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ABSTRACT

Recent experiments on high energy electron-photon cascades suggest
the possibility of the following multiple processes:—
(1) Electron scattering with pair creation,
(i) Electron scattering with the emission of two photons, and
(iii) Photon scattering with pair creation.

The cross-section for the first process predicted by Bhabha has been
recalculated recently by the standard Feynman technique. Using the same
technique, we here present the calculations for the cross-sections of pro-
cesses (i) and (iii).

INTRODUCTION

THE analysis of high energy electron-photon showers in cosmic rays suggests
the necessity of considering third order processes of the following type:

(i) Electron scattering with pair creation, i.e., ‘trident’ production,

(i) Flectron scattering with emission of two photons. The usual
‘bremsstrahlung’ of Bethe and Heitler (1934) deals with the emission of
one photon,

(iii) Photon scattering with pair creation. In the usual treatment, pair
creation is due to the annihilation of the photon. Here we postulate the
emergence of a photon after collision.

Pair production by electrons was predicted by Bhabha as early as 1935
while the possibility of process (ii) is mentioned in explicit terms by Heitler
(1954). Recently Murota et al. (1956) have recalculated the cross-section
for the production of * tridents * (pair + scattered electron) by the Feynman-
Dyson technique. The experimental data of Koshiba and Kaplon (1955)
seem to confirm the production of electron pairs by electrons. Recently
Seeman and Glasser (1956) have.observed an event in which a helium nucleus
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312 ALLADI RAMAKRISHNAN AND OTHERS

having an energy of the order of 10° Gev. gives rise to a shower containing
very many pairs of electrons. The results of Fay (1956)* at Gottingen seem
to show that the number of pairs is much greater than can be expected from
the standard cascade theory. The processes (i) to (iii) we have mentioned
above may explain some of the new data relating to high energy electron
photon cascades.

The object of the present paper is to obtain the differential cross-sections
for processes (i) and (iii) using the Feynman-Dyson techniques. The stand-
ard notation of Feynman will be used and explanation will be given only
when necessary.

FLECTRON SCATTERING WITH CREATION OF Two PHOTONS

(a) Matrix elements and their reduction—Throughout this paper, we use
the natural units =1 and ¢ =1 and the following notation:

a.b=a; by—azby—ayby—azh,:  The four dimensional scalar product of
the vectors*** g and b whose compo-
nents are (at, ax, ay, az) and (b, by,
by, bs) respectively.

p= (E,;): The energy-momentum four vector of
electron. Subscripts will be used to
distinguish between different elec-
trons.

q = (o, Z;); The energy-momentum four vector of a
photon. Subscripts will be used to
distinguish between different pho-
tons.

e = (0, Z); The spatial vector representing the
direction of polarization of a photon.

m. The rest mass of the electron.

In addition to those we shall use the ‘dagger’ notation of Feynman
(1953). The daggered operator a** of any four vector a is defined as

a = agyt — dx VY — QyYy — A2Vz
= QpYo — GiY1 — QoY — GgYs )]

* Private communication.
“** The daggered operator of a four vector a is represented as ¢ by Feynman, For convenience
of printing we use the corresponding bold face letter.
*#* For convenicnce ordinary italics are used for four-vectors. No confusion will arise with
ordinary numbers since in the paper four-vectors occur only in scalar products.
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where y’s are the well-known Dirac matrices (see for example, Bethe and
Schweber, 1955). The y’s are characterised by the following relations:

Y¥y T V=0 P v
:—-|—2 [.L=v=0 -
=—2 p=v=123. 2

While the matrices yy, yy and y; are anti-Hermitian, y; is Hermitian.

In this process, a free electron of momentum p, is incident and we obtain
after its collision with the nucleus, a free electron of momentum p, and two
- photons of momenta ¢, g,  The initial and final state electron wave func-
D tions are given by

P = el

o Py =up e P’ 3)

where u,, u, are the four component spinor parts of the free particle wave
' function corresponding to the momenta p, and p, respectively.

