving multiple I-
factors (and, in particular, those associated with Mellin transforms of non-analytic
automorphic functions). We also indicate an adelic interpretation of certain
Poisson formulae above just to highlight the fact that such a formula in adelic form
constitutes an important step in the proof of theorem 5 in § 3 of [7] on a global
representation of (GL,),.

2. Mellin transforms

Let .Uo,ia. «ees Mo g .ui,ia . --:.ul,a, ﬂz,l, ---,.Uz,..

be a sequence of a-tuples of complex numbers such that Re (4, ;) = 4, for every j
with 1< j< a and for every k> 0 and further let 0< A, < A; < 4, ... — oo. For
every k=0, let m, > 1 be a fixed natural number.

Following Igusa [10], we define corresponding function spaces & and Z by the
conditions :

(A) & consists of all complex valued C* functions F on the space R% of positive
real numbers behaving like Schwartz functions at infinity such that with well-
determined complex constants g, ; ,, the function F has a termwise differentiable
asymptotic expansion

F(x) ~ 5, mx 27 (log x)™ 2, 4}
0Sh<K 1KISa 1Sm<my
as x tends to 0, and
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(B) Z consists of all complex valued functions Z meromorphic on C with poles
at most at the points — y,; (k> 0; 1< j< a) and having principal part at — 1z, ,
of the form. '

—
Z b].:,j,m (S + luk,i)ﬁm
1Sm<my;

and further such that for every polynomial P in s and any vertical strip
By s ={s =0a +tieC ; 01<go <oy} with arbitrary @y,0,, the function
P(s)Z(s) is bounded in Bs,,q, with small neighbourhoods of the poles of Z
deleted therefrom.

For k>0 and any j, m with 1<j< a and 1< m< m, let us define

Pr,i,m (¥) = 201 (log x)™1 for x eRX ;

then Pr,i,m == 0 (Py+1,1,,) as X tends to O,

for every j,I,m and n. Further if we define, for k>0,

J

Re(x) = F(x) — | @3, w001 (0g )" @

ol

A}

B 1gise 1<Km<my

then the asymptotic expansion (1) for F in & simply means that R, (x) =
O (9r+1,5,0) for every k>0 and any p, g as x tends to 0.

The space & is non-empty, since it contains the constant function F =0 on
RX. Further it is stable under homothety-invariant differential operators; this
property of & corresponds to Z being stable under multiplication by polynomials
in s. :

Theorem 1. There exists a bijective correspondence
M :F2 Z given by F— MF where
o
(MF) (s) = | F(x) x* d(log x), 3)
o

defined for s =a - ti in C with @ = Re (s) > 0 has a meromorphic continuation to
the whole of C. Conversely, for every Z in %, the inverse transform

o004

(M Z) (x) = 5}51‘ f Z(s) x~* ds )

OO0 4

gives rise to an element of &, independently of a for @ > 0. Moreover, we have the
relation

bupm =(—D"(m— 1! & ym ®)

for every 1, j, m.

R

BN




Poisson formulae of Hecke type 131

The proof of this theorem is exactly the same as in [10] and for the sake of
completeness, we shall quickly sketch its proof.

() FeF=>Z=MFe%:

Let s =a 4t with 0 <ay <o <oy <oo. It is easy to see that x° F(x) is
dominated by a ¢ in L* (RX, d (log x)); therefore Z(s) is holomorphic for
Re s > 0, in view of its being defined by an absolutely convergent integral and the
integrand being holomorphic. It is clear, for a similar reason that Z,(s) =
[® F(x) x* d(log x) is an entire function of s and further bounded in vertical strips.
For every p < A1, Ry (%) = 0 (xf) as x tends to 0 and therefore, for every oy
with — Ay <o1<o and — oy, <p < Apua, the function x%: R, (x) is dominated
by an element of I*((0,1], d(legx)). As a result, Z;(s) = [t R, (x) x* d(log x)
is holomorphic in s for Re (s§) > — Jz.1 and bounded in vertical strips.
Splitting up the integral in (3) over (0, 1] and [1, o0), it is easy to see from (2)
that for Res >0,

Z(s) = Z z Brjym (S + )™ + Z, (5) + Z, (s)

oISE 1Ki<e 1Smsml

with b, ;,, satisfying (5). Itis now immédiate that Z satisfies the first half of condi-
tion (B) and also the second half with P = 1. For the case of arbitrary P, one
has only to invoke the homothety-invariance of & and it now fellows that Z is
in Z.

