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- 1. INTRODUCTION

It is a well-known fact that the boundary of a diffracting aperture or obstacle
appears luminous when it is observed from within the shadow cast by it.
This naturally suggests that the problem of diffraction can be reduced to
the consideration of the radiation from the boundary. The idea is, however,
not at all new ; it was used by Young to explain the diffraction fringes
obtained with a straight edge. But, it was not realized until the recent work
of Sir C. V. Raman (unpublished) that the same method can be extended
with equal success to an aperture or obstacle of arbitrary shape. A detailed
description of Raman’s ideas will be found in a paper by Y. V. Kathavate,
who has applied them to a large number of cases in order to explain the
diffraction patterns obtained. In the present paper, a mathematical dis-
cussion of the problem is given, which leads to some new results.

On the theoretical side, Rubinowicz (1917, 1923) succeeded in converting
the Kirchhoff surface integrals occurring in the theory of diffraction into
a line integral along the boundary. l.aue (1936) has obtained such a trans-
formation for the casc of Fraunhofer diffraction. However, these line
integrals cannot be evaluated except for very simple cases. In fact, for
‘boundaries of arbitrary shape, they are probably as complicated as the
surface integrals. Sir C. V.  Raman (loc. cit.) showed that .if one neglects
the variation of amplitude of the secondary wavelets with direction, which
is justified if one restricts oneself to small angle diffraction, then the con-
version of the surface integral into a line integral can be done in a very simple
manner. This idea of neglecting the obliquity factor was employed by the
author (1944) to obtain such a transformation in the case of Fraunhofer
diffraction. In this paper, it is extended to the case of Fresnel diffraction
by both apertures and obstacles. It is shown that in either case the illumi-
nation in the region of shadow can be completely represented as the effect
of radiations arising from the boundary. On the other hand, in the region
~ of light, the disturbance at any point is the. sum of the effects due to the
direct light and the boundary. As suggested by Y. V. Kathavate (1945),
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the boundary radiation can again be effectively replaced by the radiation
arising from a finite number of point-sources situated on the boundary, which
may be called ° poles’. The diffraction pattern in the field of observation
can then be considered as arising from the mutual interference of the radia-
tions from these poles, and with the direct light if that is also present.

2. THE TRANSFORMATION OF THE SURFACE INTEGRAL INTO A
LINE INTEGRAL

Suppose that spherical waves are diverging from a point-source O, and
that at a distance D from it they meet a diffracting screen consisting of an
aperture or an obstacle of arbitrary form. We shall first consider the case
of the aperture.

Q 5 R
0 2 w R, P
Fic. 1

(a) Aperture.—If the distance D is large enough, it can be supposed that
the boundary of the aperture lies on a spherical wave-front originating from O.
In Fig. 1, let Q be any point inside the aperture ; and let the distance QP
to the point of observation be denoted by R. Q, is the point of intersection
of the line joining P and O with the plane of the aperture, and QgiP is
denoted by R,.

We may represent the disturbance at the observation point P as a
summation of the effects of spherical waves having their origins distributed
continuously over the area of the aperture. Hence, if the disturbance in
the plane of the aperture is A cos 2xvf, the disturbance at P is

xpzf‘x f f .I%sin 2 (vi— R/}) dS, (1)

according to Kirchhoff’s formulation of Huyghens’ principle, and neglecting
the variation of the amplitude of the secondary wavelets with the direction
of propagation, as already stated. Now,

dS= RdR de-D/(D+ Ry), @)

where € is the angle between the plane OPQ and some fixed reference plane
through OP, so that

_ AD : |
Xe= O f f sin 27 (vt— R/A) dR de. 3)
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Performing the integration from Q, to the boundary,

_AD
Xe= 5 (DFR)

where Ry= Q,P, and R is the distance from P to the point on the boundary
corresponding to each value of . Since cos 27 (v — Ry/A) is a constant,
this may be written in the form

. AD B 3
Xp= 57 (DR {cos 27 (vt Ra/A)f d\

_ f cos 2 (vi— R/A) de}. )
Now, f de = 2 if the point P lies within the region of light of the aperture,
and is zero if it lies outside in the region of shadow. Hence, in the region
of light,

