Proc. Indian Acad. Sci. (Math. Sci.), Vol. 90, Number 2, April 1931, pp. 129-149.
© Printed in India.

Poisson formulae of Hecke type

By

S RAGHAVAN and S S RANGACHARI

1. Introduction

In his lectures on "Forms of higher degree", Igusa [10] gave a simple proof of a Poisson formula due to Yamazaki [19] associated with coefficients of Dirichlet series with functional equations involving a single Γ -factor, by introducing an operator of order 2 in a function space, via the Mellin transform. Our object here is to show that this Poisson formula can be generalised a little, so as to bring within its ambit, functional equations of Dirichlet series involving multiple Γ -factors (and, in particular, those associated with Mellin transforms of non-analytic automorphic functions). We also indicate an adelic interpretation of certain Poisson formulae above just to highlight the fact that such a formula in adelic form constitutes an important step in the proof of theorem 5 in § 3 of [7] on a global representation of $(GL_2)_A$.

2. Mellin transforms

Let
$$\mu_{0,1}, \ldots, \mu_{0,a}, \mu_{1,1}, \ldots, \mu_{1,a}, \mu_{2,1}, \ldots, \mu_{2,a}$$

be a sequence of a-tuples of complex numbers such that $\text{Re }(\mu_{k,j})=\lambda_k$ for every j with $1\leqslant j\leqslant a$ and for every $k\geqslant 0$ and further let $0\leqslant \lambda_0<\lambda_1<\lambda_2\ldots\to\infty$. For every $k\geqslant 0$, let $m_k\geqslant 1$ be a fixed natural number.

Following Igusa [10], we define corresponding function spaces $\mathcal F$ and $\mathcal Z$ by the conditions:

(A) \mathcal{F} consists of all complex valued C^{∞} functions F on the space \mathbb{R}_{+}^{\times} of positive real numbers behaving like Schwartz functions at infinity such that with well-determined complex constants $a_{k,j,m}$ the function F has a termwise differentiable asymptotic expansion

$$F(x) \approx \sum_{0 \leq k < \infty} \sum_{1 \leq j \leq a} \sum_{1 \leq m \leq m_k} a_{k,j,m} x^{\mu_{k,j}} (\log x)^{m-1}, \tag{1}$$

as x tends to 0, and

(B) \mathcal{Z} consists of all complex valued functions Z meromorphic on \mathbb{C} with poles at most at the points $-\mu_{k,j}$ $(k \geqslant 0; 1 \leqslant j \leqslant a)$ and having principal part at $-\mu_{k,j}$ of the form.

$$\sum_{1 \leq m \leq m_k} b_{k,j,m} (s + \mu_{k,j})^{-m}$$

and further such that for every polynomial P in s and any vertical strip $B_{\sigma_1,\sigma_2} = \{s = \sigma + ti \in \mathbb{C} : \sigma_1 \leqslant \sigma \leqslant \sigma_2\}$ with arbitrary σ_1,σ_2 , the function P(s) Z(s) is bounded in B_{σ_1,σ_2} with small neighbourhoods of the poles of Z deleted therefrom.

For $k \ge 0$ and any j, m with $1 \le j \le a$ and $1 \le m \le m_k$, let us define

$$\varphi_{k,i,m}(x) = x^{\mu_{k,i}} (\log x)^{m-1} \text{ for } x \in \mathbb{R}_+^{\times};$$

then

$$\varphi_{k,j,m} = o(\varphi_{k+1,l,n})$$
 as x tends to 0,

for every j, l, m and n. Further if we define, for $k \ge 0$,

$$R_{k}(x) = F(x) - \sum_{0 \leqslant i \leqslant k} \sum_{1 \leqslant j \leqslant a} \sum_{1 \leqslant m \leqslant ml} a_{i,j,m} x^{\mu_{l,j}} (\log x)^{m-1}$$
 (2)

then the asymptotic expansion (1) for F in \mathcal{F} simply means that R_k (x) = $O(\varphi_{k+1,p,q})$ for every $k \ge 0$ and any p, q as x tends to 0.

The space \mathscr{F} is non-empty, since it contains the constant function F=0 on \mathbb{R}_+^{\times} . Further it is stable under homothety-invariant differential operators; this property of \mathscr{F} corresponds to \mathscr{Z} being stable under multiplication by polynomials in s.

Theorem 1. There exists a bijective correspondence

 $M: \mathcal{F} \xrightarrow{\sim} \mathcal{Z}$ given by $F \rightarrow MF$ where

$$(MF)(s) = \int_0^\infty F(x) x^s d(\log x), \tag{3}$$

defined for $s = \sigma + ti$ in C with $\sigma = \text{Re}(s) > 0$ has a meromorphic continuation to the whole of C. Conversely, for every Z in \mathcal{Z} , the inverse transform

$$(M^{-1}Z)(x) = \frac{1}{2\pi i} \int_{\sigma-\infty i}^{\sigma+\infty i} Z(s) x^{-s} ds$$
 (4)

gives rise to an element of \mathcal{F} , independently of σ for $\sigma > 0$. Moreover, we have the relation

$$b_{\mathbf{l},j,m} = (-1)^{m-1} (m-1) ! a_{\mathbf{l},j,m},$$
 (5)

for every l, j, m.

The proof of this theorem is exactly the same as in [10] and for the sake of completeness, we shall quickly sketch its proof.

(i)
$$F \in \mathcal{F} \Rightarrow Z = MF \in \mathcal{Z}$$
:

Let $s = \sigma + ti$ with $0 < \sigma_1 \le \sigma \le \sigma_2 < \infty$. It is easy to see that $x^s F(x)$ is dominated by a φ in L^1 (\mathbb{R}_+^{\times} , d (log x)); therefore Z(s) is holomorphic for Re s > 0, in view of its being defined by an absolutely convergent integral and the integrand being holomorphic. It is clear, for a similar reason that $Z_2(s) = \int_1^{\infty} F(x) x^s d(\log x)$ is an entire function of s and further bounded in vertical strips. For every $\rho < \lambda_{k+1}$, $R_k(x) = o(x^{\rho})$ as x tends to 0 and therefore, for every σ_1 with $-\lambda_{k+1} < \sigma_1 \le \sigma$ and $-\sigma_1 \le \rho < \lambda_{k+1}$, the function $x^{\sigma_1} R_k(x)$ is dominated by an element of $L^1((0,1], d(\log x))$. As a result, $Z_1(s) = \int_0^1 R_k(x) x^s d(\log x)$ is holomorphic in s for $\text{Re } (s) > -\lambda_{k+1}$ and bounded in vertical strips. Splitting up the integral in (3) over (0,1] and $[1,\infty)$, it is easy to see from (2) that for Re s > 0,

$$Z(s) = \sum_{0 \leqslant l \leqslant k} \sum_{1 \leqslant j \leqslant a} \sum_{1 \leqslant m \leqslant ml} b_{l,j,m} (s + \mu_{l,j})^{-m} + Z_1(s) + Z_2(s)$$

with $b_{l,i,m}$ satisfying (5). It is now immediate that Z satisfies the first half of condition (B) and also the second half with $P \equiv 1$. For the case of arbitrary P, one has only to invoke the homothety-invariance of \mathcal{F} and it now follows that Z is in \mathcal{Z} .

(ii)
$$Z \in \mathcal{Z} \Rightarrow F = M^{-1}Z \in \mathcal{F}$$
:

For $0 < \sigma_1 < \sigma_2$, let L denote the boundary (covered anticlockwise) of the rectangle in the complex s-plane with vertices at $\sigma_1 \pm t_0 i$, $\sigma_2 \pm t_0 i$ for some $t_0 > 0$. By Cauchy's theorem, $\int_L Z(s) x^{-s} ds = 0$ for any x > 0. As t_0 tends to ∞ , the contribution to this integral from the "horizontal" sides of L tends to 0, in view of the second part of condition (B) for Z. Thus the integral (4) is defined independently of σ and moreover converges absolutely in view of condition