(i) ZeZE=>F=M"'ZecF:

For 0 <oy < crz,' let L denote the boundary (covered anticlockwise) of the rectangle
in the complex s-plane with vertices at oy 4- #,f, g, & £,i for some z, >0. By
Cauchy’s theorem, Lf Z(s)x*ds =0 for any x > 0. As ¢, tends to oo, the contri-

‘bution to this integral from the “horizontal” sides of L tends to 0, in view of
the second part of condition (B) for Z. Thus the integral (4) is defined
independently of ¢ and moreover converges absolutely in view of condition
(B). Now, for any k>0,

0+0014

xdkF(x) e [ s k1) Z() s

o—C0 14

and this integral converges absolutely by condition (B). Thus Fis in C* (RX) and
behaves like a Schwartz function at infiniity. We then see that R, (x) defined by
(2) satisfies the condition R, (x) = o (x*) for any p with A, < p < /4y and k> O.
If L, is the boundary traversed anticlcokwise of the rectangle in the s-plane with
vertices at ¢ 4= #,f, — p = t,i for a large enough #, > 0, one shows by choosing a
proper contour and using condition (B) that

1 —p4o0i
F@ =S+ [ zZ@xds

—p~0i
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where S is the sum of the residues of the integrand at the poles — o,15 -+ -5 — Ho,es
— W15 o ees — Mg -+ - lying inside L;. But F(x) — S is precisely R (x) and
the required o-estimate for R, (x) follows, in view of (B), by majorising the
integral. Now —sZ(s) = (t4,, — (5 + 1,,)) Z (5) is in Z with

by, = {ﬂx,; Nl ISp<m
B Lty By p=m

in place of the earlier b, ; ,. Working with — sZ (s) in place of Z (s), we get xF' (x)
instead of F(x) and further

xF' (x) ~ z Gy, ;, m**i (log x)m2

0. <0 IKise 1Smsmp
with iysm = (— D™ 2D m [ (m — 1) !

. {ﬂk,f Tysym T My, 5, mi1s l<sm<m,
:uk,j ak,j,m:_ m = My.

Thus the asymptotic expansion of F is once termwise differentiable; interaction
shows that F is in &£

Remarks : (i) If the condition 4, = 0 for every k is replaced by a condition of the
form Ay > A for every k for some fixed real A< 0, the corresponding Z-space is
obtained from the earlier one by a mere translation of the varible s by A; simi-
larly, the corresponding space & is obtained by multiplying the elements of the
original F-space by x™.

(ii) One can also consider more general sequences of the form

#0,15- . 'aﬂo,aos 1u1,1: . -a.ul,a13 .uz_,ls .. -,ﬂz,az: T

with Re (i4,5) = M, for every fixed k>0 and for 1</j< @ However, arith-
metically interesting situations arise when, for example, the sequence of 4 ,'s
coincides with the set of poles of a product of I'-factors, say

G(s) = ﬂ I' (o35 + ™ with a; >0, Re ;=0 and

1<K

a,B; — 0;8; not of the form ma; — na; for m,n=>0in Z if i# j. In such a situa-
tion, Z can be characterised as the space of meromorphic functions Z on C such
that Z (5s)/G (s) is entire and for every polynomial P in s, P (s) Z (s) is bounded in
vertical strips. In the corresponding space &, we have for every x > 0, an involu-
tion F |- WF defined by :

(M (WF)) (s) _ (MF) ( — 5)
G® Gle—9 | ©)

(As we shall see later, an analogue of this operator W exists already in the non-
archimedean case as well). We shall be interested in obtaining Poisson formulae
involved with functional equations containing multiple I-factors.
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3. Poisson formula of Hecke type

Let  {p()= > af |nl*; 1</<N} and
n5£0 :
v () = z B9 (|5 1<j <N}
n7£0

be two sets of N Dirichlet series each converging in some (right) s-halfplane
such that if we set, for 1 <j << N and a fixed 4 >0,

€ () =4"G(s)p;(s), 77 (s)=A°G(5)y] (5), (N

then we have the functional equations

&k —s5)= Cpu(s), 1<j<N (8)

1SN

with real ¢;. We may assume &, ..., &y to be linearly independent over C ; then,
(ci)? is the N-rowed identity matrix. We also assume that &, #; have only finitely
many poles in C.

From (6), (7) and (8), we obtain

(MWEY) 4 9s) = > culMF) (e = ) 450 — 9. ©)

LISV

In view of the absolute convergence of the Dirichlet series ¢;(s) in some
right half plane, we see that the integral of the left hand side of 9) fromag — o0 i
to o+ ooi for any fixed sufficiently large ¢ is simply

27i Y a4 (WE)(| n |/4).

Thus, for large a;, we have

Z o (WE) (| n [/4)

nF=0
K—g004
— 2% f (M (WF)) (1c — 5) 4%~ gy(sc — 5)dis
K—0—004
K—04004
o 1
=5 D o [ 0m) @y
1<ISN Keega00 i
03+004
1 MF)(s) .
= 0w [ S wa-s

ISISN F1—04
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where S* -—Z Res( z Cuy (MF) (S) ,(s))
1IN
the sum of the residues of the sum inside at all the poles. Using the &

absolute convergence of the Dirichlet series yj (s), we have

> a WE) ([n /) = D ey BF(n|d) -5 |

070 ‘ 1SN nF0

which, on replacing F by WF becomes

D @r(nl= Y a > BOD(n]H-

nFEQ 1<ISN n5£0
6] ,
where X Res is the.sum of the residues at all poles, as before. i
For fixed ¥ > 0, let us replace F in (10) by F, where F,(x) = F(xy). Then
W (F,) =y % (WF)y_, (11)
where (WF),~ (x) = (WF) (xy™)
for every x > 0. Therefore
M (W (F)) (5) =y~ M (WF),) (s) = y*~* (M (WF)) () .
and (10) now becomes
a? F(|n|y/d) =
550 : : o
=y z Cra z by (WF)(I" |/(47)) —
nF=0
MWF
— z Res ( ¢ (G (S))) ©) V& (e — S)) | 10y’
=7 > Y HOVR) (i) +
1SISN n7#0
(1 R ) ”

