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ABSTRACT

- The Feynman propagator, in momentum’ representation, is a four-
dimensional transform over 'space and time variables. If the space and
time integrations are performed separately, the propagator can be decom-
posed into two parts, one corresponding to positive and the other to nega-
tive energy intermediate state. By the use of this decomposed propagator,
the relative contributions of the positive and negative energy intermediate
states to the matrix element can be estimated. For example in Compton
scattering it leads to the apparently paradoxical result that in the “non-
relativistic approximation” it is only the negative energy intermediate state
that contributes to the matrix element.

INTRODUCTION

IT is well recognised that one of the great advances in quantum electro-
dynamics since the Dirac theory of the electron is the Feynman formulation

which is characterised essentially by two features - (i) Even when we include
pair creation and annihilation of particles the vertices of interaction in per-
turbation theory can be so ordered in the Feynman sense such that the entire
process can be represented through Feynman graphs of single particles thus
obviating the use of field theoretic methods and (ii) the perturbation expan-
sions are ‘‘ inherently four-dimensional * and the covariance of the equations
is apparent at every stage of the calculations, the integrations over space and
time variables being performed together.

~ * Permanent address: University of Madras, India. The above work was done during the
author’s stay at the Department of Theoretical Physics, University of Bern, on leave of absence
from the University of Madras.
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" It has been pointed out by one of the authors (A. R.) that a better under-
standmg of the virtual processes is possible if the space integration is per-
formed first and the time integration subsequently in the * old- fashioned »
manner even in the Feynman formulation. It is this method which gives
a clearer picture of the contributions due to the different types of virtual
processes. It leads to the splitting of ‘the Feynman propagator and while
not affecting the elegance of the inherently relativistic approach, reveals
the structure of the Feynman propagator in 2 manner which facilitates the
computation of the relative contributions from transitions to positive and
negative energy intermediate states. In particular, calculations lead to the
apparently paradoxical result that the negative energy states do contribute

even if the electron in Compton scattering is non-relativistic. It is con-

ventionally accepted that when the initial particles are non-relativistic, the
energy denominators become large for negative energy states and therefore
the contribution in such cases can be neglected. This assumption may lead
to erroneous results since the numerators may also become large and this
can only be studied by the use of the decomposed propagator.!

DECOMPOSITION OF THE FEYNMAN PROPAGATOR

In the Feynman picture since a negative energy electron travels back in
time, the positive and negative energy parts of the intermediate state can be
separated by splitting the time integration in the perturbation expansion
(i.e., from t = — oo to ¢ = + oo) into two parts corresponding to the ranges
0 to + oo with energy + E and — oo to 0 with energy — E respectively.
The integration over space variables alone in a perturbation expansion say

for a process in which an electron of momentum 7 absorbs a photon of
momentum. 3, would amount to picking out from the kernel, terms corres-

ponding to momentum :5—}- _q) and energy E equal to

+ Bpig = id(3+3)2+m2-

1 The paradoxical result that the negative energy states should contribute ever in the non-
relativistic case seems to have been well recognized on the ground that the operator vy, connects

‘the positive and negative energy states. What we wish to emphasise here is that the relative

contributions can be studied by decomposing the Feynman propagator the energy dencminators
in this case being naturally different from the ficld theoretic case. This is so because the defini-

“tion of ths intermediate states in field theory refers to systems of electrons, positrons and photong

while in the Feynman formalism it relates only to the electron.
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“If we now perform the time integrations separately corresponding to -+ Epiq
and — By, 4 we have, for the Feynman propagator in momentum representa-
tion,? :

+

o1 1
F+4—m 2 [(E3+‘5~) {E8 + Eq — B3, 3}

(7.2) (B3 + B¢ + B3 3
-where P = p 4 g and ;f is the Feynman four vector with energy -+ E;' _(;‘3

and P has the fourth component equal to — EZ.3-

We shall now make use of the above expression for the propagator and
calculate the cross-sections for Compton scattering taking into account inter-
mediate states of positive energy only, forbidding intermediate states of nega-
tive energy and vice-versa.

The matrix element representing the scattering of an incident photon of
‘momentum g; by an electron (at rest) to momentum g5, the electron having a
momentum p,, is obtained by considering the two possibilities (1) the photon
‘g, being absorbed and g, being emitted subsequently in the Feynman sense
and (2) g, being emitted and g, absorbed subsequently.