Pilly = My, Polly = Mily

P1-Py=Ppy-py = m? (4)
r is a four vector with components (1, x, y, z). The potentials corresponding
to the emitted photons are given by

AI“ =ey, e—iq,.7

Azp, =€y e—iq"‘r (5)
where
;
e 1=0=1¢5.05, 4. 1 =0= 5.4, (6)
F% The Coulomb potential due to the nucleus of charge Z is given by
R=0M=¢=2 0
|7l

As we shall be working in momentum representation, it is convenient to define
k \Y (q) as
‘ | Vg = (2 % [ A(r) &rdYy

|
:’ — = Q3@ ®
3.9

H - . . . '
ﬁ where Q is the spatial part of the momentum and 3 the Dirac delta function.
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We shall choose a co-ordinate system in which the nucleus does not move
and take the direction of propagation of the photon with momentum g, as
the z-axis and the plane containing the directions of propagation of the pho-
tons as the y-z plane. Let the angle between the directions of propagation
of the photons be 6. Thus

G = o (vt — v2) )
gs = wy (vt — yzc08 0 — Yy sin 6) (10)
=Byt —pxye— PiyVy — Piz7z (11)
P:=Esyt — Py vz — Doy Yy — Doz V2 (12)

The photon beam corresponding to (9) can be resolved into two types of
polarization which will be designated as type A and type B.

(A) e =vyy -~ (B) = Yy
Similarly the beam corresponding to (10) can be resolved into two types
of polarization:
(A) ey=1yg (B") e, =y,sin f — y, cos .

The lowest order Feynman diagrams for the present process are given
below.
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2

FiG. 1. Electron scattering with emission of two photons.
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There are six different Feynman diagrams for the process yielding six
matrix elements, M;, My, My;, My, M,, M,;. In the figure, we have
shown only three and the other three can be obtained by interchanging the
photons. For convenience we pair the matrix elements corresponding to
the interchange of photons. The matrix elements are given by

1 1
P— QMmO —q—m

Mi + Mﬂ = - 47Tie3v (Q) 'i'lz {'}/t €;

| 1
+ytp2—-Q—~me1p1——q2——me2}u1 (13)
1 1

Muy + My = — drie®v (Q) &, {ez p: + (Iz"-mel P+ Q—m’t

| 1
-{hell’z‘i‘(11“’”(32[’1‘{‘Q”“mw'}u1 (14)

1 1
p2-l—q2-—m7tp1—-q1—~m

M. + M,;; = — 4nie*v (Q) ity {92 €

1 1
+elpz+(h_mwl’1_%‘“mez}ul' (1)

We shall demonstrate the reduction of R.H.S. of (13). Rationalisation of
the denominators yields

M.+ My = — drico Qs (P Meh =

vi(Po— Q-+ m)e;(p, — q +m)e,
i [(p: — Q)% — m?] [(py — q2) — mz]} . (16)

To simplify the numerator, we write

iyt (ps — Q + m) &, (py — q; + m) ¢ ul'
= gyt (po — Q + m) &y (— e;py + 2p;.€, — qie; + mey) uy

= Ugyt (P — Q + m) &, (2p;.€; — qu&)) 1y (17

We next use the relations
:—Q=p— . — Q. (18)
pa = — ap; + 2p,.a (19)

and eliminate p, from (16) with the help. of (4). Reducing the other part in
a similar manner, we obtain after some simplification
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M, + M, = — 4med Ugyt 2P1-e1 e — ..
1+ My eU(Q)Q-Q’“ZPzQ{Pldh(QI €y — P1-6s)

2.6 p1.€
€ — Dq.€ 2e;.¢ (—1-—-2-
+P1-€lz (@a-€1~— pr-€) + 2¢;.¢5+ gy € Prds

D16 €3-Gy N | P1-6 6.4
B el k5D
hh DNi-da T & 2(1’1-91_'_1’1-412 P19

G:€1€2qs | Q€610 20
i 2p;.4qs H 2P1-‘J1}u1' (20)

Proceeding in an exactly same manner, we reduce the R.H.S. of (14) and
(15). The total matrix element M is given by

M = — 4miev (Q) us {Ayyt + Az?t e1q; -+ Agyt €aqe T Agey
+ Az, + Ageiquyieaqs + Aqseogvierts + Agweiqse,
+ Agwy€s1 @y + Ajgwi€1€5¢e T Ajywi€aqpes} Uy 1)

where

D€ Pi6y _ Pa-€1Di-6n + [Pa-el e.4y +£2‘_._e_3€1,q2
2‘

D1-q1 P2y P1eqa P2 Do 1 D2-92

A1=

_ Pa-s Pr-6s ] 2
e1'82+p2-q2p2'el+pz-qlp2 “] Q¥ 2,.-Q

Pt oy Pl (0
+ [pl-(h ey-(g1 — p1) +p1-q2 1-(2 — p1)