[cos 2 (vt— RA) R de, @

Xp= (ﬁé—i:]?‘lf_) cos 27 (vt— Ry/A)
1) T
- 33 ) cos 27 (vt— RjA) de.  (6)
0

Now, AD /(D + R,) is the amplitude of the wave reaching P directly from the
source (being inversely proportional to the distance from the source), call
it (Xg)o- In the second integral, the integration with respect to ¢ from 0
to 27 may be written as an integration over a complete circuit round the
boundary of the aperture. If one denotes by ds an element of arc of the
boundary, and by ¢ the angle which it makes with the plane through OP and
the element, then,

__(D4R,) sin ¢
de= D 'Rsiné s, (7)
where # is the angle between the incident ray reaching the element ds, and

the ray diffracted from it to the point of observation. Making this substitu-
tion, one obtains

A sin &
— - sl ; — R/ A
Xp= (Xp), 5 j0) R s O 27 (vi— RJA) ds (8)
Hence, in the region of light, the total disturbance at P == the disturbance
due to the direct wave -+ a disturbance due to a linear distribution of light
sources along the boundary of strength A sin 4/2x sin 8. The latter has a
phase opposite to that of the direct light at the boundary.

In the region of shadow, fde =0, so that

K. — __AD
P T 3 (R, ¥ D)

cos 27 (vi— R/A) d e,
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Here, although e does not have values from 0 to 2 7, the corresponding point
on the boundary moves completely round it, and the relation between ds
and de is the same as (7). The sign of sin # however depends on the position
of the point on the boundary ; this will be discussed in the next section.

Hence,

Xp= — o 6 S cos 2r (v R ds o)

so that the disturbance at any point in the region of shadow arises solely from
the boundary radiation.

(b) Obstacle—An obstacle can be considered as a ditfraction screen
complementary to an aperture. The wave-front in this case is the complete
one from which a finite area bounded by a closed curve of arbitrary shape is
cut off. Using the same notation as with the aperture, and considering
the case when the point of observation P is within the projection of the
boundary on the observation plane, the disturbance at P is

AD 2r OO'
_ _AD _ 10
Xe= 10T f J sin 27 (v~ R/A) dR de (10)

Here, the upper lintit o is used to denote the limit up to which the wave-front
is effective at P.  For a spherical wave-front, this will correspond to the value
of R for which the line from P to the variable point Q is tangential to the
wave-front. The above integral can be split up mto two as

2 O

Xp= /\(RO 5 f f sn 27 (vt— R))) dR de

27 (vt — €. 11
A(Ro_;_D)ffsm (i=RM) dRde.  (11)

The first integral is obviously the effect of the total wave-front at P, and
from the general theory of diffraction, its value is
»——-AD.,... -
(Ry+ D)
The second integral is the same as in the case of the aperture with the limits
reversed, and is therefore equal to

cos 2= (vt— Rj)= Xg), (12)

AD 2r
SO f cos 2 (41— R)A) de= (Xy), (13)
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Hence, when P lies in the region of shadow,

Xp= cos 2n (vi— R/}) de

AD
77 (DF Ry
L]

- % ¢ ;“S‘nf’ ) €05 2 (vt — R/ ds. (14)

Even when the point of observation lies in the region of light, X, can be
put in the form (10): but here R is different from R, only for those values
of € for which the plane through OP making this angle with the reference
plane cuts the boundary of the obstacle. Similarly, it can also be brought
into the form (11), with the first term equal to (12). The second term,
however, is equal to (9) with the sign changed, so that

= (X)) + 2 = $ g sin ‘f’ cos 2m (vt— R/A) ds. (15)

It may be noted that, wherever the point of observation P may be, the
sum of the amplitudes due to an aperture and a complementary obstacle
at it is always equal to the amplitude (X), due to the direct unobstructed
wave. This is the extension of Babinet’s principle to Fresnel patterns. It
could in fact have been used to obtain the expressions (14) and (15).

3. THE PHASE OF THE BOUNDARY RADIATION

In the previous section. we have seen how it is possible to represent the
disturbance at any field-point as the summation of the effects of the direct
light and of the boundary radiation. We shall now consider the relation
between the phase of the radiation emitted by an element of the boundary
and that of the incident wave at that point.

