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§ 1. INTRODUCTION

IN recent months the present authors have been interesting themselves in
the study of optical phenomena associated with thin films and crystals of
anisotropic metals. For the experimental investigation of these it became
necessary to fabricate an automatic analyser for the analysis of polarised
light. After considering some possible methods purely on an ad hoc basis,
it became evident that a careful theoretical analysis of this problem using the
concept of Poincaré sphere (1892) would prove fruitful if one has to design

and construct a proper automatic analyser. When the various methods of

analysing polarised light were deduced systematically using the Poincaré
sphere concept it was found that some of these were already in existence
while others were quite new. Even amongst these one saw that while a few
were elegant from the point of view of theoretical analysis, they were hard
to attain in practice. Some, on the other hand, could be made in a fairly
well-equipped laboratory. It was felt worthwhile recording this theoretical
approach as it proved quite illuminating to the authors from the point of
view of instrumental design. It is proposed to. present the practical construc-
tion of some of these analysers and the results of experimental study using
these in later papers.

§ 2. THE STATEMENT OF THE PROBLEM

In the Poincaré representation (Fig. 1), a completely polarised beam
is represented as a point on the surface of a sphere of unit radius. All

* On leave of absence from The Central Electrochemical Research Institute, Karaikudi-3.
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possible states of polarisation can be indicated on this sphere. After Poincaré
gave this elegant concept many new theorems have been deduced by several
authors (Poincaré, 1892; Pancharatnam, 1956 a). For extensive references

Fic. 1. The Poincaré sphere: H, C', V, D and N denoté, respectively, linearly polarised
light at an azimuth 0°, 45°, 90°, —45° and (180°—f); L, R—left and right circularly polarised light;

'

P—an elliptic vibration of azimuth A, and ellipticity — w,; P, the state orthogonal to P; A an
analyser completely transmitting the light in state A; Ag an analyser completely blocking the light
in state A.

_see Ramachandran and Ramaseshan, 1961. Some of the theorems which
will be vscd in this paper are given in Appendix L

An clliptically polarised light can be considered to be the most general
state of polarisation; circular and linear states being particular cases. It
is charzcteriscd by an azimuth (2), ellipticity (w) and the sense of rotation
is given by the sign of (w). The azimuth denotes the orientation of the major
axis (i.e., the angle it makcs with a reference direction taken usually as the
Lorizental, H) and tzn o stands for the ratio of semi-minor to semi-major
axis. Complete cnalysis of polarised light, therefore, means the determi-
nation of A, |w| znd sign of w. From the point of view of Poincaré repre-
scntation, znalysis of the state of polarization is simply finding the location
of the point represcuting the state on the Poingaré sphere. The point denot-
ing the state will move on the Poincaré sphere if the state of polarisation
of light changes with time. The analysis of such light beams requires
continuous determination of the states of polarisation.
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§ 3. BASIC PRINCIPLES OF ANALYSIS

. In this scction we shall discuss the various methods that may be adopted
to locate the point P on the Poincaré sphere. The light pencil, which is
being analysed, will be denoted by P and we shall assume, unless otherwise
stated, that it is completely polarised. Its orthogonal state will be repre-
sented by Pg. The intensity, azimuth and ellipticity of P will be denoted,

respectively, by I, Ap and . I, will stand for the intensity transmitted by
analyser A.

(@) Locating P by its Stokes parameters

P is completely spccified by the projected value of OP (Fig. 2) along
three mutually perpendicular axes OX, OY and OZ which are the Stokes
parametcrs M, C and S. Hence the experimental evaluation of M, C and 8

- complete the determination of the position of P. This can be accomplished
by measuring the intensities transmitted by the following analysers: a linear
analyser set ¢t angles 0, 45°, — 45°, 90°; a right circular analyser and a left
circular analyser. If the measured intensities are, respectively, denoted by
Io, Toges Logses Loos Ir and I, then the Stokes parameters are calculated from

I =T+ I = Igs‘ + g = L +1x )
M = Io - Ioa' (2) 1
C == 1450 — L¢5u = 21450 A I , (3) I
S =l —Ig=2I,—1 @ o
" e and wp arc obtained from ; ;7;;
" C S
tan 23 = §; 5) ; i
sin Zwp = —IS: . (6)

The Stokes parameters for characterising states of polarisation has found
extensive application in theoretical studies. Unfortunately, this elegant
‘idea does not appear to have been exploited much for the experimental deter-
mination. This is possibly because of the fact that the determination of
- §:okes parameters involves the measurement of absolute intensities which
was troublesome. With the recent progress in the techniques of accurate
measurement of absolute intensity, the main experimental hurdle seems to
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have been removed. Even preliminary cxperiments show that very accurate
determination of the state of polarisation could be made with this technique.

