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1. INTRODUCTION

THE phenomenon of rotation of the plane of polarisation of light traversing
an isotropic optically active medium was first explained by Fresnel, near
about 1820, by supposing that right and left-circularly polarised light propa-
gate with different velocities in the medium. The electromagnetic theory
of light propagation in both isotropic and birefringent optically active media
was developed by various authors, in particular by Voigt (1899, 1903) and
Drude (1900). This theory is phenomenological in nature and it explains
‘how optical activity varies with direction in a crystal and how it modifies the
birefringence exhibited by it. Theories based on the structure of molecules
(and crystals) have been proposed by various authors. A review of the
theories, particularly in relation to the optical rotation of molecules, has
been given by Condon (1937). The theories are, in general, of two types.
In the first type, the molecule (or crystal) is treated as a system of coupled
oscillatorsand a study of such a system in the field of the incident light wave
leads to the evaluation of the rotatory power. The “coupled-oscillator
theory was first given, simultaneously and independently, by Oseen (1915)
and Born (1915). Born’s method was applied to the cases of sodium chlorate
and bromate by Hermann (1923) and to B-quartz by Hylleraas (1927).
Although these authors found a fairly good agreement with experiment,
the calculations are so lengthy and complicated that the application of the
method requires a large amount of labour. Kuhn (1929, 1930) gave a simple
picture of a coupled oscillator and showed how it led to the presence of
optical activity. On this basis, he has also derived the form qf a dispersion’
equation for optical rotation (p) analogous to the Drude equation for refrac-
tive index. The coupled oscillator theory has been formulated in terms of

quantum mechanics by Rosenfeld (1928).

The other type of theory, which may be termed the “polarisability
theory ”, attempts to make use of purely optical principles for evaluating the |
magnitude of the rotation. The atoms, or groups of atoms, of which the
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molecule (or crystal) is composed, are polarised in the presence of the field
of the light wave. On summing up the induced moments of all the atoms,
it would be found that the moment is not in phase with the field of the light
wave, which is phenomenologically equivalent to the medium possessing
optical activity. Theories of this type have been given by Gray (1916),
de Mallemann (1924, 1930) and Boys (1934). Kirkwood (1937) has shown
that, by introducing some simplifying assumptions (such as would lead to
the additivity law for refraction), the polarisability theory can be derived
from the general quantuin mechanical formulation of coupled oscillators.
Using the simplified result, he also calculated the magnitude of o for second-
ary butyl alcohol and found that it agreed reasonably well with experiment.
Kirkwood also showed that earlier authors like de Mallemann and Boys,
who made calculations in a practical case, had taken only second and third
order terms of his formulation. In this present paper, it is proposed to give
a classical picture of the first order terms in the polarisability theory. How-
ever, unlike Kirkwood, who applied the theory only to a molecule, we shall
develop it for a crystal. Inthe first part, the general ideas of the theory are
presented and are applied to a hypothetical crystal having a spiral structure,
which would correspond to an optically active uniaxial crystal. The succeed-
ing parts will contain applications to actual crystals.

The physical basis of the theory is as follows. The different atoms in

a molecule, or near neighbours in a crystal, are at finite distances from each

other, which, though small, would lead to a variation in the phase of the

forced vibration excited by the incident light wave from atom to atom.

Consequently, if we determine the influence of the electric moments induced

in the neighbouring atoms on any particular atom, there would be an

induced electric field which would not be in phase with that of the incident

light wave. Under proper conditions, e.g., when the electric vector of the

light wave is parallel to a principal axis of the crystal, it would be found that

there is a component of the induced electric field at right angles to the incident

electric vector, which is 90° out of phase with it. Phenomenologically, this

is equivalent to the medium possessing optical activity. - As will be seen

from the mathematics given below, if one calculates the induced moments
in various directions, taking into account the interaction of the neighbouring

“atoms with the appropriate phases, then it is possible to obtain the magnitude
of the optical rotation in all directions of the crystal. The interesting result

emerges that, if all the atoms are isotropic, then the optical rotation becomes

zero. Anisotropy of the individual atoms (or groups) appears to be essential

- for optical activity to be present in the first order. However, it may be
present as a second or third order effect, viz., the influence of one atom on .
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another and that again on a third atom, even if all the atoms are isotropic;
but obviously the order of magnitude of such effects would be small com-
pared with the first order.

