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In this note, we refine results of Waldspurger [W], Tunnell [T], and Prasad [P] on
the existence of non-zero linear forms £ on certain irreducible, admissible complex
representations V of p-adic groups. The basic problem we consider is to find an
explicit vector v in V] called a test vector, where £(v) +0. As in [Gr], the test vector
will lie on a line fixed by a specific open compact subgroup.

1

The first situation we consider is the following. Let F be a local, non-archimedean
field with ring of integers A, uniformizing parameter #, and finite residue field
A/nA. Let V, be an irreducible, admissible complex representation of the group
GL,(F), and let w be the central quasi-character of V;. We assume that V] is infinite
dimensional, and when the residual characteristic of F is 2, we assume that ¥ is not
super-cuspidal. Let K be a separable quadratic extension of F (we include the case
when K~ F x F), and let ¥, be an irreducible complex representation (= quasi-
character y) of the group GL,(K)~K* whose restriction to the subgroup
GL,(F)=F* is equal to the inverse of the quasi-character . We consider the
representation V=V,®V, of the group G=GL,(F)xGL(K); this is both
admissible and irreducible, and by our hypotheses the subgroup AGL,(F)
embedded diagonally in G acts trivially on V.

Let H be the subgroup AGL,(K) embedded diagonally in G. [To embed
GL/(K) as a torus in GL,(F), we view K as a 2-dimensional vector space over F
and let K* act by left multiplication.] It is not difficult to show, using the theory of
Gelfand pairs (cf. [P, Chap. 3]), that the space of H-invariant linear forms ¢: V—»C
has dimension at most one. Waldspurger and Tunnell give a criterion for a non-
zero H-invariant linear form to exist.

Specifically, let o, be the two-dimensional representation of the Weil-

cligne group of F associated to ¥, by the unitary Langlands correspondence
(normalized as in [D, 32.3]) and let o, be the two-dimensional representation of
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the Weil group of F which is induced from the quasi-character x of K*. Then
det(o,)is equal to w and det(o,) is the product a e - x|+, Where oy p is the quadratic
character of F* associated to the extension K/F by local class-field theory, and y|p.
is the restriction of x to F*. (We identify the abelianized Weil-Deligne group with
F* in the usual manner.) The tensor product ¢, ®o, is then a four-dimensional
symplectic representation of the Weil-Deligne group, and has a local root-
number &0;®a,)=+1. [We have &o,®0,)=¢60,®0,, p, dx) in the no-
tation of [D2] or [T], where v is a non-trivial additive character of F and dx is
the unique Haar measure on F which is self-dual for Fourier transform with
respect to y.]

When &6, ®0,)+ 0k @(—1), one can show that the representation V, is
square-integrable and the quadratic extension K is a field [T]. Hence V,
corresponds to an irreducible complex representation V] of the group D* under the
Jaquet-Langlands correspondence [JL, Chap.14], where D is the quaternion
division algebra over F. The representation V] has central quasi-character w and is
characterized by the identity of traces: tr¥,(x)+trVj(x)=0 on regular elliptic
conjugacy classes x. Since the field K embeds as an F-subalgebra of D, the
subgroup H=~AGL,(K) acts on the representation V'=V/®V, of the group
G'=D* x GL,(K). Again it is easy to show, using the theory of Gelfand pairs, that
the space of H-invariant linear forms on V' has dimension at most one. The
criterion of Waldspurger and Tunnell is the following.

Proposition 1.1 [W,T]. There is a non-zero H-invariant linear form ¢:V-C
(which is unique up to scalars) if and only if &6, ®0;)=o0x ;- (—1).

There is a non-zero H-invariant linear form ¢':V'—C (which is unique up to
scalars) if and only if &6, ®0,)= —ag;p o(—1).

Remark 1.2. Since V, has dimension 1, the existence of an H-invariant linear form
¢:V—C is equivalent to the existence of a linear form ¢, : ¥; -»C which satisfies

1.3) £1(k-v))=x""(K)¢1(vy)

for all k in K*=GL,(K) and v, in V;. Similarly for the form ¢’ on V".

Remark 1.4. When K is a field, the representation V, decomposes as the direct
sum of lines ¥,(n~"') on which the torus K* acts via the characters satisfying
7~ '=w on F* and &0, ® Indn) =0+ 0(—1) [T]. If £, is a non-zero linear form

which satisfies (1.3), then #,(v,) + 0 if and only if v, has a non-trivial component in
the subspace V;(x~!). Similarly for the form ¢} on V.