.
T el'ez] eQQ-2,Q

— 1 De-€2 | Pa-€2 , E2-0h 1
Ay Q.Q+2n.Q (Pz-% + 2 1 pz-ql) T Q.Q—2p,.Q

X(ew(h__l)l'ez__]’l-ez)_( Di1-€: 4 Ds-€ )
- D192 P4 2D1-QaP2-h  2P1-G1 D24

_ 1 D26y | D26 | €1:.q2
Ag “Q-Q+2p1-Q(pz-ql D243 +P2-‘]2)

1 P DN 3142) ,
JrQ-Q—%-Q( D14 pl-qz+p1-q2

_(_,_Pzﬁl___ __P_l;e_l__)
201.9:P2-91  2P1-G1 P20
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A, = 20, (Pz'ez D2-€2 | €3-q1\ _ _DP1-€3
T QQ+2n-Q\pags ' Prqr  Pa@) PGP

. 20, (p2-€1 Ds-€1 91-42) D14
Ay = Q.Q+2p,-Q\pe.qy T D2-4q + P29z (P11 P1-92) “2

f‘ A, = — 1 + 1

S (20199 QQ—2p,.Q)  (2,-4) (Q-Q+211.Q)
1 ' '

B  4(p1-99) (P2 90

B A = — 1 i 1

T (29 (QQ—20:.Q ' (27242 (Q-Q + 2p,.Q)
af _ 1

! (471-91)(P2-92)

A = 1

8 7 (pe-q) QQ+2n-Q

P (9 QQ—2p,-Q

! A 1

- O ALK N )

_ 1

3 A= G QAT Q) @

Using the relations (9) to (12) we can still further reduce the matrix element
corresponding to various combinations of polarizations and express it finally
in terms of the y-matrices and the products of y-matrices. Let M;, M,, M,
and M, be the matrix elements corresponding to the polarizations AA’, AB’,

BA’ and BB’ respectively. After considerable calculation and simplification,
we obtain

: M; = — 4ne®v (Q) iy {aiyyt + Gisyx + Gisyy + Gigyz + GigytYzVy

o + Gigytyyve + Gvtyzve -+ Giavayyya) v (23)
! where

S ay = Ay — 0105 (Ag + A;) (1 + cos 0) + w0y (Ag — Ag) — Ay + Ay
e @1y = Ay + Ay — 0A5 — w,Ay

3 = 0,05 (Ag + A) sin 0 4+ wywy (Ayg — Ayy) sin 0

ayy = w1005 (Ag + Aq) (1 4 €05 8) + w0, (Ag — Ay)
+ w1w2 (AIO - Au) CoS 0
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Gi; = — wyAg sin 0

g = w10y (Ag — Ag)sin 0

Q3 = w,A4 + wA; cos 0§

B =0 (24)

ay = Ay
Gy = Ay — 1Ay — w05 (Ag + Ay — Ag + Ag) sin 0

Gys = (wyA 5 — Ag) cOS 8

Ay, = (Ag — wyA;) sin 0

Oys = w10y (— Ag 1 Aq) (1 4 €08 0) + w0, (Ag + Ag— Ajpg— Ayy) cos 8
Ogg = WyA;

Oy = 1Ay + @10, (— Ag + A+ Ag+ Ag— Ayy— Ay sin 0

s = wywy Ag (1 + sin 0) — wyw,A; (1 + cos ) — wyw, (Ag + Ay) cos 0
+ wy0; (Agg + Agy) (25)
ay = Ay |

a32 == A3 + w2A5 — WyWy Aﬂ Sin 0 — W e A7 Sin 0 - 0)10)2A18 Sin 0
+ wywyAqy sin 6

a3 = Ay — A,
a3 =0

a35 == w2A5 Sin 0 — WWy Ae (1 + CoS 0) + 0)1(1)2A7 (1 + COS 0)
+ w0, (Ag + Ay — Ajp — A\u)