Zl;

L

R

FI1G. 2. The representation of the Stokes parameters of an arbitrary state P.

Simple methods for automatic recording of Stokes parameters and the
accuracy attainable by this method will be discussed in Part II

(b) Determination of the state of polarisation by measuring fraction of the
~ intensity transmitted by three analysers

P can be located on the Poincaré sphere by measuring, on the sphere,
the distance between P and three other points whose positions are known.

If the position of a point A; and the distance i;Al are known, then P lies on
the small circle whose centre is at A; and radius is i’?&l (Fig. 3). If the distance

N . .
PA, of P from a second known point A, is also determined, then the position
of P is narrowed down to one of the two points of intersection, P and P’.

The ambiguity in position can be resolved by measuring a third distance PA,
of P from a point A;. An important condition to be satisfied for getting
only one common point of intersection for the circles is that the point A,
should not lie on the same great circles as points A; and A, This method
is very similar to the resolution of the phase problem in X-ray crystallography.

-~

-
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. N
The distance P}.\1 between two points (say P and A;) on the Poincaré
.spherc. can bfa experimentally found by measuring the fraction (I,,/I) of the
intensity of light beam in state P transmitted by an analyser A, becauss,

¥ ﬁl =3 cos~1 (\/%) . Q)

(sge Appendix I, Theorem 4 5). Therefore, by measuring the fraction trans-
mitted through analyers A;, A, and A,, P can be located.

R

Fio. 3. Location of P by measuring distance of P from any three points A,, A, and A, whose
positions are known. For the unique determination of P the three points: should not lic on the

same great circle.

Two special cases can be thought of wherein the position of P is obtained
by _measuring the distance of P from two known points. They are D

(a) The known points A, and A, and the point P all lie on the same great

- circle, then the position of P is the point of tangential contact between the small

circles with centres at A; and A, and radii PA, and PA, (Fig. 4).

() If the known positions arc represented by points Ny ‘and N, on the
equator then also the position of P is obtained by knowing two distances,

viz., PN, and fﬁz‘because the two points of intersection P and P’ of the small
sircles have the same Ap and |wp|- The sign of & is different for P and P,
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For many applications only |w| is required and thercfore this method could
be useful in such cases. This procedure is similar to the double-field analyser
method of determining azimuth of polarised light (Ramachandran and Rama-
seshan, 1961, page 37).

Fia. 4. Location of P by measuring two transmitted intensities.

(¢) Determination of the position of P by converting the clliptic vibration into
a known state

Suppose P is a pole of the great circle GEKF (Fig. 5) then the point
P is 90° away from any point on this great circle. If an analyser is taken
along this great circle then there would be no variation in the transmitted
intensity as the position of the analyser is changed. The great circle GEKF

" is completely defined by the longitude of the point E and the angle of incli- -

nation, 8. Once these are found the position of P is detcrmined.

P can be considered as the result of intreducing a phase difference 8,
between the E and F components of a linear vibration whose azimuth is

equal to «}ﬁé, i.e.,45° since any point on the great circle GEKF is 90° removed
from P. Therefore, the situation just described can be realised by setting
the axes of a variable birefringence element at 4 /4 to the axes of the ellipse
‘and introducing the right amount of retardation, 8. This setting converts
P into circular state. This principle was first used by Kent and Lawson (1937).




;
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. Alt;rnately, the incident light may be separated into two orthogonal
linear V}brations. This is accomplished by setting the exes of a Wollaston
doyble-lmage prism parallel to those of the elliptic vibration. The oricn-
tation of the ellipse is thus given by that of the axes of the double image prism
and the ratio of the two intensities transmitted by the prism gives tan“m
{Archard et al. (1952) used this principle for the construction of semi-automatic
instrument.

R

Fig. 5. Locating P by finding the great circle for which P is a pole.

(d) Null method for the location of P

In this method the state of polarisation of 2n clliptic analyser is changed
#ill it becomes orthogonal to the incident elliptic vibration at which position
the analyser transmits zero intensity. The intensity trenemitted through
the analyser is used as a guide to bring the znalyser to the state P. This
method has been widely used for the construction of instruments for the

analysis of polarised light.