It is evident from Equation (R) that, in the region of light of an aperture,
the phase of the boundary radiation is opposite to that of the incident light.
In the region of shadow, however, it is not so obvious: but it can be deter-
mined by the following method. The integral over € in this case does not
cover a cycle of values, viz.,, from 2 to 2 =, but only a limited range of values,
say from € to € and back again {rom ¢, to €. This will be clear from
Fig. 2, where P is the projection of the point of observation on the plane of
the aperture with respect to the point source, and PA and PB are the tangents
to the curved boundary from P. As the representative point on the boundary
makes a circuit BDAC, ¢ increases from the value ¢, (say) at B to € (say)
at A, and then diminishes to ¢ in the path ACB. It is obvious that the
above statement implies the usual definitions of the signs of de and ds, viz.,
that the former is positive if it is anti-clockwise when viewed from above,
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and the latter is positive if it is described in an anti-clockwise sense for an
observer inside the curve looking down from above the plane of the paper.
Hence, ds and de have the same sign along BDA, and are of opposite signs
along ACB, and

___AD
77 (Ry + D)

cos 27 (vt — R/X) de

=—5 gS sin ¢ 5 Cos 2 (vi— R/2) ds

_A sin ¢
_.,%[fmcos 2 (vt— R/A) ds

sin ¢
R |sin 8]

BDA

cos 2w (vt — R/fﬂ) ‘ds] (16)

This is equivalent to defining the sign of sin 6 to be positive or negative
according as ds and de have the same sign or opposite signs. An examina-
tion of Fig. 2 shows that these regions are respectively those for which a
ray of light reaching a point of observation in the region of shadow has to
pass through the region of light or has not to. For the former, the phase
of the boundary radiation is opposite and for the latter the same as that of
the incident wave.

Fig. 2

For simplicity, we have treated above the case of a boundary for which
only two tangents PA and PB can be drawn. It can easily be verified that
the main results are true even for a boundary to which any number of tangents
can be drawn from a point outside. In such a case, the phase of the boundary
‘wave is the same as or opposed to that of the incident wave according as it
immediately proceeds into the region of shadow or the region of light. So
alsc, even if the point of observation is inside the region of light, if the
boundary radiation reaching it has first to pass through the region of shadow,
then the phase is the same as that of the incident wave. In exactly the same
way, it can be verified that, for an obstacle also, the phase of the boundary
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radiation is the same as that of the incident if it proceeds into the region of
shadow, and vice versa.

In general therefore, we have the theorem:

“ If a ray reaching the point of observation from an element of the boundary
proceeds first inte the region of light, then its phase is opposed to that of the
incident wave at that element of the boundary, and if it passes first into.the
region ¢f shadow, then the phase is the same.”

4, CONTINUITY OF THE DISTURBANCE ACROSS THE PROJECTION
OF THE BOUNDARY

It will be noticed that the expressions derived in Section 2 for the dis-
turbance at a point of observation are quite different in form according as
the point lies in the region of light or of shadow, one of the expressions
containing (Xp), the illuminaticn due to the direct wave at P, while the other
does not. This is so both for an aperture and an obstacle. Besides, the

substitution (7) is invalid when ¢ =0, i.e., when P lies on the projection of
the boundary, so that one has to work with the integral
AD |
— R/
DR [ [eos 2z (v1— RI2)] de. (A)

Even here, the range of integration of € is not clear. Consequently, it is
proposed to show in this section that the disturbance is continuous as one
crosses the projection of the boundary in the field of observation. This will
be done by showing that the limiting value of the amplitude at a point on the
boundary is the same, irrespective of whether the point is brought to the
boundary from within or without.

In Fig. 2, C is the projection of the observation point (on the boundary
between the region of light and of shadow), and P and R are the projections
of two points on either side close to C lying respectively outside and inside
the boundary. We shall designate by (A), and (A)_ the limits to which the
value of the integral (A) tends as R and P respectively are brought into
coincidence with C.

Limit (4),.—Draw a line ARB through R parallel to the tangent at C
to cut the boundary at A and B. Choosing RB to correspond to ¢ = 0,
the above integral can be split into
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where the former corresponds to ACB and the latter to BDA. In the limit
when R is very near C, the value of [ ] is very nearly a constant, and the
first integral becomes equal to = cos 2= (vt — R/X), where R is the distance
from C to the point of observation. The other integral can be written as
such, it being understood that the origin is now at C, and the reference line
for zero e is the tangent at C.