2. ELECTROMAGNETIC THEORY OF LIGHT-PROPAGATION IN OPTICALLY
AcTive CRYSTALS

The theory is discussed in detail in several treatises, for instance by

Szivessy (1928) and Born (1933). We shall merely quote the results that
are of interest for the later sections.

If the co-ordinate axes are taken along the principal axes of the crystal,
then the components of the displacement D are related to those of the field
~ E by the relations ,

D.=¢E.+ i(G X E),, etc. (1)

where ¢, ¢, ¢ are the principal dielectric constants and G is a vector whose
components are given by |

G, = 8115 + 8125y + 8138;, etC. (2)

s being a unit vector in the direction of propagation of the light wave. If
ny and n," are the two refractive indices for this direction of propagation in
the absence of optical activity (i.e., as calculated from e,, €, &), then the
two indices in the presence of optical rotation are given by the roots of the
equation:

(n* — ny'®) (n* — ny"%) = G?, (3)
where G=s5.G

=guss" + 8223y2 + g38:% + (g3 + o) 8,8; + (851 1 &1 552
| + (812 + ga1)5:5,. 4
The tensor g;; is called the . gyration tensor ”* and completely describes the
optical activity of the crystal.
In the directions of the two optic axes, ny'=n,"=n (say). Then,
n=n+ G/2n, n,=n — G2n
and the rotatory power* is | |
-~ p=nG[Ap, (5)

where A, is the wavelength of the light in vacuo.

~ * For mathematical convenience, and so as to agree with the definitions in later portions,
p is positive for a lefr-rotating crystal and has the same fsign as G. This is contrary to the
usual definition of rotatory power, which is taken to be positive for right rotation
¢f. also Szivessy, 1928).
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For an arbitrary direction of propagation, the two velocities ny and
ng are given by
not=4{ny® + ny"* F | V(T — 0 %)% +4G?|}

-

n0”2 :% {nO 2 + nl)”2 i I\/ nOI2 - no”z)z + 4G2l}:
where the upper or lower sign is to be taken according as ny’ $#,". Thus

the phase difference between the two elliptically polarised waves per unit
length A, is given by -

m v mG?
Ar= A 2 2( 2) + ?\ 2-—0 - 82 (2p)2, (6)
- where 3 is the corresponding phase difference when optical activity is absent
and p is the optical rotation in the direction concerned and is given by the
same formula as (5), » now standing for the mean of the two refractive indices.

To make ideas clearer, we may take the case of an optically active cubic
crystal, for which e,=¢,=¢=¢ and g, =gp=gy=g (say) and all
other components g;; are zero. For light propagated along Oz, we have

D,=¢E, —igE, } .
D=cE +igE, (7)

Thus, if the light is polarised with its electric vector along Ox, then, there is in
addition to a displacement D, also a component D, at right angles to the -
electric vector, which is however 90° out of phase Wlth it. Thus, if this
perpendicular component is calculated from the structure, then the rotatory
power, p, becomes calculable.

3. PRINCIPLE OF THE CALCULATION FROM CRYSTAL STRUCTURE

We shall use throughout Heaviside units for electrical quantities. Consi-
der a crystal having p atoms, designated by 1, 2,....p, per unit cell. In some
cases, it may be more convenient to take a group of atoms (such as a radical)
as a single entity; however, we shall use the term atom in the general dis-
cussion to mean both a single atom as well as a group of atoms. The sub-
script r (1 to p) will denote an atom in the unit cell, while the subscript s will
denote any general atom, including those in the unit cell. Let a;/ be the
polarisabilities of the different atoms with respect to the chosen co-ordinate
system, which has its axes parallel to the principal axes of the optical
ellipsoid of the crystal. Let x,/, y,, z," be the co-ordinates of the rth atom
and let the incident polarised wave (propagated along positive z-axis) be
represented by E, exp ik (¢t — 2), (k=2n/}), A being the wavelength in the
medium. Leavmg out the time variable exp ikct, the mean electric field at
the atom 7 is (E,+ P,/3) exp — ikz,’, taking into account the Lorenz-
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Lorentz field due to the surrounding medium. P, is the electric moment
per unit volume.