(B). Now, for any $k \ge 0$,

$$x^{k} \frac{d^{k} F(x)}{dx^{k}} = \frac{1}{2\pi i} \int_{\sigma-\infty i}^{\sigma+\infty i} (-1)^{k} s(s+1) \dots (s+k-1) Z(s) x^{-s} ds$$

and this integral converges absolutely by condition (B). Thus F is in C^{∞} (\mathbb{R}_{+}^{\times}) and behaves like a Schwartz function at infinity. We then see that $R_k(x)$ defined by (2) satisfies the condition $R_k(x) = o(x^{\rho})$ for any ρ with $\lambda_k < \rho < \lambda_{k+1}$ and $k \ge 0$. If L_1 is the boundary traversed anticlookwise of the rectangle in the s-plane with vertices at $\sigma \pm t_0 i$, $-\rho \pm t_0 i$ for a large enough $t_0 > 0$, one shows by choosing a proper contour and using condition (B) that

$$F(x) = S + \frac{1}{2\pi i} \int_{-\rho-\infty_i}^{-\rho+\infty_i} Z(s) x^{-s} ds,$$

where S is the sum of the residues of the integrand at the poles $-\mu_{0,1}, \ldots, -\mu_{0,a}, -\mu_{1,1}, \ldots, -\mu_{1,a}, \ldots$, lying inside L_1 . But F(x) - S is precisely $R_k(x)$ and the required o-estimate for $R_k(x)$ follows, in view of (B), by majorising the integral. Now $-s Z(s) = (\mu_{l,p} - (s + \mu_{l,p})) Z(s)$ is in \mathcal{Z} with

$$b'_{l,j,p} = \begin{cases} \mu_{l,j} b_{l,j,p} - b_{l,j,p+1} & 1 \leq p < m_l \\ \mu_{l,j} b_{l,j,p} & p = m_l \end{cases}$$

in place of the earlier $b_{i,j,p}$. Working with -sZ(s) in place of Z(s), we get xF'(x) instead of F(x) and further

$$xF'(x) \approx \sum_{0 \leq \ldots < \infty} \sum_{1 \leq j \leq a} \sum_{1 \leq m \leq m_k} \tilde{a}_{k,j,m} x^{\mu_{k,j}} (\log x)^{m-1}$$

with

$$\tilde{a}_{k,j,m} = (-1)^{m-1} b'_{k,j,m} / (m-1) !$$

$$= \begin{cases} \mu_{k,j} a_{k,j,m} + m a_{k,j,m+1}, & 1 \leq m < m_k \\ \mu_{k,j} a_{k,j,m}, & m = m_k. \end{cases}$$

Thus the asymptotic expansion of F is once termwise differentiable; interaction shows that F is in \mathcal{F} .

Remarks: (i) If the condition $\lambda_k \ge 0$ for every k is replaced by a condition of the form $\lambda_k \ge \lambda$ for every k for some fixed real $\lambda \le 0$, the corresponding \mathcal{Z} -space is obtained from the earlier one by a mere translation of the varible s by λ ; similarly, the corresponding space \mathcal{F} is obtained by multiplying the elements of the original \mathcal{F} -space by x^{λ} .

(ii) One can also consider more general sequences of the form

$$\mu_{0,1},\ldots,\mu_{0,a_0},\mu_{1,1},\ldots,\mu_{1,a_1},\mu_{2,1},\ldots,\mu_{2,a_2},\ldots$$

with Re $(\mu_{k,j}) = \lambda_k$ for every fixed $k \ge 0$ and for $1 \le j \le a_k$. However, arithmetically interesting situations arise when, for example, the sequence of $\mu_{k,j}$'s coincides with the set of poles of a product of Γ -factors, say

$$G(s) = \prod_{1 \leq i \leq a} \Gamma(a_i s + \beta_i)^{m_i}$$
 with $a_i > 0$, Re $\beta_i \geqslant 0$ and

 $a_i\beta_j - a_j\beta_i$ not of the form $ma_j - na_i$ for $m, n \ge 0$ in \mathbb{Z} if $i \ne j$. In such a situation, \mathcal{Z} can be characterised as the space of meromorphic functions \mathbb{Z} on \mathbb{C} such that $\mathbb{Z}(s)/G(s)$ is entire and for every polynomial P in $s, P(s) \mathbb{Z}(s)$ is bounded in vertical strips. In the corresponding space \mathcal{F} , we have for every $\kappa > 0$, an involution $F \mapsto \mathbb{W}F$ defined by

$$\frac{(M(WF))(s)}{G(s)} = \frac{(MF)(\kappa - s)}{G(\kappa - s)}.$$
 (6)

(As we shall see later, an analogue of this operator W exists already in the non-archimedean case as well). We shall be interested in obtaining Poisson formulae involved with functional equations containing multiple Γ -factors.

3. Poisson formula of Hecke type

Let
$$\{\varphi_j ($$

$$\{arphi_j\left(s
ight)=\sum_{n
eq0}\;a_n^{(j)}\mid n\mid^{-s}\;;\;1\leqslant j\leqslant N\}$$
 and

$$\{\psi_{j}^{*}(s) = \sum_{n \neq 0} b_{n}^{(j)} \mid n \mid^{-s} ; 1 \leq j \leq N\}$$

be two sets of N Dirichlet series each converging in some (right) s-halfplane such that if we set, for $1 \le j \le N$ and a fixed A > 0,

$$\xi_{j}(s) = A^{s} G(s) \varphi_{j}(s), \quad \eta_{j}^{*}(s) = A^{s} G(s) \psi_{j}^{*}(s), \tag{7}$$

then we have the functional equations

$$\xi_{j}(\kappa - s) = \sum_{1 \leqslant k \leqslant N} c_{jk} \eta_{k}^{*}(s), \quad 1 \leqslant j \leqslant N$$
(8)

with real c_{jk} . We may assume ξ_1, \ldots, ξ_N to be linearly independent over \mathbb{C} ; then, $(c_{jk})^2$ is the N-rowed identity matrix. We also assume that ξ_k , η_i^* have only finitely many poles in \mathbb{C} .

From (6), (7) and (8), we obtain

$$(MWF)(s) A^{s} \varphi_{k}(s) = \sum_{1 \leq i \leq N} c_{kl}(MF) (\kappa - s) A^{\kappa - s} \psi_{l}^{*}(\kappa - s).$$
 (9)

In view of the absolute convergence of the Dirichlet series $\varphi_i(s)$ in some right half plane, we see that the integral of the left hand side of (9) from $\sigma - \infty i$ to $\sigma + \infty i$ for any fixed sufficiently large σ is simply

$$2\pi i \sum_{n\neq 0} a_n^{(k)} (\mathbf{W}F)(\mid n\mid/A).$$

Thus, for large σ_1 , we have

$$\sum_{n \neq 0} a_n^{(k)} (WF) (|n|/A)$$

$$= \frac{1}{2\pi i} \int_{\kappa - \sigma - \infty i}^{\kappa - \sigma + \infty i} (M(WF)) (\kappa - s) A^{\kappa - s} \varphi_k(\kappa - s) ds$$

$$= \frac{1}{2\pi i} \sum_{1 \leq i \leq N} c_{ki} \int_{\kappa - \sigma - \infty i}^{\kappa - \sigma + \infty i} (MF) (s) A^s \psi_i^*(s) ds$$

$$= \frac{1}{2\pi i} \sum_{1 \leq i \leq N} c_{ki} \int_{\sigma_i + \infty i}^{\sigma_i + \infty i} \frac{(MF)(s)}{G(s)} \eta_i^*(s) ds - S^*$$

where
$$S^* = \sum_{1 \le l \le N} c_{kl} \frac{(MF)(s)}{G(s)} \eta_l^*(s)$$
,

the sum of the residues of the sum inside at all the poles. Using the absolute convergence of the Dirichlet series $\psi_t^*(s)$, we have

$$\sum_{n\neq 0} a_n^{(k)} (WF) (\mid n\mid/A) = \sum_{1\leq i\leq N} c_{ki} \sum_{n\neq 0} b_n^{(i)} F(\mid n\mid/A) - S^*$$

which, on replacing F by WF becomes

$$\sum_{n\neq 0} a_n^{(l_i)} F(|n|/A) = \sum_{1 \leq l \leq N} c_{kl} \sum_{n\neq 0} b_n^{(l)} (WF) (|n|/A) -$$

$$- \sum_{n\neq 0} \operatorname{Res} \left(\frac{(M(WF))(s)}{G(s)} \xi_k (\kappa - s) \right)$$

$$(10)$$

where Σ Res is the sum of the residues at all poles, as before.

