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1. INTRODUCTION

THE main features of the structure of collagen at the molecular level have
been reasonably well worked out (Ramachandran and Kartha, 1955; 1956).
The polypeptide chains form three non-coaxial helices in the protofibril and
are further wound up into coiled coils about a common axis. The three
chains are attached to one another by means of hydrogen bonds approximately
perpendicular to the fibre axis. These triple chain rods are arranged in a
hexagonal array, the distance between them varying with the amount of
moisture present. Though this structure explains fairly well the wide angle
X-ray pattern of collagen, some of the details are not yet clear. The most

puzzling aspect is the non-occurrence of the 1120 (110) reflection or its ana-
logue having the same é-value in the higher layers. It is usually supposed
that the Fourier transform of the structure is weak in this region, and that the
absence of a spot in the zero layer corresponding to the 110 reflection is due
to this cause; but it is difficult to believe that it should be so for every layer
line. In fact, a spot having roughly this &-value (¢ = 0-20) occurs on the
fourth layer line of kangaroo tail tendon and was identified as such by Rama-
chandran and Ambady (1954). However, the actually observed ¢-value
differs from the expected value of 0-24 by an appreciable amount. Thus it
would appear that the whole series of reflections of the type 11/ is forbidden
for collagen. Further it is found that the observed £-values in general lie
close to 0-14, 0-28 and 0-42 in all the layer lines, i.e., in the ratio of 1:2: 3
and not at intermediate values like 4/3 or 4/7 times the basic unit of 0-14.
This suggests that reflections with mixed indices of the type 4k (both 4 and k
non-zero) do not occur in the X-ray pattern of collagen.

Although a few spacings larger than 15 A have been previously reported
(Corey and Wyckoff, 1936) they had not been confirmed. Photographs taken
in this laboratory of native cattle achilles tendon showed diffuse maxima at
about 18 A, 29 A and 46 A. These agreed with the observations of Corey
and Wyckoff. The publication of a beautiful photograph taken by Cowan,
North and Randall (1955), recording a whole series of sharp reflections in
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this range brought to light the fact that the earlier observations were done
at insufficient resolution. Even in this photograph the 110 reflection is miss-
ing on the equator. The fact that such a large number of sharp reflections
are observed at small angles shows that the specimen is well oriented and it
is therefore all the more surprising that no reflections were recorded corres-
ponding to the ¢-value of the 110 spacing of the hexagonal lattice.

This difficulty is resolved and at the same time the occurrence of a large
number of equatorial long spacings is also explained, if it is assumed that the
structure of collagen is not built on a regular lattice, but on a cylindrical
lattice. The idea of cylindrical and spiral lattices is briefly discussed below
and they are applied to the case of collagen. It is very probable that these
concepts could be extended to other fibrous proteins as well; some suggestive
evidence in these cases 1s also presented.

2. GENERAL THEORY OF CYLINDRICAL LATTICE

A number of excellent theoretical papers have appeared on cylindrical
lattices, their classification and their Fourier transform (Whittaker, 1954;
1955; Jagodzinski and Kunze, 1954; Waser, 1954). 'We shall consider here

briefly the general theory of a simple normal cylindrical lattice. Such a cylin-

drical lattice is built up of a series of sheets, forming the surfaces of coaxial
cylinders, the radii of these increasing in arithmetical progression. In any
small region, it could be imagined as having been derived from a regular
lattice by giving it a cylindrical curvature. Thus if pyy, is the radius of the m-th
cylinder and py, the number of lattice points along its circumference, then
pm = G+ ma, a, being the radius of the innermost cylinder and 2mpy,
=pmb, where b is the distance between the neighbouring points along the cir-
cumference. Suppose that the z-axis is along the axis of the coaxial cylinders;
then any point can be defined by the cylindrical co-ordinates p, ¢ and z. Let
the points which are nearest to the initial plane (¢ = 0) lying on the m-th
cylinder have the co-ordinates ¢ = d5,. Then the angular parameters ¢ of
the points in the m-th cylinder are given by

bv
=-— 4§
¢ Pm T om
where v is an integer such that 1 <» <pp. Also p = py, = g, + ma and
z = nc, where ¢ is the repeat distance along the axis of the cylinder.