Thé.propagators for the two cases are giveh by

1 _1 B+ m |
ZitAi—m 2| (B 3 (B3, + g, — B3, ,.3)

_ /Fl'l"m (2)
B3+, {E, T Bg T B3 3]

where g, has energy component EZ +q and
1 1

" * Throughout this paper, we work in natural units, Ze., ¢ =1, % =1 and use the convene
tional Feynman notation: If p denotes the four vector with components p,, p,, P Ep (.;: E;’)

then the Feynman four vector ¢ = PuYu =By, — p . v, where +’s are the usualDirac matrices

> > . .
and F 4 =Euw — u.p, where g is another four vector with components (w, 3) .

o,
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1 _1 ;’2+m g
e e [ca e

(B3.-3) [, — B3, B33,

where F, has energy component Eg_3.

The cross-sections for the entire process taking the effect of positive
energy alone ignoring the negative energy part in the intermediate state can
be calculated by using the sum of the first terms of (2) and (3) as the propa-

: PR « . - » + -
gator. Thus the matrix element after substituting for P, etc., is

(— i) _ vt Vo' + m? — ygor + m

B = "7 2 — ——

M 2 (4We)uz[¢2vw12+m2{m+ wl—\/w12+m2})é1
Vi \/w22+m2+%‘vc))2 Cos 0—[—--yycu2 sin 0-+m ] u

vV wgP+m? {m—w;—V wy*+m? o

+ £
‘ “

_~ii | 2\ 77 _V'yt’\/wlz"}"n’z—'y:cwl"l_m
M()_... 5 (4We)u2[¢ersz12+m2{m+w1+,\/wl2+m2}te1
+ g —yt V 02t mE+ygw, €08 O-4yyw, sin 04-m ] y

YT Vot m? {m—o, + Ve +m 2]

. , (5)
Taking the incoming photon to be along the x direction we have for
polarisation ’

A) £1=1g or B) fi=vy

.and for the outgoing photon

(A) £2=72 o1 (B") 2= yycosf —yysinb.
Thus the matrix elements M) and M for various polarisation combina-
tions are given by .
M (AB’ or BA') .
1 (—i4ne® [Fle {i Vo2 Fm?—im} ¥ +iw,Fip, e
) o \/Fle ‘ 2 '\/w12+m2 {m+w1~—\/w12 ‘"l— mz}
F.F, {— i VwE + m? + im} €% 4 iwzFlpz+] o @
Vo +miim—wy— Vo2 +mf 4 -

+

where pgi == Pag + ipay
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and
M= (AB’ or BA") .
=< 1 ('—‘ i47782)'[F1F2 (i \/wlz—-{—mz—]—l’m) eio—iw1F1p2+€ia
V' F,F, 2 Vi 2m? {m—+w+vV o, 24+ m?
FiFy {— i V@, + m® — im} €10 — z-wng-f-]
'\/wzz + mz{m — wy + ,\/2;;‘32 - mmz}

+

N

M (AA")
| L () [ EE VT — ) — o,
VE,F, 2 Vi + m? {m 4+ w; — '\/mf‘!}
F,F, {\/‘”22‘*“ m? — m} + w, Fy p,_et®
Vst +m?{m — w, — Vw22+m2}]‘
M (AA) ‘ ‘
= 1 (_ i4me? [ F,F, {\/wlz + m? + m} -+ o Fip,_.
VER A 2 Vel +mt{m + o + Vet T m
+ F1F2 {'\/6022 + m2 + m} — w2F1p2—ei0]
V2 +m2{m — wy, + Va,? + m2}l

-+

(8)

®
M (BB)

_ 1 (= 4me?) [Fle {\/w;zj_'_f”’lie"ig"—memia} — w,Fyp,_e'f
VFF, 2 Vot 4 m? {m+ w, — \/Z):?”?Eﬂ}

F1F2 {'\/(1)22 + m2ei0 - me'lﬁ} + Wo F1p2—]

Vet + m? {m— w, — \/c?“:l—m
and
M (BB')
. 1 (— i477€2) [FIFZ {’\/Q)lz‘i—mze—ig "}"n'le_ig} "*“ wlF,pz_.éi'g
Vo *+m? {m—+ w1/ 6t m2)

 VEE, 2

+ F1F2 {'\/(1)22 + m2ei0 + meio} — Q)zFl_pz_-]
Ve + m?{m — w, - \/52”2‘”_":";;{2} _] (1n)

where
Fo=E;+m, F; =E; + m.