For fixed y > 0, let us replace F in (10) by F_y where $F_y(x) = F(xy)$. Then

$$W(F_{y}) = y^{-\kappa} (WF)_{y-1}, \tag{11}$$

where $(WF)_{y^{-1}}(x) = (WF)(xy^{-1})$

for every x > 0. Therefore

$$M\left(\mathbf{W}\left(F_{y}\right)\right)\left(s\right)=y^{-\kappa}M\left(\left(\mathbf{W}F\right)_{y-1}\right)\left(s\right)=y^{s-\kappa}\left(M\left(\mathbf{W}F\right)\right)\left(s\right)$$

and (10) now becomes

$$\sum_{n\neq 0} a_n^{(k)} F(|n| y/A) =$$

$$= y^{-\kappa} \sum_{1 \leq i \leq N} c_{ki} \sum_{n\neq 0} b_n^{(l)} (WF) (|n|/(Ay)) -$$

$$- \sum_{1 \leq i \leq N} \operatorname{Res} \left(\frac{(M(WF))(s)}{G(s)} y^{s-\kappa} \xi_k (\kappa - s) \right)$$

$$= y^{-\kappa} \sum_{1 \leq i \leq N} c_{ki} \sum_{n\neq 0} b_n^{(l)} (WF) (|n|/(Ay)) +$$

$$+ \sum_{1 \leq i \leq N} \operatorname{Res} \left(y^{-s} \frac{(MF)(s)}{G(s)} \xi_k (s) \right). \tag{10}$$

The second term in (10)" is a 'residual function' in the sense of Bochner [3] and (10)" gives rise to a "generalised modular relation",

For the sake of simplicity, we assume that no ξ_k (s) has a pole on the line $\text{Re}(s) = \kappa/2$. Let u_1, \ldots, u_p be the poles of $\xi_k(s)$. Then we may rewrite (10) as

$$\sum_{n\neq 0} a_n^{(k)} F(|n|/A) + \sum_{\text{Re } u_j > \kappa/2} \underset{s=u_j}{\text{Res}} \frac{(M(\mathbf{W}F))(s)}{G(s)} \xi_k(\kappa - s)$$
 (12)

$$=\sum_{1\leqslant l\leqslant N}c_{kl}\sum_{n\neq 0}b_n^{(l)}\left(\mathbf{W}F\right)\left(\mid n\mid/A\right)\right)-\sum_{\mathrm{Re}\,u_j\leqslant\kappa\mid\mathbf{2}}\operatorname*{Res}_{s=u_j}\frac{\left(M\left(\mathbf{W}F\right)\right)\left(s\right)}{G\left(s\right)}\,\xi_k\left(k-s\right).$$

The second term on the left hand side of (12) is the same as

$$-\sum_{\operatorname{Re}\,u_{i}>\kappa|2}\operatorname{Res}_{s=\kappa-u_{j}}\frac{MF(s)}{G(s)}\,\,\xi_{k}(s)=-\sum_{\operatorname{Re}\,u_{i}<\kappa|2}\operatorname{Res}_{s=u_{j}}\frac{(MF)(s)}{G(s)}\,\xi_{k}(s)$$

while the one on its right hand side is equal to

$$-\sum_{1 \leq l \leq N} c_{kl} \sum_{\text{Re } u_j < |\tau|_2} \text{Res}_{s=u_j} \frac{(M(\mathbf{W}F))(s)}{G(s)} \eta_l^* (s)$$

Thus we have a Poisson formula of Hecke type given by the following Theorem 2. For any F whose Mellin transform MF is such that (MF) (s)/G (s) is entire and P(s) MF(s) is bounded in vertical strips for every polynomial P and for $\xi_1(s), \ldots, \xi_N(s), \eta_1^*(s), \ldots, \eta_N^*(s)$ satisfying functional equations (8), we have

$$\sum_{n \neq 0} a_n^{(k)} F(|n|/A) - \sum_{\text{Re } u_j < \kappa/2} \underset{s = u_j}{\text{Res}} \frac{MF(s)}{G(s)} \xi_k(s).$$

$$= \sum_{1 \leqslant l \leqslant N} c_{kl} \left(\sum_{n \neq 0} b_n^{(l)} (\mathbf{W}F) (|n|/A) - \sum_{\text{Re } u_i < \kappa/2} \underset{s = u_j}{\text{Res}} \frac{(M(\mathbf{W}F))(s)}{G(s)} \eta_l^*(s) \right). \tag{13}$$

4. Known cases of Poisson formulae above

Formula (13) generalises some well-known relations of a similar nature due to Hecke, Maass and Yamazaki and may be called a "generalized modular relation".

(1) First let
$$a = 1$$
, $N = 1$, $\mu_{k,1} = k$ for $k \ge 0$, $G(s) = \Gamma(s)$,
$$\xi_1(s) = \xi(s) = \gamma \xi(\kappa - s) = \eta_1^*(s), \quad c_{11} = \gamma, \quad \varphi_1(s) = \varphi(s) = \sum_{n=1}^{\infty} a_n n^{-s},$$

 $A = \lambda/2\pi$; let s = 0, κ be the only poles (and indeed of order 1) of ξ (s). Then

Res
$$\frac{MF(s)}{G(s)} \xi_1(s) = b_{0,1,1} \operatorname{Res}_{s=0} \xi(s)$$
 by Theorem 1
$$= a_{0,1,1} \operatorname{Res}_{s=0} \xi(s) \quad \text{by Theorem 1}$$

$$= F(0) \times (-\gamma \operatorname{Res}_{s=\kappa} A^s \Gamma(s) \varphi(s))$$

$$= -\gamma F(0) A^{\kappa} \Gamma(\kappa) \operatorname{Res}_{s=\kappa} \varphi(s)$$

$$= -CF(0), \text{ say.}$$

Replacing F by WF in the argument above, we obtain

$$\operatorname{Res}_{s=0} \frac{(M(WF))(s)}{G(s)} \eta_1^*(s) = \operatorname{Res}_{s=0} \frac{(M(WF))(s)}{G(s)} \xi(s)$$
$$= -C(WF)(0).$$

Thus we get from (13) the Poisson formula due to Yamazaki [19] in the form derived by Igusa [10]: namely, for every F in \mathcal{F} (with $G(s) = \Gamma(s)$)

$$CF(0) + \sum_{n \geq 1} a_n F(2\pi n/\lambda) = \gamma \left(C(WF)(0) + \sum_{n \geq 1} a_n (WF)(2\pi n/\lambda) \right). \tag{14}$$

(2) Let us take the same situation in (1) above and in particular,

$$\varphi(s) = \sum_{1 \leq n < \infty} \tau(n) n^{-s}$$

where $\tau(n)$ is Ramanujan's function; then $\kappa = 12$, $A = 1/2\pi$, $\xi(s)$ is entire and for every F in the space \mathcal{F} , we have

$$\sum_{1 \leq n < \infty} \tau(n) F(2\pi n) = \sum_{1 \leq n < \infty} \tau(n) (WF) (2\pi n). \tag{15}$$

For $F(x) = \exp(-xy/2\pi)$ with fixed y > 0, we obtain in view of (11) and (15), formula (4) of [4]. On the other hand, if we take $F(x) = \exp(-s\sqrt{x})/\sqrt{x}$ for fixed s > 0, then we obtain formally from (15), formula (7) of [4]. One has to note that in the situation of (1) above, we can define for any F in \mathcal{F} , the function WF also by

$$(\mathbf{W}F)(x) = \int_{0}^{\infty} (xt)^{-\nu/2} J_{\nu}(2\sqrt{xt}) F(t) t^{\nu} dt, \qquad (16)$$

with $v = \kappa - 1$. (See [10]), where J_{ν} is the usual Bessel function of order ν . However, the function $x \mapsto [\exp(-s\sqrt{x})]/\sqrt{x}$ is not in the space $\mathscr F$ above. If we approximate to it by a sequence $\{F_n\}$ from C_o^{∞} (\mathbb{R}_+^{\times}) (and indeed therefore with F_n in $\mathscr F$) and note that $\{MF_n\}$ converges to the (usual) Mellin transform MF

of F while $\{WF_n\}$ converges to WF (defined in the same way as in (16)), the validity of formula (7) of [4] can be deduced from above, in view of the two sides of this formula being absolutely convergent series. Again, for integral $\rho > 0$, formula (5) of [4] can be derived from (15), by taking for F, the function in \mathcal{F} given by

$$F(t) = \begin{cases} \frac{1}{\Gamma(\rho+1)} (1-tx)^{\rho} & \text{for } 0 < t \le x^{-1} \\ 0 & \text{for } t > x^{-1}, \end{cases}$$

with fixed x > 0. On the other hand, for getting the same formula for non-integral $\rho > 0$, a more refined argument as above has to be used; the case $\rho = 0$ also needs a more careful argument.

(3) When $\varphi(s)$ is the Dedekind zeta function associated with an imaginary quadratic field of discriminant d over the field of rational numbers and $A = \sqrt{|d|/2\pi}$ in (1) above, then we get the Poisson formula due to Hecke [8].

(4) The relation in Kubota [11] corresponding to our relation (9) above is, in his own notation,

$$M\Psi_b(s) Z_{a,b}(s) = M\tilde{\Psi}_{-b}(2n-2-s) Z_{-a,-b}(2n-2-s),$$

and proceeding exactly as above, one can derive his Poisson formula

$$\sum_{(m)} c'_{m} \Phi_{b}(m^{1/n}) = \sum_{(m)} c'_{m} \Phi_{b}^{*}(m^{1/n})$$

and also his relation

$$-AM(\Psi_0, 2n-2) + \sum_{(m)} c'_m \Phi_0(m^{1/n})$$

$$= -AM(\tilde{\Psi}_0, 2n-2) + \sum_{(m)} c'_m \Phi_0^*(m^{1/n})$$

(see pages 187-188 in [11]).