In accordance with the usual theory of diffraction, the amplitude of the
diffracted wave along a direction given by the reciprocal vector s is the Fourier
transform of these cylinders, which is given by
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T= %’%‘ f"j exp (2-;—1 r.s) (1)‘

where r is the position vector. The vector s may be called the diffraction
vector, whose terminus is given by the co-ordinates p*, ¢* and z*. Then,

r.s = pp*cos (¢* — ¢) — zz* 2
Thus,

T=geo(F ) £ 2 o X bt cos @ —dml] ()

Replacing the exponential functions occurring in the sum in expression (3)
by a series of Bessel functions,

1= zep (Fre) 2 5 i0sa(F o)

m g=~00

X exp [ig (3* — )] gl'exp (-— Z;Zv) 4)

The last sum, J, is finite only when ¢ = kpy, (where & 1s an integer) and it is
14

then equal to pm. It vanishes otherwise, so that,

T = ﬁ‘: exp (?-;\1’ ncz*) %’ Pm E'o Jepn (2;’ pmp *)

g=—00

X €xp [ikpm (4443 - Sm)] 5)
The first summation, X, has appreciable values only in the vicinity of planes

in the reciprocal space, given by z* = [ A/c, where /s an integer. These are
the usual layer lines. In the second summation, X, the square of the modulus

of the functions, averaged over rapid oscillations in ¢*, causes all cross.
terms between high order Bessel functions associated with different values
of k, and cross terms between them and J, to vanish. Also, cross terms
involving different m’s tend to vanish unless k =0. Thus when k 0
the intensity | T |? is proportional to

o 27
2], 24 *
ké; %’ PmIkp,, ( \ PmP ) (6)

This function has peaks corresponding to p*=kAb (k=1, 2, 3,...)),
thus leading to characteristic bands of large intensity in reciprocal space on
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cylinders, whose radii are multiples of 4*. The intensity of the k-th band
arises essentially from the Bessel functions of orders 4+ kpp. From the
expression (6), it is seen that the intensities due to the scattering from the
component cylinders of the lattice are additive for these bands. These bands
are known as the ‘ diffuse’ series, since they are accompanied by a tail of
secondary maxima on the longer p* side.

When k =0, however, there is interference between the terms J, (2#/A
X pmp™) for different py, and the amplitudes due to the component cylinders
are additive. The intensity |T|? is proportional to

Zondo(F us*) | 10

The intensity exhibits sharp maxima on bands corresponding to p* = & Ma
(h integral).

Thus, the diffraction pattern can be described as consisting of a series
of layer lines at ¢ =/ A/c, on which two series of reflections occur, one the
sharp series at ¢ = h Aja (hintegral) and the other the diffuse series at
¢ =k Ab.

The above discussion is confined to the case in which the two-dimensional
lattice inscribed on the cylindrical layers is primitive and rectangular and has
one axis oriented perpendicular to the cylinder axis. Whittaker (1955) has
enumerated and classified the possible types of cylindrical lattices and has
extended the theory to diffraction by regular cylindrical lattices, with an
oblique generating lattice and by those belonging to the helical series. A
particular case of diffraction by a helical structure has also been discussed
by Jagodzinski and Kunze (1954). These papers may be consulted for a
more detailed account of the theory.

3. CyYLINDRICAL LATTICE FOR COLLAGEN

Let us consider a cylindrical lattice built up of protofibrils* all running
parallel to the axis of the cylinders. Then in any cross-section the appearance
will be similar to Fig. 1, in which each protofibril is represented by a small
circle. The distance between successive cylinders is @ and if b is the distance
between the protofibrils on any cylinder, then we have the result
dn = nj — nj = 2malb, where n; is the number of protofibrils on the j-th
cylindrical surface. This must obviously be an integer and the number was
chosen to be six for collagen. The choice came from a consideration of the
symmetry of coupling the cylinders together, and the occurrence of a regular

* The term protofibril is used for the elementary unit of the structure. This may consist of
a single polypeptide chain as in the a-helix or a triple chain, as in the collagen structure.
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hexagonal lattice as an approximation. This immediately imposed a rela-
tion between a and b, namely, that 2ma = 6b and thereby the geometry of
the structure was completely fixed.

Fic. 1. Cross-section of a cylindrical lattice.