Ggg = — WAy
a37 = — szﬁ CoS g — W Wy Ae Sin 0 + Wy A.7 Sin 0 _
g = w1y Ag (1 + €08 6) — wywy A; (1 + €08 6) + wywy (— Ag — Ay
+ Asg) + wy@y Ay cos 8 (26)

ag = Ay + 010, Ag (1 + cos 8) 4+ wyw, A;(1 + cos 6) + wywy (— Ag
v "‘I“ Ag + AlO - All) COS 0

Qg = Qg5 = G4y = dgg =0
a3 = Ay — A3 08 0 + wA5 08 8§ + @y, (— Ag — A;+Ag — Ay) sin 8
Ay = Agsin 0 — wpAg8in 0 — w0y Ag (1 + cos 0) — wyw, A, (1+cos 6)
+ w105 (Ag — Ag) €08 0 + wywy (— Ay + Ay)
Ay = — oAy + 0A; + 010, (Ag — Ay — Ag — Ay + Ay
+ A,;) sin 0. o 27)
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SPUR CALCULATION

The differential cross-section for any particular polarization is given by

do; = 2m ? - (normalisation factor) - 4.
1

2 X |Mj* - (density of final states). (28)

spins1  spins 2

where we have summed over the final spin states of the electron and averaged
over the initial spin states. In this section, we shall evaluate

> 2 M

spins1  spins 2

It is well known that if

M = @, Mu, (29)
then
2 I |MH=Sp|(pytm) M(py +m) M| (30)
where
M =y M. 31)

Now M; is given by

M; = aiyyt + Gigye + Qisyy + Gigyz + Qigytyayy + Gigytyyyz
+ Giytyave + GisyeyyYe 1(32)

It is easily verified by direct multiplication that
Pe M = ln 1+ Lgytye + ligyevy + Liaveyz + lisvzvy + lisvyyz

+ Liyzve + lisytyavyye (33)
Py My = miyy 1+ migytye + Migytyy + Migvtyz + Misyzyy
+ Migyyyz + Migyzye + MigYtyxVyYz (34)

where
ln = Bty + Poattis + Paytis + Poztia
lin = Bt + Paxtiy + Paylis — Paztti
lis = Eglliy — Paxtis + Paytin + Pozti
lis = Egtig + Paxtiy — Paylis + Pezfin
lis = Eatis — Paxtlis + Payis + Portlis
lis = Egtig + Poxtlis — Dayia + Dazlis
li = Egip + Poaxiy + Poydis — Dazlis
lis = Estig + Pagtis + Payttiz + Darthis (35)

1 We omit the factor — 4arie® v (Q) since it has no role in the calculation of the spur. We
ghall restore the factor when we substitute for [M;|? in equation (28).
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myy = Eqayy + protis + Piyis + D120
Mig = E iy + prottiy — Pytis + P12y
Mis = E\8i3 + Pratlis + Pryin — Prztiis
myy = B4y — prattin + Piyig + D1z

mis = — Eqaj5 — pigtis + Pryliz — DPrz0ig
mig = — Eqig — prgttis + Pyt + Diztis
Mig = — E\Gi7 + D1piy — Prylis — Piati
Mg = — Eidig — prptis — Dylin — D1zl (36)

and I is the unit matrix.

Now (30) can be written as

2 X |Mif*=Sp|(p. + m) M;(p, + m) M|

spins1 spins 2

= Sp |p. Mi ;1 Mi'| + m? Sp | MM |
+ m Sp |ps MiM{'| + m Sp |Mip: M5/ |. (37)

Using the well-known properties of y-matrices, it can be proved that
Sp | Mip M| =0
Sp [pMiM| =0

8
Sp |pMip M| = 4, z lijmij €(j)

8
Sp | MiMy| =4 3 a;® € (j)

j=1
e()=+1forj=1,23,4. €()=+1forj=156,7.
=—1forj=35,6,7,8. =—1forj=2,3,4,8. (38
Thus we obtain

S5 Myl =4 et Q) B [hymij € () + mime (). (39)

spins1 spins 2 =i
DENSITY OF STATES
The density of states for a 4-particle system can be easily derived as

Ps2dpydf2sp *dp 42, BsBeps*d §(40)
(E—Es—Eq) ps>—Es {(p — ps — po)-Ps}
§ We use the subscripts 3, 4, 5 and 6 to denote the four particles instead of 1, 2, 3, 4 just to

avoid any confusion with the use of subscripts 1 and 2 for the initial and final states of the electron
in the problem.