(¢) Location of P by interference experiments

Pancharatnam has suggested (1956 b)—while developing the generalised
theory of interference (1956 a) of two elliptic vibrations, 1 end 2, in difitrent
states P, and P,—an interference method of determining distznees on the

Poincaré sphere. This theory leads to the result
I=1+ I, + 24/TT; cos ccos & (8)




304 S. R. RAJAGOPALAN AND S. RAMASESHAN

where I, I, and I, are, respectively, the intensities of the resultant, beam 1

and beam 2; C stands for % 5}; and & is the general phase difference bet-
ween 1 and 2. He has pointed out that cos ¢ is equal to visibility of fringes
(as defined by Michelson) formed under the condition I, =1, and can be
determined by measuring visibility V of fringes which is given by

I I

V = Imx. — Imn. ] (9)

Min.

Therefore, by interfering the incident light with a coherent beam in state
A and determining V, we can find the distance of separation between P and
A on the Poincaré sphere. If the experiment is repeated with analysers in
two other states of polarisation, we would get the distance of P from three
known points which leads to the location of P. This method does not offer
any particular advantage over the methods which depend upon the measure-
ment of absolute intensity.

On the other hand, it would be worthwhile to develop a method of ana-
lysis based on the idea that the orthogonal states do not interfere and would
therefore give zero visibility. This could be done by taking two coherent
pencils of monochromatic light and passing one of them through the system
and the other through an elliptic analyser and then combining the two beams.
The elliptic analyser is changed using any one of the techniques described in
Section 5 till the field is uniformly bright. When this happens the state of the
analyser is antipodal to that of the incident light. The advantage of this
method is that it does not require the measurement of absolute intensity.

§ 4. ANALYSIS OF PARTIALLY POLARISED LIGHT

We shall briefly indicate in this section the suitability of some of the
methods for the analysis of partially polarised light, which is not cut out by
.any analyser in any position; the intensity transmitted by an orthogonal
analyser is minimum and not zero. Null methods are, therefore, inapplicable.

The method based on the Stokes parameters (§3 @) can be used. The
Stokes parameters (I, M, C, S) of a partially polarised light pencil is also
given by equations 1 to 4. The essential difference between partially polarised
light and completely polarised light being that in the case of partially pola-
rised light M, C and S represent, respectively, the components of the polarised
portion of the incident beam (i.e., components of the Stokes vector) along
the directions OX, OY and OZ and consequently, ‘

VME+CTF S <1 | (10)

e
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Therefore, it is not redundant, in the case of partially polarised light, to
specify I in addition to M, C and S; though it is so in the case of completely
polarised pencils.

il

Once the parameters I, M, C and S are known, the azimuth of the incident
vibration is obtained from formula 5 and wp is calculated from the formula

sin 2ep = % (11)

where Ip denotes the magpitude of the Stokes vector of the incident light
beam. p is the degree of polarisation given by

‘N 2 2
p VM tCES a2

A partially polarised beam can be looked upon as an incoherent addition
of completely polarised beams (Pancharatnam, 1956 b, p.403). It might,
therefore, be of interest to determine the degree of coherence of partially
polarised light. It can be found by splitting the beam into two coherent ones,
one of them being passed through a linear analyser and the other sent through
the orthogonal analyser. The beams are then made ‘to interfere. It is so
arranged that one of the beams passes through a longer path. Measurement
of the Stokes parameters of the resultant beam leads to the determination
of degree of coherence, y (Pancharatnam, 1956 b, 5.12) because

1 =T
y=+2\/r1—12-‘\/c + 8
where
13
L=30+0 a3
and
L=3I-C) J

§5. SCANNING THE POINCARE SPHERE

For locating automatically and continuously the point P on the Poincaré
sphere, we have to make the state of an analyser travel a particular path.
This can be accomplished by rotating either of the optical clements (i.e.,
birefringent plate and linear analyser) or both of them. The state of such
a rotating elliptic analyser varies with time in a difinite manner and thus
scang the surface of the Poincaré sphere along a particular path. We shall
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in this section, using Theorem 1 (Appendix I) state the main types of scanning
and the arrangement necessary for obtaining them.

(a) Scanning along a meridian

The combination of a stationary quarter wave plate and a rotating lincar
analyser results in scanning along a meridian whose longitude is cqual to
twice the angle between the slow axis of the birefringent plate and the reference

direction, H (Fig. 6).

F1G. 6. Scanning the Poincaré sphere along a meridian or a latitude circle. (@) Stationary
quarter wave plate(slow axis at E) and a linear analyser, rotating in anticlockwise direction, scanning
along the meridian ERFL. By changing the slow axis to the position E, scanning is done along
E.RF,L. (5) A linear analyser set with its vibration direction parallel to the slow axis and the two
rotated at the same speed results in scanning along the equator. If thelinear analyser vibration
direction is inclined to the slow axis by  then the scanning is done along the latitude circle of
latitude 2 w.