However, as one goes towards the centre, there are two possibilities in the
central region, as indicated by Figs. 2 (a) and 2 (b). They are best described
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Fic. 2. The two possible cylindrical lattice structures of collagen. Fach circle repre-
sents a protofibril. (¢) Structure with one protofibril right at the centre. (b) Structure with
three protofibrils forming an equilateral triangle at the centre.

by the relations (i) a; =ja and (i) a; = (j— %) a. Thus Fig. 2(a) has a
protofibril right at the centre, while the innermost core in Fig. 2 (b) consists
of three protofibrils forming an equilateral triangle. In both cases, the struc-
ture at the centre corresponds approximately to a regular hexagonal lattice
and outside, it fits in with the scheme for a cylindrical lattice. The choice
between the two could not be made on a priori grounds, but was possible
from a detailed comparison with the equatorial long spacings in the X-ray
pattern, which indicated that the structure shown in Fig. 2 (b) is the correct
one. There is a reasonable fit with the data if the central protofibril is not
there in the structure shown in Fig. 2(a), |
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The c-axis of the structure was taken to be parallel to the cylinder axis,
the repeat spacing being 28+6 A, the value for the protofibril. From the
properties of the transform of the cylindrical lattice, there will be maxima
corresponding to &= hMa = ha* and £ = k A/b = kb* on the equator and
on all layers defined by ¢ =IA/c = Ic*. In the present case, since a/b =
= 27/6 = 1-047, the two series of principal maxima (namely ha* and kb*
series) practically coincide and only one set of principal reflections occur at
¢ =hé (& = Na). On the other hand, no reflections can occur at values

il of ¢ = ha* -+ kb*, corresponding to mixed indices of the type 4, k, with both
= # and k non-zero. Physically, this can also be explained as being due to the
fact that, while there is a regular order among the points in any particular
ring in Fig. 1 and also while the distance between any two circles is a constant,
R there is no correlation between the points in different circles in that figure.
g The points get in step and out of step periodically and so the analogue of a
- hkO plane cannot occur.

Thus, while reflections of the type 40! and Okl are possible, those of the
type hk0 and Akl cannot occur. In particular, 110 is a forbidden reflection
for collagen, and this ¢-value cannot also occur in any of the layer lines.
In fact, the absence of mixed # and k indices in the diffraction pattern of
cylindrical lattices has been noticed in the case of chrysotile by Jagodzinski
and Kunze (1954).

4. COMPARISON WITH THE OBSERVED EQUATORIAL LONG SPACINGS

The absence of the 110 reflection and its analogue in the other layers
thus receives a natural explanation. However, the real evidence for the
cylindrical lattice is obtained from a comparison of the calculated Fourier
transform of the cylindrical lattice with the observed X-ray diffraction pattern.
A number of subsidiary maxima occur at intermediate values of ¢ in between
the principal maxima. These have been worked out for the structure with
seven cylindrical sheets [Fig. 2 (b)] and the results are shown in Table I for
the region from 0 to &. The value of spacings larger than 10 A observed
on the equator and their relative intensities are given in columns 3 and 4 of
Table I. The first and second columns contain the calculated spacings and
intensities. The spacings were calculated taking the most intense reflec-
tion at 12-6 A to correspond to the principal maximum of the first order,
The number 'seven was arrived at by comparing the theoretical values with
observations. The agreement between the calculated and observed values
is seen to be good.

The sharpness of the observed maxima indicates that all the fibres inv
the specimen have exactly the same number of sheets. On drying the fibres,
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TABLE 1

Calculated and observed maxima in the diffraction pattern of a
cylindrical lattice with T sheets

Calculated Observed
Intensity
Spacing (arbitrary Spacing Intensity
: units)
110 43-6 ..
66 12-3 .. .
49-5 3-6 49-0 S
38 3-2 37-0 S
31-5 1-7 310 W
26-5 2:0
25 1-0)1 %-5 m
20-5 1-8 20-5 W
18-5 1-0 18-8 m
16-8 32 17-0 m
15-4 29 - 149 m
13-9 38-0 13-5 V.S,
12-6* 93-0 12-6* V.S,

* Adjusted to be equal.

this regularity is lost and on rewetting, only a streak joining the centre to the
principal equatorial spots is observed. A similar streak is also observed
in other layer lines, notably in the third layer line, showing that there is appre-
ciable scattering power in the region in between the principal maxima. If
the Fourier transform of the protofibril does not have a large value at the
¢-values corresponding to the principal maxima, but only in between, then it
will record as a diffuse reflection on the particular layer line. The broad peak
at € =0-20 in the fourth layer line is probably of this type.