D = (2
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Adapting (40) to our problem, we make the substitutions

E;=00, ps=py Pa=wy, P =
We then obtain | |

D = (2 pyldp,dQs00,*de0,dQ,, 0,22, @)
Hence do; is given by

2
= 7F,.20,.2w,. 28, " p

doy Ey 2 (2 gy Q000

2 [Ame®y (Q)]QFZ: [ligmize () + mPag;®e (). 42)

If we are not interested in any particular polarization, we can sum over
all polarizations. This is done by asumming doj over i.

'We shall consider a particular case when the two photons are weak.
In this case, the cross-section reduces to a very simple form. The matrix
element (13) can be expressed purely in terms of ¢, and ¢, as ‘

1
Pi—@— ¢ —

M, + M, = — 4mie®v (Q) Ut

&) @)

Rationalising the denominator and neglecting ¢, and g2 in the numerator
and ¢,.¢, in the denominator, we obtain

1
X (ez - 1+91 —m

M, + My = — 4nie®v (Q) Z-—————————————;’:t ((511 _1—: 23

(p,—m)e, |, &(pp—m)
<[ ]
S A )
Reducing still further by the method now familiar, we obtain
M, + My, = — duie® (Q) fgypu, D1 P1-b2 45
i+ My TIE™V (Q) oVt 1p1~q1p1-6]2 ( )

In a similar manner, we reduce the other two pairs of elements and obtain
M, = — 4mie®v (Q) flyytu (p2 4 pl'el) (1?-?—'~e-2 —-p—l———'ez). 46
b (Q ety Pa-qy  P1-Gi) \P2-qx  DP1-Q> 9

On making the spur calculation, the cross-section can be written as

‘ 2 Eyp,dQ
oy = 2[5 1o QI 4 + BB — piop) |
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X

_ D&

r62(16!)]_‘1n9wl p2 . 81
(27)%e,

Wy

Pz*’q"l” |

D1

d
1)
W/

r€2dw2d.Qw2 p2.€2 _ p1.6’2
2 2
(2n)'ey Pz-%z‘z 101-%,E

)
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(47)

so that the last two factors can be interpreted as the probability of emission

of the weak photons, if there is elastic scattering from momentum p, to p,
(see Feynman, 1953).

SCATTERING OF A PHOTON WITH PAIR CREATION

In this process a photon of momentum ¢, and polarization e, is incident
and after its collision with the nucleus, we obtain a photon of momentum ¢,
and polarization e, besides a positron-electron pair of momentum p, and p_
respectively. The lowest order Feynman diagrams for this process are given
below. As in the previous section, we have given only three diagrams since
the other three can be obtained by the exchange of the positions of the

photons.
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Y

FiG. 2. Scattering of photon with a pair creation.
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With respect to the directions of the arrows and without regard to the
directions of increasing time, these diagrams look exactly like those for the
process discussed in the previous section (cf. Fig. 1). However when the
direction of time is taken into account, we notice that

(1) p,is the momentum of the electron travelling backward in time, i.e.,
D= — Py

(2) The photon ¢, is absorbed instead of being emitted.
(3) pe=p-.

Hence we can obtain the matrix elements corresponding to these diagrams
from those of process (ii) if only we replace p; by — p,, ¢, by — ¢; and p, by p_.
However the density of final states is different in this case since the particles
in the final states are now a photon, an electron and a positron. Thus do; the
differential cross-section for a polarization of i-th type is given by

2
= S gaganE O Ppd0.p Hp 9 i,

do

x 2l QI £ Uygmge () + matd G (49)

where the prime over the square bracket under summation sign indicates
that we have to make the following substitutions

— p.for p; — E,for E,
p-_for p; E_forE,
and
- w1 fOl’ wl.

If we are not interested in a particular state of polarization of the photons,
we average over the polarization of the incoming photon and sum over
polarization of the outgoing photon. This is done by summing over i and
dividing by 2.

We hope that this process will be of considerable interest in high energy
electron-photon cascades since it yields a photon, in addition to a pair. In a
later contribution we hope to discuss these cross-sections under some useful
approximations. We also propose to include these processes in the usual
soft cascade theory and study the fluctuations in the number of electron pairs.

Two of us (S. K. S. and R. V.) are grateful to the Madras University for
the Government of India Scholarship and the other (N. R. R.) expresses his
gratitude to the Madras University for a generous stipend.
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