(5) Let now a = 2, $\mu_{k,1} = 2k + ir$, $\mu_{k,2} = 2k - ir$ for k = 0, 1, 2, ... and a fixed $r \ge 0$, $m_k = 1$ or 2 according as $r \ne 0$ or r = 0,

$$A = \lambda/\pi$$
, $\varphi_k(s) = \psi_k^*(s) = \sum_{n \neq 0} a_n^{(k)} |n|^{-s} (1 \leq k \leq N)$ with $a_n^{(k)} = 0$

unless $n \equiv b_k \pmod{q}$ for fixed integers $q \geqslant 1$ and

$$b_1, \ldots, b_N, \ \kappa = 1, \ G(s) = \Gamma\left(\frac{s-ir}{2}\right)\Gamma\left(\frac{s+ir}{2}\right)$$

and $\xi_k(s) = \eta_k^*(s) = A^s G(s) \varphi_k(s)$ for $1 \leqslant k \leqslant N$.

Let
$$\varphi_{k}(s) - \begin{cases} \frac{a_{k}}{s-1-ir} + \frac{\beta_{k}}{s-1+ir} & (r \neq 0) \\ \frac{a_{k}}{s-1} + \frac{\beta_{k}}{(s-1)^{2}} & (r = 0) \end{cases}$$

be entire (and of finite genus) for $1 \le k \le N$. Equivalently ([13)], if now C denotes Euler's constant and

$$M_0 = \frac{\sqrt{\lambda}}{4} \Gamma(\frac{1}{2} + ir) (\lambda/\pi)^{\frac{1}{2} + ir},$$

Let
$$\xi_{k}(s) - \begin{cases} \frac{4M_{0}a_{k}}{s - 1 - ir} + \frac{4\overline{M}_{0}\beta_{k}}{s - 1 + ir} - \frac{4M_{0}\rho_{k}}{s + ir} - \frac{4\overline{M}_{0}\sigma_{k}}{s - ir} (r \neq 0) \\ \frac{4M_{0}}{s - 1} (a_{k} + \beta_{k} (\log(\lambda/4\pi) - C)) + \frac{4M_{0}\beta_{k}}{(s - 1)^{2}} - \frac{4M_{0}}{s} \times \\ \times (\rho_{k} + \sigma_{k}) (\log(\lambda/4\pi) - C)) + \frac{4M_{0}\sigma_{k}}{s_{2}} (r = 0) \end{cases}$$

be entire in s (and of finite genus) with

$$\rho_k = \sum_{1 \leqslant l \leqslant N} c_{kl} a_l$$

and
$$\sigma_k = \sum_{\mathbf{1} \leqslant l \leqslant N} c_{kl} \beta_l$$
, for $1 \leqslant k \leqslant N$.

Then for F in the corresponding \mathcal{F} -space, we have as t tends to 0, the asymptotic expansion

$$F(t) \approx \begin{cases} a_{0,1,1}t^{ir} + a_{0,2,1}t^{-ir} + \sum_{\leq k < \infty} (a_{k,1,1,1}t^{2k+ir} + a_{k,2,1}t^{2k-ir}) & (r \neq 0) \\ a_{0,1,1} + a_{0,1,2}\log t + \sum_{1 \leq k < \infty} (a_{k,1,1} + a_{k,1,2}\log t) t^{2k} & (r = 0). \end{cases}$$

By Theorem 1 above,

$$(MF)(s) - \begin{cases} \frac{a_{0,1,1}}{s+ir} + \frac{a_{0,2,1}}{s-ir} & (r \neq 0) \\ & \text{is regular at } s = \pm ir. \\ \frac{a_{0,1,1}}{s} - \frac{a_{0,1,2}}{s^2} & (r = 0). \end{cases}$$
(17)

If $r \neq 0$, the only poles of $\xi_k(s)$ to the left of the line $\operatorname{Re} s = \frac{1}{2}$ are at $s = \pm ir$ and of order 1. Then

$$-\operatorname{Res}_{s=ir} \frac{(MF)(s)}{G(s)} \xi_{k}(s) = -\frac{(MF)(s)}{\Gamma\left(\frac{s+ir}{2}\right) \Gamma\left(\frac{s-ir}{2}\right)} \left| \times \operatorname{Res}_{s=ir} \xi_{k}(s) \right|$$
$$= 2\bar{M}_{0} a_{0,2,1}(F) \sigma_{k} / \Gamma(ir),$$

writing $a_{0,j,m}$ (F) instead of $a_{j,j,m}$ to emphasise the dependence on F. Similarly we have

$$-\operatorname{Res}_{\mathfrak{s}=-\mathfrak{s}_{r}}\frac{(MF)(s)}{G(s)}\,\xi_{k}(s)=2M_{0}a_{0,1,1}(F)\,\rho_{k}/\Gamma(-ir).$$

In order to find

$$-\operatorname{Res}_{s=\pm ir}\frac{(M(\mathbf{W}F))(s)}{G(s)}\eta_{l}^{*}(s),$$

we have only to work with WF instead of F in the arguments above.

If r = 0, the only pole of $\xi_k(s)$ to the left of the line Re s = 1 is at s = 0 and indeed it is of order 2. Using (17) and the expansion $1/\Gamma^2(s/2) = (s^2/4)(1 + Cs + \ldots)$ at s = 0, we obtain

$$\operatorname{Res}_{s=0}^{\underline{(MF)(s)}} \xi_{k}(s) = a_{0,1,1}(F) M_{0} \sigma_{k} + a_{0,1,2}(F) M_{0}(\rho_{k} + \sigma_{k}(\log (\lambda/4\pi) - 2C)).$$

The residue of $(M(WF))(s) \xi_k(s)/\Gamma^2(s/2)$ at s=0 is obtained by arguing with WF in lieu of F above. Thus, from (13), we have, for any F in the space \mathscr{F} , the Poisson formula

$$\sum_{n\neq 0} a_{n}^{(k)} F(|n|/A) + \\
\begin{cases}
2M_{0}\rho_{k}a_{0,1,1}(F)/\Gamma(-ir) + 2\bar{M}_{0}\sigma_{k}a_{0,2,1}(F)/\Gamma(ir) \\
-M_{0}\sigma_{k}a_{0,1,1}(F) - M_{0}(\rho_{k} + \sigma_{k}(\log(\lambda/4\pi) - 2C))a_{0,1,2}(F)
\end{cases} (18)$$

$$= \sum_{1\leq i\leq N} c_{ki} \left[\sum_{n\neq 0} a_{n}^{(i)}(WF)(|n|/A) + \begin{cases}
2M_{0}\rho_{i}a_{0,1,1}(WF)/\Gamma(-ir) + 2\bar{M}_{0}\sigma_{i}a_{0,2,1}(WF)/\Gamma(ir) \\
-M_{0}\sigma_{i}a_{0,1,1}(WF) - M_{0}(\rho_{i} + \sigma_{i}(\log(\lambda/4\pi) - 2C))a_{0,1,2}(WF)
\end{cases} \right]$$

according as $r \neq 0$ or r = 0. The roles of F(0) and (WF)(0) in (14) are played now by the coefficients $a_{0,j,m}(F)$ and $a_{0,j,m}(WF)$ in their asymptotic expansions. If we take $F(t) = 4 \sqrt{y} K_{ir}(2ty)$ for t > 0 with a fixed y > 0, then

$$a_{0,1,1}(F) = 2y^{\frac{1}{2}+ir}\Gamma(-ir), \ a_{0,2,1}(F) = 2y^{\frac{1}{2}-ir}\Gamma(ir), \qquad (r \neq 0)$$

$$a_{0,1,1}(F) = -4\sqrt{y}(C + \log y), \ a_{0,1,2}(F) = -4\sqrt{y},$$
 $(r = 0)$

$$MF(s) = y^{\frac{1}{2}-s} \Gamma\left(\frac{s+ir}{2}\right) \Gamma\left(\frac{s-ir}{2}\right).$$

Similar formulae for WF are valid; we have only to replace y by 1/y and F by WF in the formulae above. With this specialisation, formula (18) is the same as the "automorphic" relation

$$F_{k}^{*}(1/y) = \sum_{1 \leq i \leq N} c_{kl} F_{i}^{*}(y)$$

of Maass ([13], p. 152).