2

We will find a test vector for the linear form # (or #') of Proposition 1.1 under the
hypothesis that either ¥, or V, is unramified. Henceforth we assume:

(2.1) Either V, is an unramified principal series representation of GL,(F), or ¥, =1
is an unramified quasi-character of K*.

By an unramified quasi-character of K* we mean one which is trivial on the
open compact subgroup @*, where 0 is the integral closure of 4 in K. In particular,
(2.1) implies that the central quasi-character w of ¥, is unramified. Let n be an
unramified quasi-character of F* with n>=w. Then

V(V,@0n )®(V2®1° Ngir)
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as a representation of H=4K*. Hence it is no loss of generality in what follows to
assume that w=1, and hence that y is a character of K*/F*. We define the
conductor c of x as the smallest non-negative integer such that  is trivial on the
subgroup (4+x°- 0)* of K*.

First assume that V; is an unramified principal series representation with w=1.
Let R be a maximal order in M,(F) which optimally contains the order
0.=A+7n°-0 of K; for a discussion of optimal embeddings see [Gr,
Proposition 3.2], which shows that such maximal orders R exist and are unique up
to K* conjugacy. Let

22) M=R*x 0*.

Then M is an open compact subgroup of G=GL,(F) x K* and MnAK*=A0*.
We will prove the following result in Sect. 3.

Proposition 2.3. If V, is an unramified principal series, the open compact subgroup
M of G defined in (2.2) fixes a unique line in V=V, @V,. If vis any non-zero vector
on this line and ¢ is a non-zero H-invariant linear form on V, then £(v)+0.

Next assume that ¥, is an unramified representation of GL,(K). Let n be the
conductor of ¥ in the sense of Jacquet-Langlands [JL, Chap. 2]. When &0, ®0,)
=a-w(—1)=a(—1),let R, be an order of reduced discriminant (z") in M ,(F) which
contains 0. When (o, ®0,) = —aw(—1)= —a(—1), we must have n=1. Let R, be
an order of reduced discriminant (z") in D which contains ¢. For a proof that the
respective orders R, and R, exist, and are unique up to conjugacy by K*, see [Gr,
Proposition 3.4]. We note that when K is an unramified field extension of F, we
have &(c,®0,)=(—1)". Let

(2.4) M=R*x 0*.

Then M is a compact open subgroup of G=GL,(F) x K* and MnAK*=A0*.
Similarly we define the compact open subgroup

(2.5) M’ =R*x O*
of G'=D* x K*. The following result will be proved in Sect. 4.

Proposition 2.6. Assume that V, is an unramified representation of GL,(K). When
n(V,)2 2, assume further that the extension K/F is unramified.

If &(6,®0,)=0xp - @(— 1) the subgroup M defined in (2.4) fixes a unique line in
V.If v is any non-zero vector on the line fixed by M and ¢ is a non-zero H-invariant
linear form on V, then £(v)=+0. :

If o(0,®0,)= —ogp - ) —1) the subgroup M’ defined in (2.5) fixes a unique line
inV'. If v' is any non-zero vector on the line fixed by M’ and ¢' is a non-zero H-
invariant linear form on V', then ¢'(v')#0.

Remark 2.7. When n(V,) =2 and K/F is ramified, the subgroup M defined in (2.4)
fixes a two-dimensional subspace of ¥ when &(0;®0,)=0gr - @(—1). There is a
unique line in this subspace fixed by the element A7, where ny is any uniformizing
Parameter in K. If v is any non-zero vector on this line, we have £(v) +0. Similarly,
the subspace of ¥ fixed by the subgroup M’ defined in (2.5) has dimension two
When o0, ®a,)= —agr- @(—1), and Amy fixes a unique line in this subspace, on
Which ¢/ 40,
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3

We now turn to the proof of Proposition 2.3. Since V; is unramified, the subspace
fixed by R* has dimension 1, for any maximal order R of M,(F). [All such R* are
conjugate in GL,(F) to the standard maximal compact subgroup GL,(A4).] Hence
the open compact subgroup M defined in (2.2) fixes a unique line in V. We must
show that £ is non-zero on this fixed line. To do this, we will need to recall several
results on unramified principal series representations. Our standard reference is
Godement’s notes [Go, Chap.1].

The representation V; is induced from an unramified character of the Borel
a b
0 d
u of F* such that ¥, is isomorphic to the representation of PGL,(F) by right
translation on the space of functions f: GL,(F)—C which are invariant by right
translation by some open compact subgroup and satisfy

1((5 5)e) ~uarmiaarsis.

The isomorphism class of V; is completely determined by the unordered pair of
non-zero complex numbers («, o~ !)=(u(r), p~*(r)), and a*+q* . The eigenvalue
of the Hecke operator T, on the line fixed by R* is equal to a,=g"/*(x+a™").