The secgnd term in (10)” is a ‘residual function’ in the sense of Bochner [3]
and (10)” gives rise to a “ generalised modular relation ”,
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For the sake of simplicity, we assume that no &, (s) has a pole on the line
Re(s) = x/2. Let wu,...,u, be the poles of &, (s). Then we may rewtite (10) as

Z o F(|n)/d) + Res MEFD ), 12)
0 Re u;> Kl =
S ey wonan) - > reMEDO ey,
1SISN =0 Re u;< Kl2 !

The second term on the left hand side of (12) is the same as
' MF (s) z (MF) (s)
_ il = — R
z sﬁiscj G (S) ék (S) s_e“j G ( ) ék ( )
Re u;>K2 Re uj<lflz
while the one on its right hand side is equal to

z Ciy Z Res (M(C‘;V(F)))(S) 7 (5)

1SISN Re u;<tl2

Thus we have a Poisson formula of Hecke type given by the following
Theorem 2. For any F whose Mellin transform MF is such that (MF) (s5)/G (s) is
entire and P (s) MF (s) is bounded in vertical strips for every polynomial P and for
E () ny Ex(S), M3(S),--.,my (8) satisfying functional equations (8), we have

> @rnjy - > re?EO

n5%0 Re < Kiz

> (D e nia

1IN 1740

_ z Res WLOVID () z(s)) (13)

s=u;
Re u]-<’\ff2

4. Known cases of Poisson formulae above

Formula (13) generalises some well-known relations of a similar nature due to
Hecke, Maass and Yamazaki and may be called a ““generalized modular relation .

(1) First let a=1, N=1, g, =k for k=0, G(s) =1I(s),

EE=E@E) =pt(x—5)=n1(), ecu=7, @) =0 =

an*,

\]8

=
[]
el
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A= A2m; let s =0, x be the only poles (and indeed of order 1) of £(s). Then

G (S') 5=0

=0

= dy,3,1 Res £ (s) by Theorem 1
8=0
=F(0) X (— y Res 4° I'(s) ¢ ()
amK
= — y F(0) 4° I () Res ¢ (s5)

= — CF(0), say.
Replacing F by WF in the argument above, we obtain

RGS (M ((;‘“zg)) (S) 7]: (S) —_ B:COS (M ((\;Vég) (S) é (S)

= — C(WF)(0).

Thus we get from (13) the Poisson formula due to Yamazaki [19] in the form
derived by Igusa [10]: namely, for every F in & (with G (s) = I'(s))

CF(0) + z a,F Q2nn[l) =y (C (WF) (0) + z a,(WF)(@2rn/2).  (14)

n21 nz=1
(2) Let us take the same situation in (1) above and in particular,
RICEENRIOrS
1<n< o0

where 7 (n) is Ramanujan’s function; then x =12, 4 = 1/2%, &(s) is entire and
for every F in the space &, we have

N () F 2an) = z *(n) (WF) (2mn). (15)
1<n< 0 1K< 0 i

For F(x) = exp (— xy/2n) with fixed y > 0, we obtain in view of (1) and (15),
formula (4) of [4]. On the other hand, if we take F(x) = exp (— s J%)/+/x for
fixed s > 0, then we obtain formally from (15), formula (7) of {4]. One has to
note that in the situation of (1) above, we can define for any Fin &, the
function WF also by

W) (5 = | GO, @ (i FO e d, 19

with v = x — 1. (See [10]), where J, is the usual Bessel function of order . How-
ever, the function x |- [exp (— s \/x)]/+/x is not in the space & above. If we
approximate to it by a sequence {F,} from C;° (R%) (and indeed therefore with
F, in &) and note that {MF,} converges to the (usual) Mellin transform MF

e L S
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of F while {WF,} converges to WF (defined in the same way as in (16)), the
validity of formula (7) of [4] can be deduced from above, in view of the two
sides of this formula being absolutely convergent series. Again, for integral
p >0, formula (5) of [4] can be derived from (15), by taking for F, the function
in & given by

—_— 1 —_ 1
F(t)——- {m(l IX)P' for o<t x
0 for > x,

with fixed x > 0. On the other hand, for getting the same formula for non-
integral p > 0, a more refined argument as above has to be used; the case
p =0 also needs a more careful argument.

(3) When ¢ (s) is the Dedekind zeta function associated with an imaginary
quadratic fleld of discriminant 4 over the field of rational numbers and
A= /| d]|/2z in (1) above, then we get the Poisson formula due to Hecke [8].