(6) If $k = \mathbf{Q}(\sqrt{d})$ is a real quadratic field of discriminant d over the field \mathbf{Q} of rational numbers, then the Dedekind zeta function $\zeta_k(s)$ satisfies the functional equation $(\pi/\sqrt{d})^{-s} \Gamma^2(s/2) \zeta_k(s) = \xi(s) = \xi(1-s)$. The function $\zeta_k(s)$ has a pole only at s = 1 and the residue at this (simple) pole is $2h (\log \epsilon)/\sqrt{d}$ where h is the class number of K and ϵ is the fundamental unit in K. Moreover, $\zeta_k(0) = 0$ and $\zeta_k'(0) = -h(\log \epsilon)/2$. If we take

$$\varphi(s) = (\pi/\sqrt{d})^{-2s} \zeta_k(2s) = \sum_{n \geqslant 1} a(n) \lambda_n^{-s}$$

with $\lambda_n = \pi^2 n^2/d$, then $\varphi(s) \Gamma^2(s) = \varphi(1/2 - s) \Gamma^2(1/2 - s)$. From Theorem 1 of Berndt [2], we get (on noting that his $E_2(y)$ is just $2K_0(2\sqrt{y})$) the following Poisson formula,

$$2\sum_{1 \leq n < \infty} a(n) K_0(2\pi ny/d) = 2y^{-1} \sum_{1 \leq n < \infty} a(n) K_0(2\pi n/(y\sqrt{d})) + P(y^2)$$

where K_0 is the usual Bessel function. Here $P(y^2) = \text{sum of the residues of } y^{-2s} \Gamma^2(s) \varphi(s)$ is seen to be equal to $h(\log \epsilon)/y + 2 \zeta_k'(0) = h(\log \epsilon) (y^{-1} - 1)$. Now this formula reduces to a special case of the Poisson formula of Maass mentioned in (5) above.

5. A Poisson formula associated with a generalised Γ -function

In this section, we derive a Poisson formula for a situation involving Dirichlet series with functional equations containing a generalised Γ -function $\Gamma(s; \alpha, \beta)$ introduced by Maass ([14], [15]). This function $\Gamma(s; \alpha; \beta)$ is not, in general, a product of usual Γ -functions although, however, $\Gamma(s; \alpha, \beta)/(\Gamma(s) \Gamma(s+1-\alpha-\beta))$ is an entire function of s (with finite genus). The question is one of defining correctly the W-operator geared to the Poisson formula in this case; one has been guided here by the definition of a "Hankel transform" through the two-component Mellin transform for L^2 -functions on $R \setminus \{0\}$ defined in ([16], Theorem 10) (see also [17]).

First we recall the definition of the Whittaker functions $W_{i,m}(y)$ for $l, m \in \mathbb{C}$ and y > 0 as the "unique" solution W(y) of the differential equation

$$4y^2\frac{d^2W}{dy^2} + (1 - 4m^2 + 4ly - y^2)W(y) = 0,$$

with the asymptotic behaviour

$$W(y) \sim \exp(-y/2) y^{i} \left\{ 1 + \sum_{1 \leq n < \infty} \frac{1}{y^{n} n!} \prod_{r=1}^{n} (m^{2} - (l + \frac{1}{2} - r)^{2}) \right\}$$

s y tends to ∞ . Let

$$W(y; \alpha, \beta) = y^{-(\alpha+\beta)/2} W_{(\alpha-\beta)/2, (\alpha+\beta-1)/2}(2y),$$

for y > 0 and

$$\Gamma(s; a, \beta) = \int_{0}^{\infty} W(y; a, \beta) y^{s-1} dy,$$

for Re $s > K_0 = \max$ (0, | Re $(a + \beta) | -1$). Then $\Gamma(s; a, \beta)$ is regular for Re $s > K_0$, noting that $W(y; a, \beta) = O(y^{-K})$ for $K > K_0$ as y tends to 0 and further it has a meromorphic continuation to the entire s-plane satisfying the condition

$$\Gamma(s; a, \beta) = 2^{(\alpha-\beta)/2} \frac{\Gamma(s) \Gamma(s+1-a-\beta)}{\Gamma(s+1-a)} F(\beta, 1-a, s+1-a; \frac{1}{2})$$

where
$$F(a, b, c; z) = 1 + \sum_{1 \le n < \infty} \frac{a(a+1)...(a+n-1)b(b+1)...(b+n-1)}{c(c+1)...(c+n-1).1.2...n} z^n$$

is the hypergeometric function. It is also known that for every polynomial $P(s) \Gamma(s; a, \beta)$ is bounded in vertical strips in the s-plane. If we set

$$M(s; a, \beta) = \begin{pmatrix} \Gamma(s; a, \beta) \ \Gamma(s; \beta, a) \\ \Gamma(s+1; a, \beta) - \Gamma(s+1; \beta, a) \end{pmatrix}$$

then we know from Maass [15] that its determinant D(s) is $-2\Gamma(s) \times \Gamma(s+1-a-\beta)$; further, the entries of the inverse matrix are entire functions of s. Let us write q for $a+\beta$ in the sequel and assume that $q \neq 1$.

Before we go on to the Poisson formula, let us introduce the Dirichlet series whose functional equations involve the function $\Gamma(s; a, \beta)$.

Let
$$\varphi(s) = \sum_{1 \leq n < \infty} a_n n^{-s}$$
 and $\psi(s) = \sum_{-\infty < n < 0} a_n |n|^{-s}$,

be two Dirichlet series converging absolutely in some s-half plane and let, for some $\lambda > 0$,

$$\xi(s) = (\lambda/2\pi)^{s} \left(\Gamma(s; a, \beta) \varphi(s) + \Gamma(s; \beta, a) \psi(s)\right),$$

$$\eta(s) + \lambda \left((a - \beta)/4\pi\right) \xi(s) = (\lambda/2\pi)^{s+1} \left(\Gamma(s + 1; a, \beta) \varphi(s) - \Gamma(s + 1; \beta, a) \psi(s)\right)$$
(19)

satisfy the functional equations

$$\xi(q-s) = \gamma \xi(s), \, \eta(q-s) = -\gamma \, \eta(s), \tag{20}$$

with fixed $\gamma = \pm 1$. Further, let us assume that

$$\xi$$
 (s), η_1 (s) = η (s) + λ ((a - β)/4 π) ξ (s)

have poles at most at s=0,1,q-1,q with principal parts as given by the conditions:

$$\xi(s) - \frac{a_0}{s(s+1-q)} - \frac{\gamma a_0}{(q-s)(1-s)} + \frac{b_0}{s} + \frac{b_0}{q-s}$$

is entire, and

$$\eta_1(s) - \lambda \frac{a - \beta}{2\pi} \left(\frac{b_0}{s - q} + \gamma \frac{a_0}{(s - q)(s - 1)} \right) \tag{21}$$

is entire with suitable constants a_0, b_0 . The relations (19) can be inverted to read

$$\varphi(s) = -\frac{\Gamma(s+1; \beta, a)}{D(s)} (2\pi/\lambda)^{s} \, \xi(s) - \frac{\Gamma(s; \beta, a)}{D(s)} (2\pi/\lambda)^{s+1} \, \eta_{1}(s)$$

$$\psi(s) = -\frac{\Gamma(s+1; a, \beta)}{D(s)} (2\pi/\lambda)^{s} \, \xi(s) + \frac{\Gamma(s; a, \beta)}{D(s)} (2\pi/\lambda)^{s+1} \, \eta_{1}(s). \tag{19}$$

The only poles of φ and ψ are at s=1, q. Now functional equations (20) go over into

$$(\lambda/2\pi)^{s} M(s; a, \beta) {\varphi(s) \choose \psi(s)} = (\lambda/2\pi)^{q-s} {1 \choose a-\beta-1} M(q-s; a, \beta)$$
$${\varphi(q-s) \choose \psi(q-s)}. \tag{20}$$

From (19)' and (21), we obtain

$$\varphi(0) = \frac{1-q}{2} w(1; \beta, a) \left(\frac{a_0}{1-q} - b_0 \right) + \frac{\pi}{\lambda} w(0; \beta, a) \eta_1(0),$$

$$\varphi(q-1) = -\left(\frac{2\pi}{\lambda}\right)^{a-1} w(q; \beta, a) \frac{a_0}{2} + \frac{1}{2} \left(\frac{2\pi}{\lambda}\right)^a w(q-1; \beta, a) \eta_1(q-1),$$

$$\psi(0) = \frac{1-q}{2} w(1; a, \beta) \left(\frac{a_0}{1-q} - b_0\right) - \frac{\pi}{\lambda} w(0; a, \beta) \eta_1(0) \times$$

$$\psi(q-1) = -\left(\frac{2\pi}{\lambda}\right)^{a-1} w(q; a, \beta) \frac{a_0}{2} - \frac{1}{2} \left(\frac{2\pi}{\lambda}\right)^a w(q-1; a, \beta)$$

$$\times \eta_1(q-1) \tag{22}$$

where $w(s; a, \beta) = -2 \Gamma(s; a, \beta)/D(s)$ and $w(s; \beta, a)$ is defined similarly.