For any one of the polarization cases considered above, we sum over
the initial spin states of the electron and average over the final spin states to

obtain the cross-section. We shall now list [M|2 for the various combinations
of polarization, rous combin,

) ﬂizﬁ S ;
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[M& (AB’ or BA')|? |

Fy?Fy2 (0,2 4 2m® — 2m /@, E 1 ) -+ Fi212pe® + (Vo - i —m)
= - (4are?)? X 2F*Fy01 Doy : —
(0,2 + m?) 2m? + 2w, + 2maw, — 2 (m + ;) Vo,® + m?

Fi2F2? (wp® + 2m? — 2m v/ w,® + m?) + F12w22}3’)22 — 2F*Fyw,
X (p2$ cos 8 +p2y sin 9)('\/0)22 -+ m2 —_ m)

+ (wg? + m®) 2m® + 20, — 2maw, — 2 (M — wy) V st + mE
—_ 2F12F22('\/w12 J{" m2 - m) (;IOJZZ + m2 - m) “'{" 2F1 wlepz COS g
— 2F1 ngo;cwl (\/0)22 -+ m? — m) -+ 2F1 F2w2 (p2x cos 0 + sz sin 6)
+ X (Vw2 + m2— m) :

Vo +m Vet +mi{m+ o, — Vo2 + m2{m— w,— Vw2 + m?
| | ' ; (12)

Denoting the denominators of the three terms as D;™, D, and D, res-
pectively, we have

]M(-H (AA )l 2

(4776 2)2 [D = (F LR (g + 2% — 2m /a7 )

+ Fy?w,%5,% — 2F1%F g, Do (v/ap® + + m2 - m)} | |
1+ poue (FatFa? (wgf + 22 — 2m /T )+ Filad®?
+ 2F,2F,wy (Dp €OS 0 + poysin 6) -
X (Vw® + m? — m)}
+ ﬁ.l_, (RS (o 1 — m) (Vo™ £ — )
+ 2F,%F,0, (V@i® + m? — m)
. ‘ o . X (Pax €OS 0 + pyysin 6) — 2w1w2F12$22 cos 0

- 2F12F2wlpzm (Vao®+ m?— m)}] . (13)
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|M+(BB")|2

e L E = 4F1F2,(4m.e2)2 [D{m {F12F22 (wlz + 2m2 — 2m \/m)

+ Fi%P%0,2 — 2F:°Fow; (v w,% + m?2 ~ m)
X P2z €08 20 + pyy, sin 26)}

+ g FFt (0 4 2m0 — /o D 4 B

n a + 2F;°Fa0, (Va,? 1 m? — )

X (p2x COos 0 - pzy Sin 0)}

T B, QR (Vo Fm — m) (v F ot — m) i

X cos 260 — 2F;%F,y 0, (V.2 +m? — M) Doy

- 2F12;22w1w2 COos g + 2F12F2w2

e . X (Ver® +m? — m) (o cOs 0 + sz sin 0)}] .
Similarly in the-case of negative energy, .we have
IM=(AB’ or BAY2 |

it i)

romg | FuFo? (0 +2m2 1 2 VT T ) -+ Fyt3,e— os
AV 142 1 Ll @,°p F F
=(4;1€F1 .x‘( PR 1“ 1°W1py 17 F oW Do
@3+ma@ﬁ+a¢w4m%+zvaﬁ+mwm+wg

o (02 4 2m2 o+ 21 o/ ) 1 Fy2,23,
. 2P 008 0 + pyysin 6) (vary® T i + 1)
(w5 4+ m?) 2m? + 2wy2

® 1L 2F,*F,0,

— 2maw; + 2 Vet + m?(m — w,y)}

- ZF'I:E;; (2\E‘/wi + g’l\j + m)(lwzz + m2 + m) + 2F12§22w1w2 cos 8
ger 01 ToWyp @y® + m? + m) — 2F,2F 0 sin 6
Vao,? + m? \/“{_22 +m*{m+ w, + Vi + m? {m — wy + Vet + m?)
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Denoting the denominations in (15) by D,*, D, and D, respectlvely,
we have

M- AA)]?

2
(41:‘12};) [D 5 1F12F2? (0,2 —l—2m2+2m\/w +m2)

+ Fi2w, 25,2 + 2F12F2P23:C§’; (‘\/ w? ‘|'.'m2 -+ m)}
1 ' —
+ po FrF? (03 +2m2 +2my/eg® mi) 4 FrPw, %2
— 2F*Fo0; (paz €08 8 + paysin 0)
X (Vwy? +m? +m)}
+ B QR (o T+ m) (vt — m)
- 2F12;22w1w2 cos 8 + 2F;*F,papw,
X (\/wgz + ”n2 + m) -_ 2F12F20)2
X (poz cos 0 + pgy sin 6) (\/w‘12 + m? -+ m)_}] .