(4) The relation in Kubota [11] corresponding to our relation (9) above is, in
his own notation,

M¥, (5) Zo,o (s) = MP_,(2n — 2 —5) Z_, ,(2n —2 — ),
and proceeding exactly as above, one can derive his Poisson formula

Z Cp O, (M) = F ¢, ©F (M)

(m) ‘ (m)
and also his relation

— AM (¥, 2n —2) + X ¢}, Do (M)

(m)
=—mw%m—m+;¢mww
m)

(see pages 187-188 in [11]).

(3 Let now a =2, 11 =2k +ir, U, =2k —ir for £ =0,1,2,... and a
fixed r=0, m, =1 or 2 according as r 20 or r =0,

A =dr, ¢ () =y3 () = A;_? a® | n |~ 1< k< N) with aP» =0
n$=0
unless n = b, (mod g) for fixed integers g> 1 and
bl: .. .,bN, K== 1’ G(S) =F<S ’; Z.l') F(S-;ir)

and & (8) =z (5) = 4° G (5) 9, (5) for 1< k< N.

O Be
T T — ~ (r0)
N I

be entire (and of finite genus) for 1 <k < N. Egquivalently ([13)], if now C
denotes Euler’s constant and
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8o =Y 1t 4 1r) Gy,
4M0ak 4M0ﬂ L 4M0Pk . 4]‘?00:1‘ (r # O)

s—l-ir+s~l +ir s+ir s — ir

Let &) —{ o [ (@ + Bi (log (34m) — ©) + (fjf"f’i—z— -2

X (5, +a) (108 Gjam) — )+ L2 (r = 0)

be entire in s (and of finite genus) with

Prx = Craly
1IN

and o, = Z cuB for 1 <k <N.

Then for F in the correspondmg F-space, we have as ¢ tends to 0, the asymp-
totic expansion

@o,1,12" + @o 9,187 z (1,1, P & @0, 8%") (r #0)
. < .
F()~ | k< 0
@o1,1 + Qo1 2108 £ -+ z (@,1,1 + @,1,210g )t (r =0).

1<k < ©0

By Theorem 1 above,

Qo,1,1 + do,2,1

s4ir  s—ir (r#0)
(MF) (s) — is regular at s = - jr. an
: “o,;,l — “0:9;:2 (r =0).

If r £ 0, the only poles of & (s) to the leftof the line Re s =% are at s = 4 ir
and of order 1. Then

(MF)(s) (MF)(s) |
~1}-i§ “G(s) fu(9) = 1" S+ir>r(s_ir> Xﬁ?rsf"(s)
2 2 pir
= 2Moao,2,1 (F) Uk/-r (ir),

writing a,,;,» (F) instead of a,,;,, to emphasise the dependence on F. Similarly
we have

ngr(l‘é?g ) ¢, (5) = 2Mot 1,1 (F) pu/ T (— ir).
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In order to find

M (WF)(s)
RS TG MW

we have only to work with WF instead of F in the arguments above.
If r = 0, the only pole of & (s) to the left of the line Re s =1 is at s =0 and
1ndeed it is of order 2. Using (17) and the expansion 1/I™ (5/2) = (s*/4) (14Cs
..) at s =0, we obtain

Res (MF)/S) € (5) = ao,1,1 (F) Mooy + do,1,2 (F) Mo (pi +

a, (log (4/4m) — 2C)).

The residue of (M (WF))(s) & (s)/I' (s/2) at s =0 is obtained by arguing with
WF in lieu of F above. Thus, from (13), we have, for any F in the space &, the
Poisson formula

a® F(|n|/d) +
nF0

{ZMopkao,l,l (F)| I (—ir)+ ZMoO';c Qo, 2,1 (F)/I'(il‘) } (18)
— M,01a0,1,1 (F) — M, (pe + 0, (log (Af4m) — 2C) ao, 1,2 (F)

= @[> 4®WR (|74
1SISN [ ;3
+ {ZMonao,1,1 (WE)/I" (— ir) + 2M00'¢ao,2,1 (WF)/I" (ir) }]
— M@y00,1,, (WF)— M, (pi+a, (log (A/4m) —2C)) ao,1,+ (WF)

according as r# 0 or r = 0. The roles of F(0) and (WF) (0) in (14) are played
now by the coefficients a,,;,» (F) and a,,;» (WF) in their asymptotic expansions.
If we take F(¢) = 4 /y K,, (2ty) for t > 0 with a fixed y > 0, then

a0,1:1 (F) = Zy%%_itr( - ir): a0)2:1 (F') = zyé“‘rr(ir)’ (r# 0)
0,11 (F) = — 44/y (C + 108 ), Go,1,3 (F) = — 4./, (r=0)

MF(S)~—y%—4 p(s +”‘>F<S — ir

Similar formulae for WF are valid; we have only to replace y by 1/y and F by
WEF in the formulae above. With this specialisation, formula (18) is the same as
the * automorphic” relation