Let us now consider the space \mathfrak{F} of C^{∞} functions F on \mathbb{R}_{+}^{\times} which behave like Schwartz functions at infinity and which have the termwise differentiable asymptotic expansion

$$F(x) \approx \sum_{0 \leq n < \infty} a_n(F) x^n + x^{1-q} \sum_{0 \leq n < \infty} \beta_n(F) x^n,$$

as x tends to 0. From Theorem 1, we, know that $MF(s)/(\Gamma(s)\Gamma(s+1-q))$ is entire and further, for every polynomial P in s, P(s) MF(s) is bounded in vertical strips. We assume that 0 < Re q < 1 in the sequel.

Let F_1, F_2 in \mathfrak{F} above satisfy the conditions:

(i) for every $\epsilon > 0$, $MF_i(s) = O$ (exp $(-\epsilon \mid t \mid)$) as $s = \sigma + ti$ tends to infinity in vertical strips B_{α_1, α_2} , for j = 1, 2, and (23)

(ii) $(MF_1 \ (s) \ MF_2 \ (s)) \ M \ (s; a, \beta)^{-1} = (G_1 \ (s) \ G_2 \ (s))$ with entire G_1, G_2 . For such a pair F_1, F_2 , we define WF_1, WF_2 through the functional equation

 $((M(WF_1))(s)M((WF_2))(s))M(s; a, \beta)^{-1}$

$$= (G_1(q-s) G_2(q-s) \begin{pmatrix} 1 & 0 \\ a - & \beta - 1 \end{pmatrix}). \tag{24}$$

From (23) and (24), it is clear that the left hand side of (24) is entire. Further for every polynomial P in s, P(s) $(M(WF_i))$ (s) is bounded in vertical strips, for = 1, 2 (condition (i) in (23) has been imposed in order to ensure this and if perhaps

$$M(q-s;a,\beta)^{-1}\begin{pmatrix}1&0\\a-\beta&-1\end{pmatrix}M(s;a,\beta)$$

consists of functions bounded at infinity in vertical strips, then condition (i) can be waived). Thus, as x tends to 0, WF_j has the termwise differentiable asymptotic expansion

$$(\mathbf{W}F_i)(x) \approx \sum_{0 \leq n < \infty} a_n (WF_i) x^n + x^{1-q} \sum_{0 \leq n < \infty} \beta_n (WF_i) x^n.$$

Replacing s by q - s in (20)' and then multiplying out relations (20)' and (24) we obtain

$$\lambda/(2\pi)^{q-s} ((M(\mathbf{W}F_1)) (q-s) \varphi (q-s) + (M(\mathbf{W}F_2)) (q-s) \psi (q-s))$$

$$= \gamma (\lambda/2\pi)^s (MF_1(s) \varphi (s) + MF_2(s) \psi (s)).$$
(25)

In order to get the Poisson formula, we proceed as in the proof of Theorem 2 In view of the absolute convergence of φ , ψ for sufficiently large Re s, we see that the integral of the right hand side of (25) from $\sigma - \infty i$ to $\sigma + \infty i$ for σ large enough, is simply

$$2\pi i \gamma \left(\sum_{n>0} a_n F_1 \left(2\pi n/\lambda \right) \right) + \sum_{n<0} a_n F_2 \left(2\pi \mid n \mid /\lambda \right),$$

which, by (25), is therefore equal to

$$\int_{\sigma-\infty i}^{\sigma+\infty i} (\lambda/2\pi)^{q-s} ((M(WF_1)) (q-s) \varphi (q-s) + (M(WF_2)) (q-s) \psi (q-s)) ds$$

$$= \int_{q-\sigma-\infty i}^{q-\sigma+\infty i} (\lambda/2\pi)^s [(M(WF_1)) (s) \varphi (s) + (M(WF_2) (s) \psi (s))] ds$$

$$= \int_{q-\sigma-\infty i}^{\sigma+\infty i} (\lambda/2\pi)^s [(M(WF_1)) (s) \varphi (s) + (M(WF_2) (s) \psi (s))] ds - 2\pi i S^*,$$

for σ_1 large enough, with S denoting the sum of the residues of the integrand at all the poles encountered when the line of integration is shifted from

Re $(s) = q - \sigma$ to Re $(s) = \sigma_1$ far to the right. Because of the absolute convergence of the Dirichlet series $\varphi(s)$, $\psi(s)$ again, we obtain the relation

$$\left(\sum_{n>0} a_n F_1 \left(2\pi n/\lambda\right) + \sum_{n<0} a_n F_2 \left(2\pi \mid n \mid /\lambda\right)\right) = \sum_{n>0} a_n \left(WF_1\right) \left(2\pi n/\lambda\right) + \sum_{n<0} a_n \left(WF_2\right) \left(2\pi \mid n \mid /\lambda\right) - S^*.$$

This can be rewritten as in the proof of Theorem 2 as

$$\sum_{n\geq 0} a_n F_1(2\pi n/\lambda) + \sum_{n<0} a_n F_2(2\pi \mid n \mid /\lambda) - \sum_{\text{Re } u_j < q/2} \text{Res } ((\lambda/2\pi)^s MF_1(s) \varphi(s))$$

$$+ MF_2(s) \varphi(s))$$

$$= \gamma \sum_{n\geq 0} a_n (WF_1) (2\pi n/\lambda) + \gamma \sum_{n<0} a_n (WF_2) (2\pi \mid n \mid /\lambda) - \sum_{\text{Re} u_j < q/2} \text{Res } ((\lambda/2\pi)^s \times ((M(WF_1))(s) \varphi(s) + (M(WF_2))(s) \psi(s)),$$
(26)

where the third summations on both sides are over the residues at all the poles u_i satisfying the condition stated. In view of our assumption that 0 < Re q < 1, s = 0, q - 1 are the only poles involved in these summations. The residue of $(\lambda/2\pi)^s$ $(MF_1(s)\varphi(s) + MF_2(s)\psi(s))$ at 0 is seen to be equal to

((1 - q)/2)
$$(a_0/(1 - q) - b_0)$$
 $(a_0(F_1) w (1, \beta, a) + a_0(F_2) w (1, a, \beta)) - (\pi/\lambda) \{ w (0, \beta, a) a_0(F_1) - w (0, a, \beta) a_0(F_2) \} \eta_1(0),$

in view of (22). The expression inside the curly brackets is 0, since it is essentially the residue at s=0 of the right hand side of (25) while the left hand side of (25) is regular at s=0. Similarly, the residue at q-1 of

$$(\lambda/2\pi)^{s} (MF_{1}(s) \varphi(s) + MF_{2}(s)\psi(s))$$

is seen to be just

$$-a_0(\beta_0(F_1)w(q;\beta,a)+\beta_0(F_2)w(q;\alpha,\beta))/2.$$

The residues involved in the third summation on the right hand side of (25) are computed just as above, replacing F_i by WF_i everywhere. Thus formula (26) leads to

Theorem 3. For C^{∞} functions F_1 , F_2 on \mathbb{R}_+^{\times} behaving like Schwartz functions at infinity and satisfying (23) and Dirichlet series $\varphi(s)$, $\psi(s)$ for which the functional equations (20) hold, we have, for $0 < \mathbb{R}e$ q < 1, the Poisson formula

$$\sum_{n>0} a_n F_1 (2\pi n/\lambda) + \sum_{n<0} a_n F_2 (2\pi \mid n \mid /\lambda) - \frac{1}{2} a_0 (a_0 (F_1) w (1; \beta, a) + a_0 (F_2) w (1; a, \beta) - \beta_0 (F_1) w (q; \beta, a) - \beta_0 (F_2) w (q; a, \beta)) - b_0 (q-1) (a_0 (F_1) w (1, \beta, a) + a_0 (F_2) w (1; a, \beta, b))$$

$$= \gamma \left[\sum_{n>0} a_n (WF_1) (2\pi n/\lambda) + \sum_{n<\infty} a_n (WF_2) (2\pi |n|/\lambda) - \frac{1}{2} a_0 (a_0 (WF_1) w (1; \beta, a) + a_0 (WF_2) w (1; a, \beta) - \beta_0 (WF_1) w (q; \beta, a) - \beta_0 (WF_2) w (q; a, \beta) - \frac{1}{2} b_0 (q-1) (a_0 (WF_1) w (q; \beta, a) + a_0 (WF_2) w (1; a, \beta)) \right],$$

where $a_0(F_i)$, $\beta_0(F_i)$, etc., are coefficients in the asymptotic expansions at 0.