We wish now to find the electric field induced at atom r due to its
neighbours. For this, choose atom r as origin, so that the co-ordinates of
an atom s with respect to this are x, =x,’ — x,’, etc. The components of the
'moment induced in atom s by the field of the light wave alone neglecting
the interaction of neighbours are '

=a,,’(E, 4 P,/3) exp — ikz,
/‘Lys = alEI(Ex'l" Px/ 3) exp - ikZ_‘.
pys = 15" (Bt Pf3) exp — ikz, @®)

These induced moments would produce a field F, (F,,, F,,, F,)) at atom r.
These are given by the formule:

1 «f3x2 R2 , 3 ,
Fxr=a;{"‘( R5 Fos + Ras Vs + I:sz z:), (9)

‘etc., where R, is the distance between atoms r and s and the summation is
to be'perfbrmed over all atoms s that are significant. It may be noted that
we have taken the field at 7 to be of the same phase as the moment of atom s,
This is so because R, <€ A,, the ratio being of the order of 1/1000 and it can
be shown that, for an oscillating dipole, the field in its immediate vicinity has -
the same phase as the oscillations (Hertz, 1839). According to Hertz, the
phiase retardation ¢ at a distance R, from the dipole is

$=kR, ~ tam KR/(1 — KR, k=2nA, R
This, in fact, leads to a negative ¢> (or an advance of phase) for R,~ Ay/8, ¢
becoming zero again at about R;=2A/4. In the immediate vicinity of the

oscillator, Eq. (10) gives
¢=kR [1 —(1 -l—k2R2)]—-—-k”R3

Thus, the phase change ¢ is two orders of magnitude smaller than kR, (the
corresponding change due to the incident wave) and can therefore be neg-
lected in comparison with the latter. Since the phases of the different atoms
s would, in general, be different from that of r, F,,, F,,, F;, can be split into
the form

E,=F, +iF, =@ + ia") (B, + P,J3), etc.

Thus, the components of the induced moment in atom r, taking the inter-
action of neighbours also into account, are

Py = 0y (Ex+ % + Fx,) + al{Fy’ + o i etc, (11)




222 ' G. N. Ramachandran

Summing over the p atoms in the unit cell and dividing by the volume
V of the unit cell, we obtain the components of the polarisation P as
| 1 | ' A N |
P.= AV Z}Lxr:(Ex +P./3) (A +1A,") (12
and similar expressions for P, and P,. If these are compared with Egs. (1),
remembering that D=E -+ P, then the values of ¢, and of some of the compo-
nents of the gyration tensor g;; can be obtained.

Repeating the calculations for the electric vector along Oy and simj-
larly for directions of propagation along Ox and Oy, all the components of
the tensors € and g can be evaluated.

If the calculations are made correctly, the form of equations (1) would
be the same as those deduced from the crystal structure—for instance, there
would only be an imaginary part in the right-hand side of the expressions
for P, and P, when the electric vector is parallel to Ox. The exact corres-
pondence of the results from the molecular theory with the phenomenologica]
expressions will be an indication of the correctness of the bases of the theory.

4. CALCULATION OF THE ROTATORY POWER ALONG THE OPTIC AXIS
OF A HYPOTHETICAL UNIAXIAL CRYSTAL

In order to illustrate the procedure to be followed in making the calcula-
tions, we shall consider a tetragonal crystal having a simple spiral structurs,
The structure may be described as follows (Fig. 1). |

;ir
4/}
3' /}2
N
l_/_g'j
oY /'.9
-1 P~ (i
a-—-——--s/

Fig. 1. Unit cell of hypothetical crystal
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The unit cell has edges a, a, 4c. The c-axis is a four-fold screw axis -
(4,), so that there is a spiral around Oz as axis, the atoms having the co-ordi-
nates J, 0, 0;0, I, ¢; —1, 0, 2c; o, — I, 3c. Becausz of the.translational
symmetry of the lattice, there will be a similar spiral around each edge of
the unit cell, parallel to Oz. The structure belongs to the space-group
D,® —P4,2, the other enantiomorphous form belonging to the space-
group D7— P4,2.  The crystal would thus exhibit point-group symmetry D,
and is therefore uniaxial (¢, = ¢, == ¢;) and has only two independent compo-

nents of the gyration tensor gy, and gs;; gs» = g3; and all other components
are zero.

We suppose that [ is small compared to a, say of the order of 4, so that
in calculating the interactions, the effect of atoms in one spiral on those in
another may be neglected. Further, we shall only consider the influence
of the two nearest neighbours in a particular spiral. The atoms are also
supposed to be anisotropic, but for conveniencs, we take the principal axes
of the polarisability ellipsoid to be along Ox, Oy, and Oz. Let the principal
polarisabilities of the atom at level O (z=0) be a,, a, a; along these direc-
tions. Then by reason of symmetry, those of atoms at levels 2 and 4

(z=2c, 4c) will be the same, while those of atoms 1 and 3 are a,, a;, aq
respectively.