Fi(1/y) = z cu Fi () -

1KISN

of Maass ([13], p. 152).
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(6) If k=Q(./d) is a real quadratic field of discriminant d over the field
Q of_ rational numbers, then the Dedekind zeta function ¢ (s) satisfies the
functional equation (n/+/d)™ I'? (s/2) { (s) = £ (s) = £ (1 — ). The function (s)
has a pole only at s =1 and the residue at this (simple) pole is 2k (log €)/v/d
where £ is the class number of K and e is the fundamental unit in XK. Moreover,
{x(0) =0 and {4 (0) = — h(log ¢)/2. If we take

0 () = (a/r/d)* Ly (25)= z a (n) Ig*

n=q

with A, ==n?n?/d, then ¢ (s) I'2(s) = p (1/2 — s) I'*(1/2 —5). From Theorem 1
of Berndt [2], we get (on noting that his E,(p) is just 2K, (24/y)) the following
Poisson formula, '

2 2 a(n) K, (2uny)d) = 21 z a(n) Ko (2 nf(y v/d)) + P (%)
1Kn < 00 1€n< o0

where K, is the usual Bessel function. Here P (y?) = sum of the residues of
-2 I'2(s) ¢ (s) is seen to be equal to A (log €)/y +2 {3, (0) =k (log € (y* — 1).
Now this formula reduces to a special case of the Poisson formula of Maass
mentioned in (5) above.

5. A Poisson formula associated with a generalised I-function

In this section, we derive a Poisson formula for a situation involving Dirichlet
series with functional equations containing a generalised I-function I'(s;a, Ji))
introduced by Maass ([14], [15]). This function I'(s;a; S) is not, in general, a
product of usual I'-functions although, however, I'(s; a, )/(I'() ['(s + 1 — a— B))
is an entire function of s (with finite genus). The question is one of defining
correctly the W-operator geared to the Pojsson formula in this case; one has been
guided here by the definition of a “ Hankel transform > through the two-compo-
nent Mellin transform for L3-functions on R\ {0} defined in ([16], Theorem 10)
(see also [17]).

First we recall the definition of the Whittaker functions W, ( y) for
ILLmeCand y>0 as the “unique * solution W (y) of the differential equation

aw
day*

4y? + (1 —dm?* + 4lv — ) W (3) =0,

 with the asymptotic behaviour

wo)y~ep (—y {1+ > o ﬁ(mz—(1+%—r)2)}

1Sr<on ]
s y tends to oo. Let
W(p;a )= ytatfr2 W (a-g) 12, (atf-1)/2 (2y),
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for y >0 and

Hﬁ%m=?WUmJN4&

for Re s> K, = max (0, |[Re (a+p)|—1). ThenI(s;a,B) is regular
for Re s > K,, noting that W (y;a, f) = O (y%) for K> K, as y tends to 0
and further it has a meromorphic continuation to the entire s-plame satisfying
the condition

I'(s;a,pB)= 2(“ 5)2F(S)11:((:iil——:a-)~ﬁ)F(ﬂ,l——a,s+1~a 1)

vhere F(abc;z) =1+ » 2 +cl()c+ Sﬂ-n(cl—)l—bn(bj_l)l) 1. (zb+ n—1 .

1S8< 0

is the hypergeometric function. It is also known that for every polynomial P
P(s)I'(s;a, B) is bounded in vertical strips in the s-plane. If we set

. _ I'(s;a,B) I'(s;p,a)
MED= (161 af) — I+ 15 o)

then we know from Maass [I5] that its determinant D (s)is —2 I'(s) X
I'(s+ 1 —a— f); further, the entries of the inverse matrix are entire functions
of s. Let us write ¢ for a 4 £ in the sequel and assume that g=4 1.

Before we go on to the Poisson formula, let us introduce the Dirichlet series
whose functional equations involve the function 17(s; g, f).

Let @ (s) = Z a,n~" and y (s) = Z a,|n|,

1K< 00 0 <n<0

be two Dirichlet series converging absolutely in some s-half plane and let, for
some A >0,

§(5) = (f2r) (I (s50, Do (s) + L (55 B, )y (5)),
1)+ A((a — B)fAm) € (5) = (A2m)** (I (s + 150, N o (s) —
—I'(s+1; gy (s) (19)
satisfy the functional equations
£(@—9)=76(@n(g—s)=—7rn(s), (20)
with fixed y = 4 1. Further, let us assume that
£(), () =7() + A((a — B)JAm) £ (5)

have poles at most at s=0,1,¢ — 1,¢ with principal parts as given by the
conditions:

- a 780
O e B = (o R
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is entire, and
_,a—f a ‘

no=12 (2 + =gt D

is entire with suitable constants a,, b,. The relations (19) can be inverted to read
I 1; 5,
o) = — LU LD ampay ¢ ) - LSO Gay gy )
1; a, ; 0, '
v(o) = —TCE 8D oy g (5) + LG LD orpipsa gy (9. (19)

D(s) D(s)
The only poles of ¢ andy are at s =1, g. Now functional equations (20) go
over into

Gy M (s530,8) (1) ©Y = (32 )M( )M @—s5:0,6)

_ﬁ__

o (q - S)'\ . (20)1 |

w(g—s)
From (19)' and (21), we obtain

0@ ="FTw 0 (2 ~8)+ WO LD nO,
p(@— 1= -<—— “w(g; ﬁ,a)—+w( w(g—1; B, a)m (g—1),
v O =170 w0 p) (T2, — b)) = w0 )1 x

va—n=—F)va; opnG-1F) ve-1: ap

X (g —1) (22)

where w(s;a, f) = —2TI(s;a, B)/D(s) and w(s; §, a) is defined similarly.