Let X denote the homogeneous tree associated to PGL,(F), whose vertices
correspond bijectively to maximal orders in M ,(F), and hence to maximal compact
subgroups of GL,(F) [S, Chap. 2, Sect. 1]. The maximal orders in M,(F) are the
endomorphism rings of the homothety classes of rank 2 lattices in F2.

subgroup B= ( ) of GL,(F). More precisely, there is an unramified character

Lemma 3.1. Let x € X be the point on the tree fixed by R*. For an integer c =1, let
Vi(c) be the subspace of V, generated by those vectors which are fixed by some
maximal compact subgroup of GL,(F) corresponding to a point on the tree at
distance <c from x. Then V,(c) has dimension (q+1)q°~*.

Proof. The intersection of the maximal compact subgroups corresponding to
vertices of the tree at distance < cfrom x is the group R(c)* of elements in R* which
are congruent to 1 modulo 7¢. It follows that ¥;(c) is contained in the space of
vectors fixed by R(c)*. Since V; is an unramified representation, the space of vectors
fixed by R(c)* is, as an R*-module, isomorphic to the space of functions on P!(R/n)
which is (q+ 1)¢~ V-dimensional. It therefore suffices to show that V;(c) is exactly
the space of vectors fixed under R(c)*. Observe that functions on P*(R/z°~") sit
naturally in the space of functions on P'(R/x‘), and that the quotient is irreducible.
Therefore we only need to prove that ¥;(c) is not contained in the space of functions
on PY(R/z D). But if V(c) were contained in this space of functions then in
particular any vector in V stabilised by a maximal compact at distance c from x
will be invariant under R(c—1)*. Therefore R(c—1)* will be contained in the
intersection of maximal compact subgroups corresponding to points of distance ¢
from x, i.e. R(c— 1)* C R(c)*. This contradiction completes the proof of the lemma.

We begin the proof of Proposition 2.3 in the case when K is a field. Then by
Remark 1.4 we have a decomposition of the space V; into one-dimensional
eigenspaces V,(n~ 1) for the torus K*, and we must show that the fixed vector for R*
has a non-trivial component on the line V;(x ™).
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When K/F is an unramified field extension, there is a unique maximal order R,
in M ,(F) which contains 0. We first treat the case when c=0,s0 M = R% x O* and a
vector v fixed by M is the tensor product v, ®1, with v, fixed by R¥ in V,. Since the
subspace of ¥ fixed by 0* is equal to V;(x~!) for y unramified, it has dimension 1
and is spanned by v,. Hence ¢,(v,)=+0.

Now assume that c21. We have seen that the maximal orders of M,(F)
correspond to the vertices of the homogeneous tree associated to PGL,(F); the
maximal orders R which optimally contain @, correspond to the (g+1)-¢°~*
vertices of distance ¢ from R,. These points are permuted simply-transitively by the
action of the group K*/F*(1+n°-0)=0*/0*. If v, is fixed by some R* and ¢,
satisfies (1.3) we must show that #,(v,)#0. Butif £,(v,)=0, then /, is equal to zero
on the span on all lines fixed by subgroups S*, where the distance of the maximal
order S from R, in the tree is <c. This span has dimension (g+1)-¢°~! by
Lemma 3.1 and is therefore precisely the subspace fixed by O* in V,. This is a
contradiction, as ¢; is non-zero on the line V;(x~!), which is contained in the
subspace fixed by OF.

When K/F is a ramified field extension, there are two maximal orders R, and Ry
which contain 0. [There is a unique Eichler order R,n R}, of discriminant (7) which
contains @.] The maximal orders R which optimally contain @, correspond to the
2. ¢° vertices of distance ¢ from either R, or Ry, in the tree, and these points are
permuted simply transitively by the group K*/F*(1+=°- 0). Hence, arguing as
above, we see that a non-zero vector v, fixed by R* has non-trivial component in
the eigenspace V,(x ™), for all quasi-characters y of conductor ¢ of K*/F*.