(16)
[M- (BB")|2 - |
- %"’"e?z [Di@ {FL2F,2 (0, + 2m® + 2m A/a® £ m?)
s ' : e

+ By, 4 2F;%Fpo!
"X (P 005 26 + poy 5in 20) (Vo F mE + m)}
| + f)‘z!r:) {F2Fy? (w® + 2m* +2m Vg T 1) + Fy2w, 3,2
| | — 2F%F 05 (9200 0 — payy sin 6)
X (Vwy® + m? + m)} o
{2F2F? (Vo ® + m? + m) (vwﬁ +m? + m)

_I_) ( )
X COS 29 - 2F12p22w1wo €OoS H + 2F12F20)1 o
X (Vag? + m?+m)poy — 2F1 szv “

X (\/w o + m + m) (Pzae cos 6 =+ sz sin 9)}]
an




)

236 ALLADI RAMAKRISHNAN AND OTHERS

The differential cross-sections do are given by 2m [M]2 x (density ¢
states). After substituting for p,?, etc., in terms of w; and w, from the follow-
ing relations we may compare the cross-sections for positive and negatiy:
intermediate energies. '

Fo; =2m+ w, — w, (from energy cohservation)

->

p22 - E22 - mz - (2m + Wy — CU2) ((Ul — w2)
F12 = 4m?

Doy = w3 — w08 . (from momentum conservation)

pzy = T Wg Sin 0.

Discussion

Since the expressions are rather complicated, it is difficult to compare
the cross-sections for the positive and negative energy intermediate states
directly. However we shall take up some special cases to get an idea of the
relative contributions

(1) Non-relativistic case, i.e., w, < m and w, ~ we. In the case of
positive energy intermediate states

| 4

do* (AN) = i [(~ 20;) (w1 — w, cos 6) (1 + &
+ Quw,) (wy — w; cos §) (1 — f—;f
-_ 2602 (w2 Ccos 0 — (D]_) — 2(1)12 CoS 9}

(neglecting terms of order w,2/m?)

A w2
& Tgme mr ~0- (18)

Similarly

do™ (BB’ or AB’ or BA") ~0.

K

‘Now we shall calculate the cross-section for the intermediate negative energies
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do~ (AA")

U 84 ] o
= e [ - < {2m [ 2@t 20y

+ 2w, (2171 + ;711-;) (@) — @y cos 0):{}

1 ) {2m [2m (4m? 4 2w,?)

_4_
4mt (1 _ &2
m

+ 2w, (2”” + é”_gn;) (wy — wy cos 6)]}
+ —4—;? {2m [4m (2m + ;U};: ) (2771 + ;’,;:)

+ 2 (w; — wy €08 ) wy (217‘1 -+ ;;;)

—l“ 2 (wy — wy €08 0) w, (Zm + 2&’%):]}]

Neglecting w,*/m?, we have

16mt 4 16m* + 32m4]

do=(AA") ~ 194 [

6m? 4m* J
e4
~ 2 (19)
Similarly
ot
(]0—— (BB') = 1’112 (0082 0) (20)
do~ (AB’ or BA’) = 0. @1

(i) Extreme relativistic case (a) small angles, f.e., w;~ wy> M.
The results for different polarization are tabulated below, (b) large angles
w; > m ~ w,. In this case the results are similar to the previous ones
excepting that here

do (AB’ or BA’) = do (BB")# do (AA).

This is to be expected since e,-e, for BB’ ~ 0 since cos § ~0.

A4
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It is interesting to note that the contributions arising from the negative
energy intermediate states dominates the cross-sections in the non-relativistic
limit for the electron. In fact the contribution from positive energy inter-
mediate states is almost zero so that )

3do~(AA’ + BB') = § £, (1 + cos®6) = 1 do (AA’ + BB))

since dot = ()

which is the actual cross-section (i.e., including both positive and negative
energy intermediate states).

In the extreme relativistic case, we find that contributions arise from both
positive and negative energy intermediate states. We also find that in
case (@) dot (AB’) = do— (AB’) though do (AB’ or BA') is zero. This can be
easily seen from the fact M*(AB') = — M- (AB") and hence |M*+ M-|?
=0. Similarly for dot(AA’) + do~(AA’) = e*2m® though do(AA")
= é4fm?. This is again obvious since in this case M* (AA") = + M~ (AA")
so that do = |[Mt — M~|2 = [2M* (AA")|® = e*/m®.  Calculations on other
electrodynamic processes will be given in a later contribution.
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