(b) Scamning along a latitude circle

‘When both the elements (i.e., the birefringent plate and linear analyser)
are rotated with the same speed, the scanning takes place along a latitude
circle; the latitude of which is equal to twice the angular separation between
the slow axis of the quarter wave plate and the vibration direction of the
linear element (Fig. 6).
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(c) Scanning along an oblique path

If the azimuth and ellipticity of the clliptic znalyser are changed conti-
nually by rotating both the clements at different speeds or the quarter wave
plate alone, the analyser scans along an oblique path* (Fig. 7). The special
advantage of the latter method is that very high specds of scanning can be
attained by using an electro-optic cell as a birefringent element. Fast scanning
rates are necessary for the determination of rapidly changing states of polarisa-
tion for instance, the analysis of light reflected from a metal on which zan

oxide film is growing.

Fic. 7. Scanning the Poincaré sphere along an oblique path. Path traced by rotating
elliptic analyser; both the clements rotating at nearly but not exactly the same speed. ~ » - - -Path
traced by the combination of a rotating A/4 plate and a stationary linear element. --- -Path
of a combination of a fast rotating linear analyser plus a very slow rotating quarter-wave plate.

(d) Scanmning along a great circle of any arbitrary inclination to the cquatorial
circle

Rotating a linear analyser behind a variable birefringence rlate leads to
scanning along a great circle inclined to the cquatorial circle by an angle, &
equal to the retardation introduced by the birefringent element (Fig. 8).

- ems———

* The word oblique path is used here in the senss that thcpatb, described is neither a great-
circle nor a small circle. ' ’ :
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Fic. 8. Scanning the Poincaré sphere along 2 great circle of any arbitrary inclination. A
stationary variable birefringence element (its slow axis at E) and a counterclockwise rotating linear
clement trace the path ECFD when 8 =0, EG’FK’ when 8 = §, ERFL when 8 = 7/2. If the
fast axis of the birefringent element is at E then the path traced by the elliptic analyser (linear ana-

lyser rotated in anticlockwise direction) is EC’FD when 8 =0, EKFG when § = 3 and ELFR
when & = n/2. ‘

§ 6. AUTOMATION AND RECORDING

Broadly speaking there are two ways of using the rotating elliptic analyser
for automatic analysis of polarised light.

(@) It can be made to scan along 2 definite path and the position of P
is obtained from the intensities transmitted by it at predetermined positions.

(b) It can be made to ““ hunt” the point Pp by making the output of
the photocell receiving the transmitted light control and guide the movement
of the clliptic analyser. When the state of the rotating elliptic analyser is
the same as Pg, the movement of the clliptic analyser can be frozen and its
state rccorded. ‘

The speed of analysis depcnds upon the rate at which the Poincaré
sphere is ccanncd.  Rotating analysers made from a mica plate and a polaroid
or nicol as a lincar element can be rotated by using synchronous motors
and beat frequency oscillators. As these are mechanically rotated it would
not be possible to achieve spceds greater than 30 to 40 r.p.s. corresponding
to a scanning speed of 60 to 80 times a second. On the other hand, if ap
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electro-optic cell with a liquid or crystal is used asa birefringent element,
the field causing the birefringence could be rotated with extremely high fre-
quencies. Therefore, scanning along an oblique path can be done at very
high speeds, thus making continuous analysis of rapidly changing states of
polarisation feasible. It must be remarked that since one cannot think of
a simple linear analyser which is based on electro-optic principle one cannot

achieve very high scanning rates with rotating analysers in which both the
elements or the linear element alone is rotated.

Some of the methods discussed in Section 3 depend upon measurement
of absolute intensity which is best done with a photomultiplier tube and
modulated light. Electro-optic effect and Faraday rotation have been used
for modulating light (Takasaki, 1962; William and Weingart, 1964). It
can also be done by using an ac arc source run by a stabilised power supply
(Sivaramakrishnan, 1956; Ingersoll and Liebenberg, 1954).

In the visual measurement, higher accuracy is realised by matching two
intensities for equality using a half-shade. In the photo-electric method also
the half shade principle would prove useful, because such a comparison
gives directly the error signal required for driving the servo-mechanism.
Therefore, wherever possible it is preferable to employ two rotating analysers
and use the half-shade principle. Since a photocell, unlike the human cye,
is sensitive even at higher levels of illumination the two analysers may be
separated by an angle that gives maximum sensitivity.