Consider a wave with electric vector along Ox travelling along Oz. Then

the phase of an atom (x,, y,, z,) is exp — ikz, and the induced moments,
neglecting the interaction of neighbours are

w, =0y (B, + P,J3)exp —ikz,  (r even)} 13
=ay (s ) (r odd) (13)
We thus have
1 (3P—R? 1 (3P—R '
Fo.= y g"““”R——"‘) (Mogp i) = A ;( TRET ) + 2aq 008 ke (Bx+P,/3);
, (14)
32 32 : '
Foy= 2 * " (o 1) = . * oy * 208 5in ke (Bt Pof3)
Similarly, |
2
le.ﬂ 1. GF—RY). 2a, cos ke (E,+ P./3),
4 RS (15)

F1y= "" Z;T ' 1%—5“ ZGLSIH ke (Ex'“*‘ Px/3)’ f

Fop,= F()xa Fzy = FOy’ F3x = FW’ F3?’ = Fl?' : : (16)




224 G."N. Ramachandran

Thus,
2 1 (3P —R? ‘
Px =V [ (al "}" Clg) "}" ;;‘ * '(“”“"““R“r)_““) * Uq09 COoS kC](Ex+ Px/3) i (17)
p=d. 0.3 oysinke (B, P (18
y.—.v‘ % "R-B(az “‘al)SIn C( x+ ! ), )

where V is the volume of the unit cell.

To take a numerical example, let a=6 A, 4c=4 A, and let / the radius

‘of the spiral be 1-5A. The distance between nearest neighbours in the
same spiral is 235 A while the nearest distarice between atoms in two different

spirals is 4-75 A, so that we can safely neglect the effect of the latter. Fur-

ther, suppose a;==20, a,=2-5, a;=3-0 X 10-*3, The mean polarisability

would roughly correspond to that of an oxygen atom. If we take the light

to have a wavelength of 5000 A in vacuo, then ke ~1/1000, so that we can

write cos kc=1 and sin kc=kc. We then have

P, =0-664 (E,+ P,/3); P,=i5'94 X 10-°n (E,+ P,/3).

From the former, we have P,/E,=0-853, n,%=1-853, giving n,=1-361.
Comparing the ratio of P, to P, with the phenomenological equations (),
we have '

g 5:94 X 107

n 0-664
so that from (5), p=275° per cm.

(n* — 1) =0-763 x 10~

It is interesting fto note that the structure considered above gives a
value for the optical rotation which is of the same order as is generally
observed. For instance, quartz has almost the same rotation for light of this
wavelength.

It may be noticed that P, is real while P, is pure imaginary as is required
by the electromagnetic theory. The latter requires that, for the same direc-
tion of propagation, if the electric vector is along Oy, then P, must have the
same magnitude as P, formerly, while P, will have the same value as Py |
before, but will be of the opposite sign: This can readily be verified.

5. RoTATORY PowER OF THE HYPOTHETICAL CRYSTAL FOR DIRECTIONS
AT RIGHT ANGLES TO THE OPTIC AXIS

Consider light being propagated along positive Ox. If the electric vector
is along Oy, the phenomenological equations are

D,=¢E =n,E,; D,=igyE, - (19)-
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Calculations similar to those made in the previous section give

2 2
P _.—[(a1+ w1 QLRFE) alaf,coskl] (&, + gz) @)

Po=—d 1.3 (@ —a)sin ki (E,+ gr) 1)

As before, cos kI=1, sin kI=kl. Comparing (20) and (17) it is seen that
the refractive index is the same as before, which is to be expected. Putting
in numerical values,

P,=—i-3-96 x 107 (E,+P,J3),

which leads to a rotatory power p, = — 183° per cm. Thus the rotatory
power at right angles to the optic axis is negative, i.e., in the opposite sense
to that along the optic axis, the ratio of the magnitudes being nearly 4. This
1s not an unreasonable result, since quartz also exhibits a similar behaviour,
the rotatory power at right angles to the optic axis being of the opposite
sign to that along the optic axis, the ratio of the magnitudes of the two being
1 (Bruhat and Grivet, 1935).