Let us now consider the space & of C* functions F on RX which behave like
Schwartz functions at infinity and which have the termwise differentiable asympto-
tic expansion ,

FO~ Y a®r+Es > AW

okn< o oSn< 0

as x tends to 0. From Theorem 1, we, know that MF (s)/(I" (s) I'(s + 1 — q))
is entire and further, for every polynomial P in s, P (s) MF (s) is bounded
in vertical strips. We assume that 0 < Re g < 1 in the sequel.

Let Fy, F, in  above satisfy the conditions:

(i) for every € >0, MF;(s) = O (exp ( — €| t])) ass =& 4 #i tends to infinity
in vertical strips B, 5, forj=1,2, and (23)

(i) (MF, (s) MF, (s)) M (s;a, By = (G1(5) G, (s)) with entire G,, G,. For
such a pair Fy, F,, we define WF;, WF, through the functional equation

L e ST
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(M (WEy)) (5) M (WFp) (5)) M (s; 0, B)™

~G@=96a-9(, 41 ) en

From (23) and (24), it is clear that the left hand side of (24) is entire. Further
for every polynomial P in s, P(s) (M (WF)))(s) isbounded in vertical strips, for

=1, 2 (condition (i) in (23) has been imposed in order to ensure this and if
perhaps

1 0
a— f —
consists of functions bounded at infinity in vertical strips, then condition (i)

can be waived). Thus, as x tends to 0, WF; has the termwise differentiable
asymptotic expansion

Mg —-s;a,ﬂ)~1( 1) M(s; a, B)

WE) @~ > aE)w+xs > f00F)x.
0En<< 0 0<n< o0
Replacing s by ¢ — s in (20)' and then multiplying out relations (20)" and (24)
we obtain

A|@m)e= (M (WF1)) (g — 5) 9 (g — 8) + (M (WEF)) (¢ — ) ¥ (¢ — 9))
=y (A2m)y (MF1 (s) ¢ (s) + MF, (s)y (5). (25)

In order to get the Poisson formula, we proceed as in the proof of Theorem 2
In view of the absolute convergence of ¢, v for sufficiently large Re s, we see that
the integral of the right hand side of (25) from a—ooi to @ + ooi for ¢ large
enough, is simply

221y () aFi @) + > i Qnln |,

n>0 n<<o
which, by (25), is therefore equal to

0+004

(A2m)** (M (WF) (g — 5) 9 (g — 5) + (M (WEFp) (g — s)w (g—s)) ds

oT~001

q—0+004

j (A2 [(M (WEL) (5) ¢ (5) + (M (WFy) (s)w (s))] ds

q—0—001

f

T,+C014
= j (H2RY (M (WEY)) () ¢ (s) + (M (WFy) (s)w (s)) ds — 2mi §*,

=001

for g, large enough, with S denoting the sum of the residues of the integrand

at all the poles encountered when the line of integration is shifted from
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Re (s)=g—a to Re (s5) =a; far to the right. Because of the absolute
convergence of the Dirichlet series ¢ (s),w (s) again, we obtain the relation

(Z a,Fy (2nn)7) -+ z . Fy (27 | 7| /,1)) — z a, (WFy) (2mn/2)

n>0 <0 n>0
iy

n }_ a, (WF;) Qx| n |/3) — S*.

n<o

This can be rewritten as in the proof of Theorem 2 as

z a, Fy (2anid) + 2 G FaQr|nl)— > Res((2n) MF, ()0 (s)

n>0 n<o0 Reu]<q{2

+ MF,(s5) 9 (s))

=7 @WR)@mid)+7 ) a,(WE)@|n ) = > Res (/2 x
4>0 %,o Reu ;<aiz
X (M (WE)) (5) ¢ (s) + (M (WFy)) (s)w (s)), (26)
where the third summations on both sides are over the residues at all the
poles u; satisfying the coundition stated. In view of our assumption that
0<Reg<l, s=0, g—1 are the only poles involved in these summations.
The residue of (4/2x)* (MF, (s) ¢ (s) + MF,(s)y (s)) at 0 is seen to be equal to
(1 = 9)/2) (ao/(1 — ) —bo) (ao(Fr)w(l, B, a) + ao (F) w(l,a, B)) —
- (n/j’) {W (0= ﬁ: a) Gy (Fl) —Ww (Os a, ;B) af) (Fz)} ™ (O)a

in view of (22). The expression inside the curly brackets is 0, since it is essentially
the residue at s = 0 of the right hand side of (25) while the left hand side of (25)
is regular at s =0. Similarly, the residue at ¢ — 1 of

(A/2m)* (MFy (5) ¢ (5) + MF, (s)w (s))
is seen to be just
— @, (Bo (F) w (4; B, @) + Bo (Fo) w(g; a, B))2.