The methods based on intensity measurement can be accomplished in
two ways. One may either record the state of the analyser when the trans-
mitted intensity attains a predetermined value or record the transmiited
intensity corresponding to predetermined ‘state of the analyser. Although
the former method is more accurate, it is much more difficult to record angles
than to record intensity.

For recording we can use either a pen recorder or an oscilloscope. A
pen recorder can be used in conjunction with devices which make use of
mechanically rotating elliptic analysers for recording stationary -state':; of
polarisation or those whose variation is so slow that one can consider it ?o
be constant for a second. Oscilloscopic recording can be used for the' rapid
analysis of polarised light using a rotating analyser comprising of a stationary
linear element and an electro-optic cell in which the field is rotated.

§ 7. SUMMARY

An elliptic analyser, consisting of a birefri{xgent element and a linear
element, can be converted into a rotating elliptic analyser by rotating one
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or both the elements. The Poincaré spherc could be scanned, with such
a device, along a meridian, a latitude circle, a great circle of any arbitrary
inclination to the equator or any oblique path. Continuous analysis of
polarised light can be accomplished by using such an analyser. The prin-
ciples of some of the possible methods of analysis are presented. The problem
of analysis of partially polarised light is also bricfly discussed. The speed
of analysis is important in analysing changing states of polarisation and
depends on the speed of rotation of the elliptic analyser. Itis pointed out
here that fast rates of scanning are possible by using an electro-optic cell
os o birefringent element and rotating the field that causes birefringence.
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APPENDIX [

1. A completely polarised lig%} beam in any arbitrary state of polar~
isation characterised by an azimuth, Ap and ellipticity — wp is represented by
a point P—whose longitude is 2Ap and latitude is—2wp—on the Poincaré’s
sphere. Positive values of o (lower hemisphere) correspond to left rotating
ellipses and negative values of « (upper hemisphere) to right rotating
ellipses (Fig. 1). '

2. The efiect of passage of plane polarised light—with any arbitrary
azimuth N—through a birefringent medium brings the state from N to P,
by introducing a retardation 8 which makes state V lag behind the state H.
The point P, can be located by rotating the sphere, through an angle, 3,
in anticlockwise dircction, around an axis passing through the point denoting
the faster state (HE in Fig. 1). The same result can be derived by a’clockwise
rotation of the sphere around an axis passing the slower state, V®.

3. An analyser is said to be in state P if it completely transmits light
in state P. Hence, a point P on the Poincaré sphere denotes either a polariser
producing light in state P or an analyser completely transmitting P.

4. A beam of light, of intensity I, in state P can be resolved into any
two orthogonal states A and Ag; the intensities of the decon_lposed beams

being I cos® % I/’X (for the * A-component **) and I sin? % ﬁ (for the “Ag-

A
component ”); where PA is the length of the great circular arc connecting
the points P and A. -

Corollary—(a) The fraction of the intensity—in state P transmitted
Py
by an analyser A is cos® % PA.

(b) Angular separation betwcen any two points, P and A, on the Poincaré
sphere can be determined by measuring the fraction of the intensity of P
transmitted by an analyser whose state is represented by the point A.

The important cxpression

1 PA= cos™! ,‘/ ?

(where I, is the intensity transmitted by A and I is the total intensity) provides
a link between the measurable quantity I,/I and Poincaré representation.

311
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This expression is not valid for partially polarised light. For such a light
the expression takes the form

PA = cost [la—310—=p)1
3 PA = cos )\/ B )

where p is the degree of polarisation. Therefore, for determining the angular
separation PA in the case of partially polarised light I, I, and p have to be
measured.

5. A beam consisting of a fraction p of completely polarised light in
state P and -a fraction (1—p) of unpolarised light is represented by a point
P, inside the sphere such that OP, is equal to p. OP, is called the Poincaré
vector. The vector Ip whose magnitude gives the intensity of polarised part
of the light beam is known as the Stokes vector.

6. The completely polarised part of the beam can be resolved along
three mutually perpendicular directions, OX, OY and OZ which are denoted
by OH, OC’ and OL (Fig. 2). The resolved components along the three
directions, respectively, are M, C and S which together with the total intensity
I of the beam are called the Stokes parameters of the incident light. The
Poincaré vector OP is unity if the beam is completely polarised.

7. Coherent addition of two completely polarised beams 1 and 2 in
states P, and P, lead to a resultant in state P,. The intensity of the same is
given by equation 8.