Finally, we consider the case when K= F x F. Here we will use the Kirillov
model for V, where the action of the split torus K* is evident. Again we use
Godement’s notes [Go] as our basic reference. The Kirillov model occurs in the
space of complex functions & on F* which are locally constant and have compact
support on F; its precise definition depends on the choice of a non-trivial additive
character y of F, which we normalize to have kernel equal to 4. The Borel
subgroup B of GL,(F) acts on the space & by the formula

62 (¢ 5)s|co=wiosiasiasa

and the subspace %, of locally constant functions with compact support in F* is
B-stable, and has codimension 2 in V;. Moreover, the subspace V;* of functions f
in # with f(x)~c-|x|"?- u(x)* as x—0 has codimension 1 in ¥, and is B-stable,
and the Borel subgroup acts on the quotients V,/V;* by the characters
la/d|*>y(a/d) of the split torus K*. Finally, a function f, in ¥, which is fixed by the
;naximal compact subgroup GL,(4)=R$ is supported on A and is given by the
ormula:

3.3) fix)=q """ +a" "2+ ... —a™"),

where o= y(n) and n=ord(x)=0.
Now let y = &(a/d) be a character of K* whose restriction to F* is trivial, and let
1 be a non-zero linear form on ¥, which satisfies (1.3). First we assume that ¢ is
unramified. If £~ '=||'/2.u*, the form ¢, has kernel equal to the subspace
4 .Since fi=v, does not lie in either of these hyperplanes, we have #,(v,)+0 as
claimed. Hence we may assume that £~ '+||'/?- u*, and consequently that ¢, is
Don-zero when restricted to the subspace #,. It must then be given by the formula

34) £4(f)= | & f(x)-dx/lx| for all f in F.
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In particular, #, is non-zero on the characteristic function of A*. But this
characteristic function is a linear combination

g7 il )—q" P ata ) filnT )+ fi(x)

of translates of f; =v, by elements of K*, by (3.2)~3.3). Hence ¢,(v,)+0 also.
Finally, assume that ¢ has conductor n> 1. Then ¢, is again non-zero on %, and
is given by the integral (3.4). Let R,=M,(4) be a maximal order optimally

containing
a 0
o= {2 O)-aea).

" ] " ] -1
R’:(O n")RO(O n") '

If j is a unit in A/", R; is a maximal order which optimally contains

0,= {(g 2) :asd(modn")} .

All such maximal orders are obtained in this way and are conjugate under
K*/0* . F*=F*/(1+7"A). If f, is a vector in V fixed by R§, then

n )
fi= ( 0 ;,) fo= (/) folx)
is fixed by R¥. Let £: V—C be in the y-eigenspace for K*. If j is divisible by =, then
R; contains an order strictly larger than @, and #(f;)=0. It follows that if £(f}) =0
for one j which is a unit, #(f))=0 for all j € A. In particular ¢ vanishes on the linear
combination

and for je A/n", let

Y w(—j/m")f{x)= [ Y w(ilx—1)/ ﬂ”)] Jolx).
jeAjmnA jeAlnna
Since f(x) vanishes outside 4, and equals 1 on A*, this linear combination is 4"
times the characteristic function of (1 + 1" 4). But # is non-zero on the characteristic
function of (1 +n"A4) by (3.4), so £(f})+0 when j%0(modn).

4

We now turn to the proof of Proposition 2.6. First assume that K is a field. When
K/F is unramified, there is a unique order R, (or R;) of reduced descriminant (n")
which contains 0. The subspace of ¥, fixed by R* is one-dimensional, and equal to
the line fixed by @* [Gr, Proposition 6.4]. Since ¢, is non-zero on this line, the
result easily follows. A similar argument covers the case when &0, ®0,)=
— o p( —1), using the line fixed by R* in V;.

When K/F is ramified, our hypothesis states that the conductor n(V,) is less than
or equal to 1. Since we have treated the case of an unramified representation ¥, 1t
the last section, we may assume that n(¥;)=1. But ¥, has trivial central charactef,
so must be an unramified twist of the special representation. In this case there is 2
unique Eichler order R,=R, in M,(F) which contains @ and the vector v, fixed by
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R%* spans the eigenspace V;(x ') for K*. Hence #,(v,)+0. The argument is trivial in
the division algebra case, as V] is one-dimensional.

When K> F x F, we again use the Kirillov model for ¥,. Since we have treated
the case of an unramified representation in the last section, we may assume that
nvy) 1.

Lemma 4.1. Assume that V, has trivial central character and conductor n(Vy)=1.
a) If n(Vy)=1, then V, is the twist of the special representation by an unramified
quadratic character n. The new vector in the Kirillov model is supported on A and is
given by the function f(x)=n(x)|x| there.
b) If n(Vy)=2, then the new vector in the Kirillov model is given by the
characteristic function of A*.

Proof. We recall that we always take the Kirillov model for V; with respect to an
additive character p which is trivial on A. If n(V;)=1, then ¥, is either an
unramified twist of the special representation or is a principal series representation
with ramified central character. Since V; has trivial central character by
assumption, this eliminates the second case. If ¥, is the twist of the special
representation by an unramified character 7, then the space &, of locally
constant functions with compact support on k* has codimension 1 in the Kirillov
model and the Borel subgroup acts on the quotient space by the character
n(ad) - |a/d|. The new vector v, fixed by R} =TI(n) is supported on A, and is given
by the function f;(x)=n(x)|x| there. This follows from the explicit construction of
the Kirillov model for the special representation as given in Godement [Go].