Note. The values of $w(0; \alpha, \beta)$, etc., are given explicitly as follows:

$$w(0; a, \beta) = 2^{a/2}/\Gamma(1 - a), \ w(1; a, \beta) = \Gamma(1; a, \beta)/\Gamma(2 - q),$$

$$w(0; \beta, a) = 2^{a/2}/\Gamma(1 - \beta), \ w(1; \beta, a) = \Gamma(1; \beta, a)/\Gamma(2 - q),$$

$$w(q - 1; a, \beta) = 2^{1-a/2}/\Gamma(\beta), \ w(q; a, \beta) = \Gamma(q; a, \beta)/\Gamma(q),$$

$$w(q - 1; \beta, a) = 2^{1-a/2}/\Gamma(a), \ w(q; \beta, a) = \Gamma(q; \beta, a)/\Gamma(q).$$

Let now $F_1(x) = W(xy; a, \beta)$, $F_2(x) = W(xy; \beta, a)$ for fixed y > 0. Then by (11), $(WF_1)(x) = W(xy^{-1}; a, \beta)y^{-a}$, $(WF_2)(x) = W(xy^{-1}; \beta, a)y^{-a}$. Further $a_0(F_1)\Gamma(1-a) = a_0(F_2)\Gamma(1-\beta) = 2^{a/2}\Gamma(1-q)$, $\beta_0(F_1)\Gamma(\beta) = \beta_0(F_2)\Gamma(a) = 2^{1-a/2}y^{1-a}\Gamma(q-1)$, $a_0(WF_1)\Gamma(1-a) = a_0(WF_2)\Gamma(1-\beta) = 2^{a/2}y^{-a}\Gamma(1-q)$, $\beta_0(WF_1)\Gamma(\beta) = \beta_0(WF_2)\Gamma(a) = 2^{1-a/2}y^{a-1} \cdot y^{-a}\Gamma(q-1)$, $\Gamma(a)\Gamma(q;\beta,a) + \Gamma(\beta)\Gamma(q;a,\beta)$ $= 2^{a/2}\Gamma(q)\{B_{1/2}(\beta,a) + B_{1/2}(a,\beta)\} = 2^{a/2}\Gamma(q)B_1(a,\beta)$ $= 2^{a/2}\Gamma(a)\Gamma(\beta)$ where $B_x(a,\beta) = \int_0^x t^{a-1}(1-t)^{\beta-1}dt$, and $\Gamma(1-\beta)\Gamma(1;\beta,a) + \Gamma(1-a)\Gamma(1;a,\beta) = 2^{1-a/2}\Gamma(1-a)\Gamma(1-\beta)$

(See [1]). This gives us in particular, the first of the two formulae (6) of ([15], p. 230) with $0 < \text{Re}(\alpha + \beta) < 1$. It seems likely from [16], that there are quite a few of pairs F_1 , F_2 which satisfy the conditions of Theorem 3 and for which therefore a Poisson formula holds.

6. A p-adic analogue of the W-operator

Let $\mathscr{F} = \mathscr{F}(\mathbf{Q}_p^{\times})$ be now the space of locally constant complex-valued functions F on $\mathbf{Q}_p^{\times} = \mathbf{Q}_p \setminus \{0\}$ with F(x) = 0 for all x with $|x|_p$ sufficiently large and $F(x) = a\mu_1(x) |x|_p^{\frac{1}{2}} + b\mu_2(x) |x|_p^{\frac{1}{2}}$ for all x with $|x|_p$ sufficiently small, where μ_1, μ_2 are quasicharacters of \mathbf{Q}_p^{\times} , $|x|_p$ is a 'normalised' valuation of \mathbf{Q}_p and a, b are complex constants. Such spaces $\mathscr F$ occur as "Kirillov models" $\mathscr K(\pi)$ for irreducible admissible representations π_p of $GL_2(\mathbf{Q}_p)$; associated with π_p , we

have the L-function $L(s, \pi_p) = \{(1 - \mu_1(p) p^{-(s-\frac{1}{2})}) (1 - \mu_2(p) p^{-(s-\frac{1}{2})})\}^{-1}$ where $s \in \mathbb{C}$ and more generally,

$$L(s,\chi,\pi_p) = \{ (1 - (\mu_1 \chi^{-1})(p) p^{\frac{1}{2}-s}) (1 - (\mu_2 \chi^{-1})(p) p^{\frac{1}{2}-s}) \}^{-1},$$

for any character χ of $\mathbb{Z}_p^{\times} = \mathbb{Z}_p \setminus p\mathbb{Z}_p$. If $(MF_{\chi})(s) = \int_{\mathbb{Q}_p^{\times}} F(x) \chi(x) |x|_p^s d^{\times} x$

for any F in \mathscr{F} , then $(MF_{\chi})(s)/L(s,\chi,\pi_p)$ is entire in s and in particular, for the identity character χ_0 , $(MF_{\chi_0})(s)$ is in the space \mathscr{Z} defined by Igusa ([10] chapter I, § 5.2). There exists F_0 in \mathscr{F} such that $(M(F_0)_{\chi})(s) = L(s,\chi,\pi_p)$ (see [7], § 1.14-1.16) and for $\chi = \chi_0$, F_0 is given by

$$F_{0}(x) = \begin{cases} 0 \text{ if } x \notin p^{-1} \mathbb{Z}_{p} \\ |x|_{p}^{\frac{1}{2}} \sum_{i+j=v_{p}(x)} \mu_{1}(p^{i}) \mu_{2}(p^{j}) \text{ if } x \in p^{-1} \mathbb{Z}_{p} \text{ and } x \neq 0, \end{cases}$$

where $v_p(x)$ is defined by $|x|_p = |p|_p^{\nu_p(x)}$ for $x \neq 0$. This relation can also be proved by using Theorem 5.3 of Igusa ([10], chapter I) taking $\Lambda = \{s_1 + \frac{1}{2}, s_2 + \frac{1}{2}\}$ where $\mu_i(x) = |x|_p^{s_i}$, i = 1, 2.

Corresponding to F in \mathfrak{F} , let $\mathfrak{W} = \mathfrak{W}_F$ be the Whittaker function on $GL_2(\mathbf{Q}_p)$; then if

$$L_{\mathrm{QW}}\left(g,\chi,s\right) = \int\limits_{\mathbf{Q}_{p}^{\times}} \mathrm{QW}\left(\begin{pmatrix} x \ 0 \\ 0 \ 1 \end{pmatrix} g\right) \chi^{-1}\left(x\right) \mid x \mid_{p}^{2s-1} d^{\times}x,$$

or $g \in GL_2(\mathbf{Q}_p)$, we have the functional equation

$$L_{\text{QW}}\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \chi^{-1}, 1 - s\right) = \epsilon \left(s, \chi, \pi_{p}\right) \frac{L\left(1 - s, \chi^{-1}, \pi_{p}\right)}{L\left(s, \chi, \pi_{p}\right)} \times L_{\text{QW}}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \chi, s\right)$$

$$(27)$$

where $\epsilon(s, \chi, \pi_p)$ is of the form $cp^{-\nu s}$ for suitable constants c, ν . By using the inverse M^{-1} of the Mellin transform M in Theorem 5.3 (Chapter I) of Igusa [10], the W-operator in the space $\mathfrak{F}(\mathbf{Q}_p^{\times})$ can be defined by rewriting the functional equation above as

$$\frac{(M(\mathbf{W}F)\chi^{-1}) (1-s)}{L(1-s,\chi^{-1},\pi_p)} = \epsilon(s,\chi,\pi_p) \frac{(MF_\chi)(s)}{L(s,\chi,\pi_p)},$$

(see also § 1.3, [7]). The function $\epsilon(s, \chi, \pi_p)$ satisfies of course the condition $\epsilon(s, \chi, \pi_p)$ $\epsilon(1 - s, \chi^{-1}, \pi_p) = 1$ (see [7]) and therefore the W-operator is of order 2

7. An adelic version of the Poisson formula

Let $F_{\infty} \in \mathfrak{F}$ (\mathbb{R}_{+}^{\times}) such that for its Mellin transform (MF_{∞}) (s), the quotient (MF_{∞}) (s)/ $L(s,\pi_{\infty})$ is an entire function of s, where [5]

$$L(s,\pi_{\infty}) = \begin{cases} (2\pi)^{-s-(1+1)/2} \ \Gamma(s+(p+1)/2), p \geqslant 0 \text{ in } \mathbb{Z} \\ \pi^{-s-\nu} \ \Gamma((s+\nu)/2) \ \Gamma((s-\nu)/2), \nu \in \mathbb{C}. \end{cases}$$

Define WF_{∞} by

$$\frac{(M(\mathbf{W}F_{\infty}))(s)}{L(s,\pi_{\infty})} = \frac{(MF_{\infty})(1-s)}{L(1-s,\pi_{\infty})}.$$