The residues involved in the third summation on the right hand side of (25

are computed just as above, replacing F, by WF, everywhere. 'Thus formula
(26) leads to

Theorem 3. For C* functions Fy, F, on RX behaving like Schwartz Sfunctions at
infinity and satisfying (23) and Dirichlet series ¢ (s), (s) for which the functional
equations (20) hold, we have, for 0 < Re q < 1, the Poisson Sformula

D @y Qe+ 6 Ry n [3) ~ (@ Ew (13 4,0

T E)w(l;a,p) — B (F1)w(g; B, @) — By (F) w(g; 0, B)) —
—bo(@ =D (@ (F)w(l, B, 0) + oy (F) w(l; 0, B,)

T e
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=] > 4 (WF) Ganfi) + > @ (WE) @xlnl )~

— L a, (o (WE) w(l; B, a) + ac (WF) w (L a, )
— Bo(WF) w (¢; 8, 0) — o (WF) w(g; . )

3 bo(g — 1) (a0 (WFD) w(q: By @) + a0 (WFD) w(L; 4, ﬂ))] ,

where a,(F), B,(F;), etc., are coefficients in the asymptotic expansions at 0.

Note. The values of w(0; a, §), etc., are given explicitly as follows:
w(0;a,f) =231 —a), w(l;a,p)=I;e¢ BITQ2—q),
w(0; f,a) =23 (1L — B), w(l; 8, 0) =I'(L; B,0)/ (2 —g),
w(g — Lsa, f) =2"42I'(B), w(g; a, B) = I'(q; a, B)/T"(q),
wi(g —1;p,0) =22 (a), wig; Ba) =T'(q; B, )T (9).

Let now F,(x) = W(&y;a, f), Fo(x) = W(xy; f,a) fur fixed y > 0. Then
by (11), (WFy) (x) = W (xy™; a, )y, (WE) (x) = W(xy™; f,a)y 9. Further

Ay (F) L (L —a) =a, (F) F(l — ) =2Y2I (1 —gq),
Bo (F) T (B) = o (Fy) I (@) =212/ yi=¢ I (q — 1),
g (WFE)I'(1 —a) = a,(WE) (1 — p) =22y (1 —gq),
Bo (WEy) I (B) = Bo (WEy) I'(a) = 21-0/2 y*=1 . y=¢I" (g — 1),
r@rgpa+IrBrap

=2Y2I(q) {B1/5(B, &) + Biys (0, )} =272 I'(9) B (0, )

S

=292 ["(a) I'(8) where B,(a, f) = F t2-1 (1 — t)f-1 dt,
"u 0

and  TA=HIrGLa)+ T -l (i) =2""T(1-aI'(1—f

(See [1]). This gives us in particular, the first of the two formulae (6) of
([15], p. 230) with 0 < Re(a + f) < 1. It seems likely frcm [16], that there are
quite a few of pairs F;, F, which satisfy the ccnditions ¢f Thecrem 3 and for which
therefore a Poisson formula holds.

6. A p-adic analogue of the W-operator

Let & =& (QF) be now the space of locally constant complex-valued functions
F on Qf =Q\{0} with F(x)=0 for all x with | x|, sufficiently large and
F(x) = au (x) | x |5 4+ by (x) | x |2 for all x with | x |, sufficiently small, where
Ui, Uy are quasicharacters of QX, | x |, is a ‘normalised * valuation of Q, and a, b
are complex constants. Such spaces & occur as ““ Kirillov models ” & () for
‘irreducible admissible representations =, of GL,(Q,); associated with =,, we

P (A)—10
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have the L-function L(s,7,) = {(1—m (p)p~*9) (1 — g, (p)p~3)}1 where
seC and more generally,

L s, 2, mp) = {(1 — (X (p) p) (1 — (X~ (p) PA)},
for any character X of ZX =Z,\pZ, If (MF,)(s)= QfXF (*) % (x) | x |3 d* x
for any Fin &, then (MF,) (s)/L (s,%,m,) is entire in s ar‘:d in particular, for

the identity character X,, (MFxo) (s) is in the space Z defined by Igusa ([10]

chapter I, § 5.2). There exists F, in & such that (M (Fo)y) (8) =L (s,%,m,) (see
[7]1, §1.14-1.16) and for X =X,, F, is given by

Oif x¢pt2Z,
Fol@) = E3H z 1 (P pa (p) if xept Z, and x# 0,

i+j=0, (2)

where v, (x) is defined by |x |, =|p |?»® for x5 0. This relation can also be
proved by using Theorem 5.3 of Igusa ([10], chapter I) taking A — {51+ 4%, 55 +1}
wherey, (x) =[x}, i=1,2.