Now assume that n(V;)=2. The proof of the formula for the new vector will
follow the argument in Casselman [Ca], which implicitly treats the case of
supercuspidal representations. We begin by showing that the new vector always
lies in the subspace #,. Since this is all of ¥, for a supercuspidal representation, we
may assume that V; is either a principal series or a special representation. In this
case, by our hypothesis on the conductor and central character, the characters of
the split torus acting on the (semi-simplification) of the guotient V,/%, are
ramified. But the new vector is fixed by the subgroup of diagonal matrices with a
and d in A*. Hence it goes to zero in the quotient, and lies in .

A vector v in V] is invariant under the subgroup I(n™) of GL,(4) if and only if
both v and H,v are invariant under the subgroup

B(4)= {(g Z) -a,de A*, beA},

0 é) [Ca]. We note that by formula (3.2), a function f(x) in %,

—_ Tcm
isinvariant under B(A) if and only if f is supported on A and f(x) depends only on
ord(x).

Let du be the Haar measure of volume one on the compact group A"“. For.a
character v of A* and an integer n, define the Fourier transform of a function f in
Z, by

where H,, =

Julv)= ‘{‘ fun™)v(u)du .

These transforms are collected in the Laurent polynomial

fo.0= 5, £70).
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A restatement of the fact that f is invariant under B(A) is that f(v, t)is equal to zero
for v#1, and that f(1,¢) is a polynomial in t.

The action of the Weyl group element w= on %, in V, is given by the

-1 0
local functional equation of Jacquet and Langlands [J-L, 2.10, 2.18] (we recall that
our central character w=1):

Wi, )=Crm,)f(v=1,¢7Y), with
C(L qs_ 1/2)=L(1 -5, Vl) : E(S, V19 'P)/L(S, Vl) .

Since n=n(V;)22 and w=1, we have L(s,V;)=1 for all s and (s, V},y)
=A.q "¢~ 12 with A a non-zero complex number. Hence C(1,t)=A-¢~". Since

™ 0
H,=w- ( 0 1), we find that

@('19t)=A'tm_"'f(1’t_l)'

Now assume that f is a new vector, so both f and H, f are fixed by B(A). The
both f(1,t) and f(1,t™!) are polynomials in t. Hence f(1,t) is a constant. Since
f(»,t)=0for v=1, we see that f is a multiple of the characteristic function of 4*.

Remark 4.2. The same result holds if we only assume that the central character of
V, is unramified.

We now complete the proof of Proposition 2.6. Assume that n(V;)=1. The new
vector in the Kirillov model is given by the function f; of Lemma 4.1. Hence the
linear combination of K* translates of this vector —#(n)-q~ ! - f,(m ™ 'x)+ f1(x) lies
in the subspace %, and is the characteristic function of A*. The argument now
separates into two cases, as in the previous section. Write y=&(a/d). If ¢~ =n-||,
then #, has kernel the codimension one subspace %, and is non-zero on the new
vector f,, which does not have compact support. If £~ 7 -| |, then ¢, is non-zero
on %, and hence given by the integral (3.4). Since ¢ is unramified, this integral is
non-zero on the characteristic function of A*, and hence ¢,(v,)=0.

If n(V,)=2, the new vector fixed by R¥* is represented by the characteristic
function of A* in the Kirillov model, by Lemma 4.1. The linear form ¢, must be
non-zero when restricted to %, as the torus acts on the quotient via ramified
characters. Hence 7, is given by the integral formula (3.4) and ¢,(v,)=0. This
completes the proof of Proposition 2.6 in the split case.

5

The second general situation involving test vectors for linear forms which we will
consider is the following. Let V;,V,, and V; be three irreducible, infinite
dimensional, admissible complex representations of the group GL,(F) whose
central characters satisfy @, - @, - @3 =1. When the residual characteristic of Fis 2,
we assume that at least one V; is not super-cuspidal. We consider the represen-
tation V=V,®@V,®@V, of the group G=GL,(F)x GL,(F)x GL,(F). By ou
hypotheses this is admissible and irreducible, and the subgroup AGL,(F)
embedded diagonally in G acts trivially on V. The theory of Gelfand pairs shows
that the space of H=AGL,(F) invariant linear forms ¢: ¥—C has dimension at
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most one, and Prasad [P] gives a criterion for a non-zero H-invariant linear form
to exist.