Let \mathbf{Q}_A be the ring of \mathbf{Q} -adeles and \mathbf{Q}_A^{\times} , the group of \mathbf{Q} -ideles; denote elements x of \mathbf{Q}_A^{\times} by $(x_{\infty}, \ldots, x_p, \ldots)$ with $x_{\infty} \in \mathbf{R} \setminus \{0\}$ and $x_p \in \mathbf{Q}_p \setminus \{0\}$ and write \mathbf{Q}^{\times} for $\mathbf{Q} \setminus \{0\}$. Let π_p be irreducible unitary representations of $GL_2(\mathbf{Q}_p)$ for primes p such that the tensor product $\pi = \pi_{\infty} \otimes_p \pi_p$ gives an irreducible unitary representation of $GL_2(\mathbf{Q}_A)$ and further

$$\prod_{p} L(s, \pi_p) = \sum_{n \in \mathbb{Z} \setminus \{0\}} a_n |n|^{-s}$$

is a Dirichlet series converging in a right s-half-plane and for every $\chi \in \prod_{p} \mathbf{Z}_{p}^{\times}$,

$$L(s,\chi,\pi) := L(s,\pi_{\infty}) \prod_{p} L(s,\chi,\pi_{p}) = \prod_{p} \epsilon(s,\chi,\pi_{p}) L(1-s,\chi^{-1},\pi).$$

$$(27)$$

In particular, the functional equation implies that $\prod_{p} L(s, \pi_p)$ is at most of order

 $|s|^r$ for some constant r = r(B) in vertical strips B. On the other hand, $MF_{\infty}(s)$ and $L(s, \pi_{\infty})$ are rapidly decreasing at infinity in vertical strips. Let W_p^0 be the Whittaker function [7] on $GL_2(\mathbf{Q}_p)$ whose Mellin transform (with respect to \mathbf{Q}_p^*) is precisely $L(s, \pi_p)$ for every prime p. Define for $x = (x_{\infty}, \ldots, x_p, \ldots) = (x_{\infty}, x_l)$ in \mathbf{Q}_A^* , the function F on \mathbf{Q}_A^* by

$$F(x) = F_{\infty} (\mid x_{\infty} \mid) \prod_{p} \mathbf{W}_{p}^{0} \begin{pmatrix} x_{p} & 0 \\ 0 & 1 \end{pmatrix} = F_{\infty} (\mid x_{\infty} \mid) F_{f} (x_{f})$$

and the function WF on \mathbf{Q}_{A}^{\times} by

$$(\mathbf{W}F)(x) = \mathbf{W}F_{\infty}(|x_{\infty}|) \prod_{p} W_{p}^{0} \begin{pmatrix} x_{p} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}).$$

From the properties of F, the series

$$\sum_{\boldsymbol{\xi} \in \mathbf{Q}^{\times}} F(x\boldsymbol{\xi})$$

converges absolutely to a function $\varphi_F(x)$ and further $\varphi_F(x)$ is rapidly decreasing as $|x_{\infty}|$ tends to ∞ or 0 (see [5]). Thus for every character χ on $\mathbb{Q}^{\times} \setminus \mathbb{Q}_A^{\times}$ and for Re(s) sufficiently large,

$$L_{F}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \chi, s \end{pmatrix} = \int_{\mathbf{Q}^{\times} \setminus \mathbf{Q}_{A}^{\times}} \varphi_{F}(x) \chi^{-1}(x) |x|^{2s-1} d^{\times} x$$
$$= \int_{\mathbf{Q}_{A}^{\times}} F(x) \chi^{-1}(x) |x|^{2s-1} d^{\times} x,$$

is holomorphic in s and admits of a meromorphic continuation to the whole plane; for $\chi \neq \chi_0$ (the identity) it represents an entire function of s. For large enough Re (s), it is just

$$(MF_{\infty})(s)\prod_{p}L(s,\chi,\pi_{p})=(MF_{\infty})(s)\sum_{n\neq 0}\chi(n)a_{n}\mid n\mid^{-s};$$

in vertical strips the first factor is rapidly decreasing at infinity (by Theorem 1) while the second factor is at most of order $|s|^a$ for some a (in view of the functional equation and Stirling's formula). Thus $L_{\mathbf{F}}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, χ , s is rapidly decreasing at infinity in vertical strips.

From the local functional equations (27) and (27)', we get

$$L_{\mathbf{W}F}\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \chi^{-1}, 1 - s \right) = L_F\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \chi, s \right). \tag{28}$$

Let us define for $x \in \mathbb{Q}_{A}^{\times}$.

$$F'(x) = \frac{1}{2\pi i} \sum_{\chi'} \int_{\text{Re } s = \sigma} L_F\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \chi', s\right) |x|^{1-2s} ds$$

$$F''(x) = \frac{1}{2\pi i} \sum_{\chi'} \int_{\text{Re } s = \sigma_1} L_{WF} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \chi'^{-1}, 1 - s \right) |x|^{1 - 2s} ds$$

where σ and $-\sigma_1$ are sufficiently large and χ' runs over characters of $\prod \mathbf{Z}_p^{\times}$.

Because of the properties of the integrand mentioned above and the functional equation (28), we obtain by the usual argument

$$F'=(x)-F''(x)=$$
 Sum of the residues of $L_{\mathbf{F}}\left(\begin{pmatrix}1&0\\0&1\end{pmatrix},\ \chi_0,s\right)\mid x\mid^{1-2s}$

(at the poles encountered while shifting the integration from the far right to the far left, i.e. at all the poles).

Since
$$L_{F}\left(\begin{pmatrix}1&0\\0&1\end{pmatrix}, \chi_{0}, s\right) = \frac{MF_{\infty}(s)}{L\left(s, \pi_{\infty}\right)} \left(L\left(s, \pi_{\infty}\right) \sum_{n \neq 0} a_{n} \mid n \mid^{-s}\right),$$

the poles arise from the function inside the simple brackets; the residue can be computed and seen to be of the form c_0 or $c_1\mu_1(x_\infty) + c_2\mu_2(x_\infty)$ with

constants c_0 , c_1 , c_2 , depending on the nature of π_{∞} . The last relation involving F'(x) - F''(x) may thus be viewed as the adelic formulation of the Poisson formula. When no poles are encountered, it reduces to an 'automorphic' relation F'(x) = F''(x).

References

- [1] Bateman H 1953 Higher transcendental functions (New York: McGraw-Hill), Vol. 1, Bateman Manuscript Project
- [2] Berndt B C 1969 Identities involving the coefficients of a class of Dirichlet series I. Trans. Am. Math. Soc. 137 345-359
- [3] Bochner S 1951 Some properties of modular relations. Ann. Math. 53 332-363
- [4] Chandrasekharan K and Raghavan Narasimhan 1961 Hecke's functional equation and arithmetical identities. Ann. Math. 74 1-23
- [5] Gelbart S 1975 Automorphic forms on Adele groups. Ann. Math. Studies No. 83 (Princeton University Press)
- [6] Jacquet H and Langlands R P 1970 Automorphic forms on GL (2). Lecture Notes in Mathematics (New York: Springer-Verlag)
- [7] Godement R 1970 Notes on Jacquet-Langlands' Theory. Lecture Notes, Institute for Advanced Study.
- [8] Hecke E 1936 Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen. Math. Ann. 112 664-699; Gesamm. Abhand 591-626
- [9] Igusa J.-I 1974 Complex powers and asymptotic expansions. I: Functions of certain types.
 J. Reine Angew. Math. 268-269 110-130
- [10] Igusa J.-I 1978 Lectures on forms of higher degree. Tata Institute of Fundamental Research
- [11] Kubota T 1974 On an analogy to the Poisson summation formula for generalised Fourier transformation. J. Reine Angew. Math. 268-269 180-189
- [12] Maass H 1949 Automorphe Funktionen und indefinite quadratische Formen. Sitz.-ber. Heidelberg. Akad. Wiss. 1-42
- [13] Maass H 1949 Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 121 141–183
- [14] Maass H 1953 Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen. Math. Ann. 125 233-263
- [15] Maass H 1964 Lectures on modular functions of one complex variable. Tata Institute of Fundamental Research
- [16] Ranga Rao R 1977 Unitary representations defined by boundary conditions—the case of sl (2, R). Acta. Math. 139 185-216
- [17] Sally P J 1967 Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R). Mem. Am. Math. Soc. No. 69
- [18] Weil A 1971 Dirichlet series and automorphic forms. Lecture Notes in Mathematics No. 189 (Springer-Verlag)
- [19] Yamazaki T 1978 On a generalisation of the fourier transformation. J. Fac. Sci. Univ. Tokyo 25 237-252

School of Mathematics,
Tata Institute of Fundamental Research,
Bombay 400 005