Hence,

2n
_(Xed AD 9} — R/ 17
@)= S }' c0s 2 (vi— RJ) de. (17)

Limit (4).—Let P be a point close to C outside the boundary, and let
PA and PB be tangents to the curve. With the same definitions as before,
the integral in (A) can be written as

2~ mg 2n—m,

f [1de — f []de,
-t mt+m

ADE ACE

where 7, and 7, are small angles. Just as in the previous case, the value of
[ 1isa constant in the limit when P is very near C. Also, 7, and 7, tend to
zero in the same limit. Hence,

(A).= 3 f cos 27 (vi~ RjA) de— (XC)“ (18)

7 '("‘"D +““‘R

Substituting the values in the expressions for the disturbance at a point in
the field of observation, and denoting the limits to which this tends as the
point approaches C from the region of light and the region of shadow as
(Xc): and (X,)_ respectively, we get, for an aperture,

(X = Xy~ (A),= (.ch)o__ - DAE R,,) cos 2 (vt— RJ)) de,
(Xo)
X)-=—(A)_= 2‘3 0 (D+ R) f cos 2z (vt— R/A)} de,

so that (X = (Xc)-.
In the same way, for a point on 1he boundary of an obstacle also,
(XC)+ = (Xc)o + (A)~ = (A)+ = (Xc)~

It is thus seen that in both cases the two limits are identical, so that the
disturbance is continuous across the projection of the boundary.
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5. APPLICATION OF THE BOUNDARY RADIATION METHOD
TO PRACTICAL PROBLEMS IN DIFFRACTION

In Section 2, we have seen how it is possible to consider the diffracted
radiation as arising from the boundary of an aperture or an obstacle. There
it was shown that each line-element of the boundary.is a source of radiation,
whose strength is inversely proportional to the sine of the angle of diffraction

~and directly proportional to the sine of its inclination with the plane of
diffraction. The phase of the radiation reaching the point of observation,
however, varies as the source moves round the boundary. It follows then
that the resultant effect would be contributed mainly by those parts of the
edge for which R is a maximum or a minimum, and the phase consequently
stationary. The radiations from contiguous parts of the boundary in these
parts reinforce each other, producing a large amplitude. The phase of the
radiations from other portions of the boundary varies rapidly, so that they
contribute little to the total disturbance at the field point. It can be shown
that for those points on the boundary for which R is a maximum or a
minimum, sin ¢ is a maximum numerically. In fact, the projections of
these points on the observation plane are the feet of the normals from the
observation point P to the projection of the boundary. These points may be
called the ‘ poles * of the point of observation P. The bulk of the disturbance
at P is contributed by narrow regions on the boundary on either side of the
poles. The radiations from the various poles interfere and vroduce the
diffraction pattern.

We shall now consider whether the phase of the resultant radiation
reaching the point of observation from regions of the boundary includ-
ing and lying on either side of a pole is the same as the phase of the
light wave radiated by the pole itself. This can be discussed in somewhat
general terms by employing a vector diagram similar to the Cornu spiral.
We shall begin the discussion by a consideration of the straight edge, which
may, as an extrapolation of the ideas proposed in this paper, be considered
as a very large aperture with one edge straight, while the remaining parts of
the boundary are at infinity. Consequently, one pole will be on the
straight edge. the other one being at infinity and therefore ineffective. Now,
the path to the point of observation P vig a point on the boundary varies with
the position of the latter, being a minimum for the pole of the observation
point. Consequently, if we sum up the resultant amplitude by means of a
‘vector diagram, we would obtain a curve of the shape shown in Fig. 3 (a).
It can be shown by a simple calculation that the shape of the curve is identiéal

-
with that of the Cornu spiral, so that the resultant disturbance is A’A”, and
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the phase of the resultant lags by = /4 behind that of the radiation coming
directly from the pole. Making use of this and of the result that the phase
of the boundary radiation is » in advance of the direct light, it is seen that,
in the region of light, the resultant pole radiation is 37 /4 in advance of a
ray of light reaching it via the pole. Consequently, there would be inter-
ference bands in this region, the positions of whose maxima and minima
are given by
2m8 | = (2nr + 3w /4) and (nm + 7= [4)

respectively, where 27#8/A is the phase difference between the direct ray to
the point of observation and that via the edge. (8 = s%(a + b)/2ab accord-
ing to the usual notation). These values are in quantitative agreement with
those deduced from the usual theory (see Drude, 1929).