Let o; be the two-dimensional representations of the Weil-Deligne group of F
associated to the irreducible representations V. The triple tensor product
0,®0,®03 is an eight-dimensional symplectic representation of the Weil-Deligne
group, and has a local root-number &0,®0,80,)=+1. When g0, ®0,0;)
= —1, one can show that the representations V; are all square-integrable. Hence we
obtain the corresponding representations ¥; of the group D*, and an irreducible
representation V'=V]®@V,® V; of D* x D* x D*. Again, by the theory of Gelfand
pairs, the space of H'=AD* invariant linear forms on ¥’ has dimension at most
one.

Proposition 5.1 [P]. There is a non-zero H-invariant linear form¢:V—C (whichis
unique up to scalars) if and only if &(6,®0,R0;)= +1.

There is a non-zero H'-invariant linear Jorm £:V'—C (which is unique up to
scalars) if and only if &0, ®0,R05)=—1.

6

We will find a test vector for the linear form ¢ (or ¢') of Proposition 5.1 under the
hypothesis that

(6.1) Either the ¥ are all unramified principal series representations of GL,(F), or
the ¥} are all unramified twists of the special representation of GL,(F).

In particular, the central quasi-characters w; are all unramified; let n; be
unramified quasi-characters of F* with 7?=w, and niMans=1. Then

V(@17 H®(V,®1; (V@13 1)

asa representation of H = AGL,(F). Hence it is no loss of generality in what follows
to assume that all w;=1.

Proposition 6.1. If the representations V are all unramified principal series, then the
open compact subgroup M =GL,(A) x GL,(4) x GL,(A4) of G=GL,(F) x GL,(F)
X GL,(F) fixes a unique line in V="V, x V, x V3. If v is any non-zero vector on this
line and ¢ is a non-zero H-invariant linear form on V, then £(v)+0.

Next assume that the V; are all unramified twists of the special representation;
since the central quasi-characters w; are all trivial, each representation has the
form ¥~ Sp®m; where Sp is the special representation — which occurs in the locally
constant functions on P'(F) modulo the constant functions — and n; is an
unramified quadratic character of F*. Hence V; is completely determined by the
value 7(m)= 1 1. We have the following formula for the local root-number [P,
Proposition 8.6]:

(6.2) &0,®0,R03)= —n,(n) - 1,(n) - n5(7).

Proposition 6.3, Assume that the V; are unramified twists of the special represen-
tation, for i=1, 2, 3.

If oo, ®0,®03)=+1, let R be an Eichler order of reduced discriminant (r) in
My(F). Then the open compact subgroup M=R* xR*x R* of G=GL,(F)
X GL,(F) x GL,(F) fixes a unique line in V=V, x V,x Vy. If v is any non-zero
vector on this line and ¢ is a non-zero H-invariant linear form on V, then £(v)+0.
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If &(6,®0,®0;)= —1 let R’ be the unique maximal order in D. Then the open
compact subgroup M’ =R'* x R’* x R'* of G'=D* x D* x D* fixes a unique line in
V'=V] x V3 x V3. If v is any non-zero vector on this line and ¢’ is a non-zero H'-
invariant linear form on V', then £'(v')%0.

We remark that an example of an Eichler order of reduced discriminant () is
the subring of integral matrices with ¢=0(mod n). Hence R* is conjugate to the
Iwahori subgroup I'y(m) of GL,(A4) in the first case. We will see that the line fixed by
M is also fixed by the triple product (g, g, g), where g is a non-trivial element in the
normalizer of R*. Similarly, the line fixed by M’ is also fixed by the triple
product (g’,g’, g"), where g’ =, is a non-trivial element in the normalizer of the
units R’* of the maximal order of D.

7

We now turn to the proofs of Propositions 6.1 and 6.3. For 6.1 we will only sketch
the main ideas; the details appear in [P, Theorem 5.10]. Let G = GL,(F). We may
identify our linear form on V; ® ¥,® V3 with a non-zero linear map ¢ in the space
Homg(V, ®V,, V3), where V; is the contragredient of V3. If v; are new vectors fixed
by GL,(A) in V,, it suffices to show that £(v; ®v,)+0 in ¥,. (It will then be a new
vector in V; which pairs non-trivially with v3.)

Write V;=Ind§y; with x; (g Z) =ufa/d) as in Sect.3, so V; consists of

. . o b .
functions satisfying f ((g d) g) = y0'? (g Z) f(g) with & (g Z) =|a/d|. We
then have an exact sequence of G-modules, where ind§ denotes compact induction
from the split torus T S B:

(7.1) 0-indS$y, x5 = Vi ® Vo~ Ind§y, 1,6 > —0.