Corresponding to Fin F, let QU =Wx be the Whittaker function on GL, (Q,);
then if

Lay@x9 = [ (G e) e xlrras
o

or geGL;(Q,), we have the functivnal equation

(01N 5 >_ Ld—sxtm)
LQU \_N;EO):X 91 N ——E(S,){,ﬂ',) L(S,X,?Z’,) 2 X
10 )

where ¢ (s, x,7,) is of the form ¢p~* fur suitable constants ¢,v. By using the
inverse M- of the Mellin transform M in Theorem 5.3 (Chapter 1) of Igusa [10],

the W-operator in the space F (QX) can be defined by rewriting the functional
equation above as

(M (WF)y™) (1 —s) (MFy) (5)
L (1 _‘.XS’ X-1, np) = € (Ss X? TCp) L (S:);(a np) ’

(see also §1.3, [7]). The functicn e (s, y, m,) satisfles of course the condition
e(s, 7)) e(l —s,xLm) =1 (see [7]) and therefore the W-operator is of

order 2
7. An adelic version of the Poisson formula

Let F,e S (RY) such that for its Mellin transform (MF,) (s5), the quotient
(MF,) (s)/L (s, 7,) is an entire function of s, where [5] :
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_[@my-t vz r(s+(p+1)/2),p=0in Z
L(s,7) == {n"s"” I'((s+ w2 T'((s — v),2), ve C.

Define WF, by

(M (WF,)) (s) _ (MFy) (1 —s)
L(s,m,,) Ll —s,7,) °

Let Q4 be the ring of Q-adeles and Q%, the group of Q-ideles; dencte elements
x of Q% by (X, -5 X . .,) With x, e R\ {0} and x, e Q,\ {0} and write Q* for
Q\ {0}. Let 7, be irreducible unitary representations of GL,(Q,) for primes p
such that the tensor product = =7, ®,7, gives an irreducible unitary representa-
tion of GL, (Q,) and further

l'lf L(s,n) = z a, |n|”
, %

neZ\ {0}
. . . .. ) AN
is a Dirichlet series converging in a right s-half-plane and for every y eIl ZX,
»

L(s,y,7m) : = L(s,7,) H L(s, x,m,) = ﬂ e(s, )L (1 —s, x, 7).

4

@7)

In particular, the functional equation implies that L (s, m,) is at most of order
?

L3

| s]” for some constant r = r (B) in vertical strips B. On the other hand, MF, (5)
and L (s,7,) are rapidly decreasing at infinity in vertical strips. Let W be the
Whittaker function [7] on GL, (Q,) whose Mellin transfcrm (with respect to Q)
is precisely L (s,m,) for every prime p. Define for x = (xg,. .., X,5. ) = (X, X;)

in QY%, the function F on Q% by

FO=Fa (5 D[ [We((5 ) =Ptz DF )

and the function WF on Q% by

(WF) () = WE, (| %, | ﬂ w (DT o)

From the properties of F, the series

F(x§)
£ eQ”
converges absolutely to a function ¢ (x) and further ¢ (x) is rapidly decreasing

as | X, | tends to co or O (see [S]). Thus for every character y on QX\ Q% and
for Re (s) sufficiently large, '
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10 -1 2s-1 JX
Le((g1 ) 25)= | er@@xfaxx
Q\Qx

= j F() 2t () | x |22 dx,
Q%

is holomorphic in s and admits of a meromorphic continuation to the whole plane;

for x# xo (the identity) it represents an entire function of s. For large enough
Re (s), it is just

(MF,) (5) ﬂ L(s, 2,7,) = (MF.) (s) z X a, | nl;

n740

in vertical strips the first factor is rapidly decreasing at infinity (by Theorem 1)
while the second factor is at most of order |s|* for some @ (in view of the

functional equation and Stirling’s formula). Thus L (<(1) ?), % s) is rapidly

decreasing at infinity in vertical strips.
From the local functional equations (27) and (27), we get

10 7710 '
LWF <<01 ,X“l’I—S\/:LF <<01 9Xas>- (28)

Let us define for xe Q}.

F’(x)=~217?iz f Lp<<é(1),x’,s>|x]1“2sd9

X’ Res=c
0
a'nd F” (x) = 2‘3{1 S f LWF ((é ])9 X,_la 1 —S) ] X ]1—23 ds
‘Sc-'-JRe smgy

where a and —ay are sufficiently large and x’ runs over characters of IT zy.

»
Because of the properties of the integrand mentioned above and the functional
equation (28), we obtain by the usual argument

F' =(x) — F"(x) = Sum of the residues of L ((é? , Xos s)_] x |12

(at the poles encountered while shifting the integration from the far right
to the far left, i.e. at all the poles). '

s (0 00) - 100m0 S alor),

n7#0

the poles arise from the function inside the simple brackets; the residue
can be computed and seen to be of the form ¢, or Clly (Xoo) + €5 (%,,) With

TN T
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comstants ¢, ¢y, ¢y, depending on the nature of z,,. The last relation involving
F'(x) — F"(x) may thus be viewed as the adelic formulation of the Poisson
formula. When no poles are encountered, it reduces to an ‘automorphic’ relation
F'(x) = F"(x).
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