Fic. 3

Next, let us consider a boundary having the shape of a smooth closed
curve with two poles. Then, the path will be a minimum for one of them
(say A) and a maximum for the other (B). If the boundary is not too small,
the vibration curve will consist of two spirals of the form shown in Figs. 3 (a)
and (b), one for each pole. The spiral for the pole A would however not
extend to the points A’ and A”; yet, the phase of the resultant will be lagging
behind that of the wave direct from the pole by nearly /4. For the pole B
having maximum path, the phase difference is nearly + /4, the resultant
leading over the direct wave. In this, we have taken the domain of each pole
to extend up to those points on the boundary on either side at which the
rate of change of path reaches a maximum numerically (or d%3/ds* = 0).
The vibration curve is thus split up into two parts, one corresponding to
the pole A and the other to B.

In the case of a boundary having more than two poles, an extension of
the above reasoning shows that for all poles corresponding to a minimum
path the phase of the resultant radiation lags by 7 /4 behind that of the wave
directly from the pole, and for those corresponding to a maximum path,
it leads by = /4.
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6. APPLICATION TO THE DIFFRACTION PATTERN OF A CIRCULAR DIsc

In this section, we shall consider the application of the above considera-
tions to the calculation of the radii of the circular fringes formed inside the
geometric shadow of a circular disc. It is obvious that at the centre, the
radiation from all the portions of the boundary are exactly in phase, so that
there must be a bright spot there, as is indeed observed. If the point of
observation is moved away from the centre, the illumination at it can be
supposed to arise from two poles, which (by the definition given above) are
situated at the ends of a diameter through the projection P’ of the point of
observation on the plane of the circular disc. Now, the pole which is on the
same side of the centre as P’ is obviously one of minimum path, so that the
other pole corresponds to maximum path. Hence, there is a phase differ-
ence of 7/2 between the two radiations at the boundary, the pole on the
further side leading by this amount. Now, as P moves away from the
% centre of the geometric shadow, the phase of the radiation from the farther
pole lags behind that from the other one owing to the incrcase in path.
Consequently, the first dark fringe, which corresponds to a phase difference
of --=, must correspond to an extra path of 3A/4. The successive dark
fringes similarly occur at path retardations & of (n 4+ 3/4) A, while the bright
fringes occur at § == (n + 1/4) A, where n is an integer. From this, the radii
of the dark rings can be calculated to be

R =(n + 3/4) \b/2r, (19)
where b is the distance of the screen from the disc of radius ». The coefficient
within the brackets in (19) can also be calculated from Lommel’s theory.

In the following table, they are compared with the values given by the
present theory. The agreement is remarkably good.

& From present theory | From Lommel’s theory Deviation
0-75 0-766 0-016
1.75 1.754 0-004
275 2754 0-004
3.75 3753 0-003
475 4-753 0-003

My best thanks are due to Prof. Sir C. V. Raman for the suggestion of-
the problem and for the kind encouragement which he gave me during the
investigation.

SUMMARY

Neglecting the obliquity factor, which is justified when one is consider-
ing only small angle diffraction, it is shown that the surface integral which
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is usually employed for the determination of the disturbance at any point
can be easily converted into a line integral along the boundary of toe
diffracting screen. The formule thus obtained show that with either an
aperture or an obstacle the illumination in the region of shadow can be
completely represented as the effect of radiations arising from the boundary.
while in the region of light the disturbance due to the direct light is super-
posed on this. The phase of the boundary radiation is determined by the
region (of light or shadow) to which the ray towards the point of observa-
tion proceeds from the boundary, being opposite to that of the incident
light in the former case, and being the same in the latter case. It is however
shown that this leads to no discontinuity in the illumination as the point of
observation passes from the region of light into the region of shadow. The
boundary radiation can again be effectively replaced by the radiations arising
from a finite number of point-sources situated on the boundary called
‘ poles’, for which the path to the observation point viz the boundary is a
maximum or a minimum. The phase of the resultant disturbance due to
regions of the boundary including and lying on either side of a pole is shown
to lead over or lag behind that of the wave from the pole by the quantity
7 /4, according as the pole is one of maximum or minimum path. Applying
these ideas to the diffraction pattern of a circular disc, it is shown that the

calculated radii of the rings in the region of shadow agree well with those
deduced from Lommel’s theory.
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