Indeed, V,®;V,=ResgInd§X5(x;, x x,) and the action of G on BxB\GxG
=P!(F) x P1(F) has precisely two orbits. The open orbit (x + y) can be identified
with T\G and the closed orbit (x=y) with B\G.

There are two cases to consider. If y, y,6'/2 = y£ the map ¢ is a scalar multiple of
the surjection in (7.1). Since v,(bk)=x{(b)3(b)"/> for be B, ke GL,(A), we see that
v, ®v, goes to a non-zero new vector in Ind§(x,, x,6"/%). Hence £(v, ®v,)+0.

If x,226"2#25, F=Tv,®v,)— D x2(m) —axi “2z ' (@)1 (0, ®v,) lies in the
subspace indSy, z; 1, see [P]. If £(v; ®v,)=0 then, since ¢ is G-invariant, /(F)=0
also. But F, viewed as a function on G/T, takes a non-zero constant value on a
single GL,(A) orbit [the set of points whose reduction (mod ) is not on the
diagonal of P*(F,) x P'(F,)]. From this we will derive a contradiction.

Indeed, by Frobenius reciprocity, we have an isomorphism between
Hom(indSy,x; !, ;) and the one-dimensional space of linear forms m on Vs
satisfying m(t ~ 1v)=yx,x; '()ym(v). Associated to m we have the G-linear map:

(72) (W)= | f(g)m(gv)dg
T\G

for feindSy,x; "' and veV,.

By Proposition 2.3 we have m(v;) 0. Since v, is fixed by GL,(4) and F takesa
constant non-zero value on a single GL,(A4) orbit in T\ G, we may conclude frem
(7.2) that ¢,(F)(v5)+0. Hence /(F)%0 in ¥,
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We now turn to the proof of 6.3. The second statement is clear, as V' has
dimension 1. To prove the first, we will show that if V; is any representation of
G=GL,(F) with trivial central character and conductor <1 which is not
isomorphic to the special representation Sp, then the unique G-invariant linear
form on SpRSp®V, takes a non-zero value on the product of new vectors
1;®v,®v;3. The vectors v; and v, are assumed to be fixed by the Iwahori
subgroup Iy(m); v, is fixed by Ij(m) when n(V;)=1, and by a maximal compact
subgroup containing Iy(n) when n(V3)=0.

The action of Iy(r) on P*(F) has two orbits, which contain 0 and oo respectively.
Let f, and f, be the characteristic functions of these orbits. In the representation
Sp, on the locally constant functions on P*(F) modulo the constant functions, we
have the linear relation f, + f,, =0,and f, = — f, is a new vector fixed by I'(n). The
function fy x f,, on P! x P! vanishes on the diagonal, so lies in the Schwartz space
S(T\G) of the open orbit. It is non-zero on a single Iy(n)-orbit in T\G, where it
takes the value 1.

But S(T\G) is easily seen [P, Lemma 5.4] to lie in an exact sequence of
G-modules

(7.3) 0-Sp—S(T\G)~Sp&Sp—0.

Hence the space of G-invariant linear forms on Sp&Sp®V; is isomorphic to
Homg[S(T\G), V3], under the hypothesis that ¥; (hence V3) is not isomorphic to
Sp. By Frobenius reciprocity, there is an isomorphism between the (one-
dimensional) space of T-invariant linear forms m on V; and Homg[S(T\G), V3],
sending a T-invariant linear form m on V; to ¢,,e Homg[S(T\G), V5] given by

(74) £l f) (0)= T{G f(g)mlgv)dg

for fe€S(T\G) and ve V;. By Proposition 2.6 we have m(v;)+ 0. Since v; is also
I'y(m)-invariant and f = f, x f, takes a non-zero constant value on a single I'y(n)
orbit, we may conclude from (7.4) that Z,(f, x f,,) (v3) 0. Hence £(v; ®v,®v3) +0.

Remark 7.5. 1f V; and V, are unramified, and V; has conductor n2 1, the non-zero
linear form £ on V =V, ® V,® V, which is G-invariant must vanish on v; ®v,®v;,
where v, and v, are fixed by GL,(4) and v, by I(n"). Indeed, the restriction of £ to
1, ®v,®V, would be a GL,(4)-invariant form on V;, which is necessarily zero.
Perhaps one should study the value of £ on v; ®v¥ ®v;, where v} is a new vector
fixed by the units R* in a maximal order with R*nGL,(4)= I(r").