If the electric vector is along Oz, then we obtain

— R2
=4 ¢ [ ot BE R e cos d] (4 gl) 22)
=y 13k ki (E 23
+'v ‘}T —R—5 a3(ao al)Sln ( + ) ( )
The corresponding equations derived from Eq. (1) are
Dzz EZEz= nezEz; Dy-_— - ig]_]_Ez. (24)

Comparing (23) and (21), it is seen that the coeflicients on the right-hand
side are the same, except for a change in sign as is to be expected from the
second equations in (19) and (24). But from (22) we now obtain the extra-
ordinary refractive index as n,=1-378. Thus although the refractive index
is different, the rotatory power comes out to be the same, as should be the
case if the calculations are correct.

Similarly, for light propagated along the Y-axis, detailed calculations
bear out the deductions from Eq. (1), viz.,

Dx = ﬁszx, Da = IgllEx; Dz = nezEz’ Dx =ig]1El'

It is interesting to note that the magnitude of the rotation (both parallel
and at right angles to the optic axis) is proportional to (es — o), so that they
both change sign if (s, — ;) changes sign. Thu's,"the sense of optical rota-
tion not only depends on the sense of-the spiral, but also on the nature of the
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anisotropy in the basal plane. In particular, if the atoms are completely
isotropic (or at least isotropic in the xy-plane), the rotation vanishes. This
is, however, an ideal case, for the very existence of a spiral structure would
preclude such a possibility. The existence of neighbours arranged in a
spiral would itself lead to anisotropy, just as the triangular group O; of three
isotropic oxygen atoms would possess a strong anisotropy because of the
arrangement (Bragg, 1924). The calculation of this anisotropy and the
consequent rotations however, requires higher order terms.

6. SoME GENERAL CONSIDERATIONS

We have seen how, in the special case considered in.the last two sections,
the theory leads to results in conformity with the known results regarding
optical rotation in a tetragonal crystal. It may be worthwhile to prove
generally that the theory leads to the following two fundamental facts of
optical activity.

(@) The rotation is of the same sense for opposite directions of propa-
gation, and

(b) enantiomers will have opposite rotations.

To prove (@) we note that in Egs. (8) and (9) all the quantities are un-
altered except that exp — ikz, is replaced by exp ikz, when the direction of
propagation is reversed. Thus, while the real parts of F,,, F,,, F,, are un-
changed, their imaginary parts will have opposite signs. But since the wave
vector s in Egs. (1) and (2) would also change sign, the components of the
tensor g; would have the same sign irrespective of the sense of propagation.

To prove (b) we note that enantiomers are related to each other as
figures inverted about a centre of inversion. Consequently the co-ordinates
Xy ¥, Z, of an atom s with respect’to an atom r would all have opposite signs
in the two cases. Thus, in Eq. (9), while terms like 3x,2 — R2, 3x.y, will
have their signs unchanged, u’s of the two enantiomers would be complex
conjugates of each other because of the term exp — ikz,. Thus, in Egs. (12)
while the real parts are the same for both, the imaginary parts will be of
opposite signs. Hence, the refractive indices of the two enantiomers will be
the same, but the rotatory powers will be in opposite senses.

Although the theory is not intended to explain the dispersion of optical
“activity, it is interesting to note that it does explain it fairly accurately.
Thus, it is found from the theory that, other conditions being the same, the
rotatory power p . 1/A% This comes from the factor k(= 2#/A) in the
expression for g and the factor 1/A in the expression for p in terms of g.
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Since the polarisability « would also increase with decrease of wave-
length, p would vary slightly faster than 1/A2. This is in fact the case with a
number of substances. |

SUMMARY

The paper contains a classical description of the first order terms in
the polarisability theory of optical activity. Optical activity essentially

arises because the dipoles induced by the light wave in the medium are not
all in the same phase. As a result of their mutual influences, the resultant
induced moment will not be in phase with the electric field of the light wave
and would lead to a rotation (p). By comparing the results calculated from
the structure with the phenomenological theory of light propagation in the
crystal, the magnitude of p is obtained. This method bas been applied to
a hypothetical tetragonal crystal having a spiral structure. It leads to the
interesting result that the rotation at right angles to the optic axis is opposite
in sign to that along the axis, as in quartz. The theory also predicts that, in
general, the rotation will vary faster than 1/A% as is found to be the case with
many substances.
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