Remark 7.6. We give an example to show that even for the equal conductor case,
the invariant linear form may vanish on the tensor product of new forms in
Vi®V,®V;. Let V,, V,, V; be supercuspidal representations of trivial central
character and of conductor 2. The representations ¥; when restricted to GL,(4)
have pieces W; which are irreducible discrete series representations for GL,(F,). So
the linear form on V,®V,®V, gives rise to a GL,(F,)-invariant linear form on
W, ® W,® W,. The new forms in ¥; can be thought of as the unique vectors in W,
lnvariant under the split torus of GL,(F,). Now assume that V,=V, (this
assumption is not essential but makes the argument more transparent), and
therefore W, = W,, and assume that W, does not lie in the symmetric product of W,
b}lt rather lies in the exterior product of W, (it is easy to see that there are many
discrete series representations W, with this property, and that any W, appears in
Some V,). This clearly implies that the unique linear form takes the value zero on

the product of new forms in this case.
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8

We end by giving some global applications of the local results in Propositions 6.1
and 6.3. There are similar applications of Propositions 2.3 and 2.6, whose
formulation we leave to the reader.

Let E be a global field, with no complex places. Let A be the ring of adeles of E,
and let D be a quaternion division algebra over E which is ramified at every real
place. For each place g of E, we define g,(D)= +1 if g is splitin D, and go(D) = —1
if g is ramified in D. Then Iw] go(D)=1 by global reciprocity.

Let ¥}, V,, and V; be admissible irreducible representations of the adelic group
G =D%/E%, which is the direct product of a compact subgroup with a locally
compact, totally disconnected subgroup. Let V=V, ®V,® V; be the correspond-
ing irreducible representation of G>.

Proposition 8.1. The space of G-invariant linear forms ¢:V —C has dimension <1,
with equality holding if and only if €,(0,®0,®0a3)=¢,(D) for all places g of E.

Proof. The representation V is the restricted tensor product of local represen-
tations Vp=V,p@V,,®@V;p of (DOE)**/E¥*=G). Since the space of
Ge-invariant forms on Vp has dimension < 1, this shows that the G-invariant forms
have dim <1 on V. A necessary condition for equality is that dim Homg(Vp, C)=1
for all p; by Proposition 5.1 (and the analogous result at real completions [ P]) this
holds if and only if e,(0, ®0,®03)=¢,(D).

In fact, the necessary condition on the existence of local forms 7, +0 which are
Gp-invariant is sufficient, by Proposition 6.1. Indeed, the tensor product £ = @7 is
non-zero and G-invariant on V.

We henceforth assume that the irreducible representations ¥; of G satisfy the
further conditions:

(8.2) At every p which is ramified in D we have dimV; ,=1.

(8.3) Atevery g which is split in D we have equal conductors np=n(V; o)=n(V,,y
=n(V; =1

Let vX denote the global new vectors in ¥, which are fixed by the open compact
subgroup:
(8.4) K= [ Rtx [] Iy(n")
@ ram. @ split

of G. Then the vX are unique up to scalars, and v™ = v¥ @ v5 @ % is abasis for the line
V™ fixed by the open compact subgroup M =K? of G°.

Proposition 8.5. Let ¢ be a G-invariant linear form on V. Then the new vector Misa
test vector for ¢: we have £+0 in Homg(V;C) if and only if £(v™)=0 inC.

Proof. We have £ =@/, so /(™) =[] £,(v}). But we have seen in Propositions 6.1
and 6.3 that £, =0 implies Zp (v¥)+0.

Proposition 8.5 is often useful in the study of automorphic representations V of
G3. We say that ¥} is an automorphic representation of G =D}/E} if there exists
D*-invariant linear form m;: V—C. The theorem of “multiplicity-one” shows that
when m, exists, it is unique up to scalars. Since the quotient D*E%\ D% is compach,
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the integral

(8.6) (v, ®@v,®v3)= |
D*E}\

‘A

- ml(gvl)mz(gvz)m3(gv3)dg

gives a G-invariant linear form on an automorphic representation V.,

Of course, a necessary condition for the form # defined by (8.6) to be non-zero is
that &p(6; ®0,®03)=¢p(D) for all p, by Proposition 8.1. But this collection of
local conditions is not sufficient. Jacquet conjectured, and Kudla-Harris [K-H]
proved, that ¢ is non-zero provided the local conditions are met and the Garrett
L-function L(¥; s) is non-zero at its central critical point s=4. For the definition
and analytic properties of L(V,s), see [Ga] and [PS-R].

In the case when V is automorphic and satisfies (8.2)—(8.3) we deduce that LV,3)
and #(v™) are either both zero or both non-zero. In fact, one can give a precise
formula for L(¥,4) in which the only term which can vanish is the value £(v™) on
our global test vector [Gr-K].
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