In order to see the behaviour of the transform beyond the first principal
maximum, the calculations were continued for the range from that to the
second principal maximum for the structure with seven cylindrical sheets
[Fig. 2(b)]. From the cylindrical lattice theory, the intensity distribution
along the equator, or zero layer, is given by

1(©) =c| £ 3@m—1)Ty(r @m— 1) ga*) |

m=1

T 20[ & 9 2m—1 )212319 (2m-1)( (Zm—l) f/b*)]
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where ¢ is a constant. A graph is shown in Fig. 3 connecting intensity and
the &-value. The intensity calculations were made at intervals of = £/a*

ﬂJ

Inthaily —

1 )

T % 2§,

Fic. 3. A graph ccnnecting the variation of intensity with ¢ for the structure shown in
Fig. 2 ().
= 3¢/b* = 0-05. The intensity variations in the range from 0 to &, (£, = A/a)
is mainly due to the contribution by the first part of the above equation. The
nature of the second function is such that it has appreciable values only when
¢ approaches k ¢, and thereafter it is oscillatory in nature. The intensity
however never falls to zero beyond &, so that sharp subsidiary maxima would
not be observed. It must be noted that in general there is an appreciable
scattering power in the region between any two principal maxima. This is
a feature peculiar to the cylindrical lattice and does not occur with a regular
lattice, even if the lattice is finite. 'With a finite regular lattice, the intensity
distribution between any two principal maxima is the same and exhibits a
number of subsidiary maxima, which fall away in intensity on moving away
from a principal maxima. With a cylindrical lattice, this feature occurs only
between zero and the first principal maxima. The diffuse intensity in the
region between the principal maxima increases with increasing £-value.

There is thus clear evidence that the aggregation of collagen protofibrils
is based on a cylindrical lattice and that they form cylindrical cryptofibrils of
diameter approximately 200 A [2x (13-15) x 7]t In fact fibrils of this

T The term “cryptofibril” is used to indicaté cylindrical structures of the type discussed, with
g diameter of the order of 200 4, R ‘
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order of diameter showing characteristic 640 A axial period have been observed
in the electron microscope. In particular, they are very clearly seen in the
beautiful photographs reported by Swerdlow and Stromberg (1955) of fibrils
subjected to mercury at high pressure. These pictures indicate that an ordi-
nary fibril having a diameter of the order of 500-2000 A is built up of such
cryptofibrils. Burton et al. (1955) have found that fine threads, about
150-250 A in diameter, are produced in the early stages of the degradation
of collagen by chemical treatment.

5. THE PossBILITY OF ROLL STRUCTURE

So far, we have discussed the cylindrical lattice structure. However,
it seems physically more probable that a cylindrically curved layer structure
would have for its cross-section a spiral, rather than a set of concentric circles.
In that case, the complete structure can be obtained by rolling up a single
sheet, in which the protofibrils form a parallel array.

In any cross-section, the equation to the spiral can be written in the form
r=kf#. As before, the whole structure can be characterised by two dis-
tances (i) the distance @ between the sheets and (i) the distance b between
the protofibrils in the sheet. We may assume, to start with, that the sheet
is rolled about an axis parallel to the protofibrils. If this were not so, the
protofibrils would take up the configuration of a helix, whose radius is con-
tinuously increasing. So far, it has not been possible to work out theoreti-
cally the diffraction pattern of a spiral lattice, even of the simple type. How-
ever, by an experimental approach described in the next section, it is found
that the rotated Fourier transform is of the same type as the one obtained
from a cylindrical lattice.

The spiral lattice appropriate to collagen is shown in Fig. 4. Here also,
the relation 27 a = 6b was used for plotting the lattice points. The lattice

000y
0% 000, 0
L ' ] 0% 0, ) o
o 0 o "‘ ® (]
® 00 .0'.
0000 g%2%5 0000
0000600000000
000600006 g0000080
...o.o: ooooo:
60 © ® 000
..‘...00.......
'.. &0 6 .. ®
o 0o ® ‘.
®oeo0?

Fic. 4, Cross-section of 2 roll structure (spiral lattice) appropriate to collageg,
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points were so plotted that the spiral structure thus obtained broadly
resembled the one shown in Fig. 2 (D).

6. OprTicAL TRANSFORMS OF CYLINDRICAL LATTICE
STRUCTURE OF COLLAGEN

The above results of the cylindrical and spiral lattice structures were
confirmed by means of experiments, made on models with an optical
diffractometer. The diffraction apparatus used in these experiments was
the one described by Aravindakshan (1957). As with other optical diffrac-
tion apparatus, this also does not permit the study of diffraction patterns
from three-dimensional objects. So investigations were carried out only
of diffraction from plane circular and spiral lattices. However, for the pre-
sent purpose, this does not involve any limitations, since the diffraction pattern
obtained from such a lattice is equivalent to the distribution of intensity on
the zero layer plane in reciprocal space for the corresponding cylindrical
lattice.

The pinhole source used was 40 microns in diameter and the resolution
was fairly high. Photographic etched masks (Aravindakshan, 1957) were
used at the beginning of the experiment. Because of the non-uniformity
of the photographic glass plate, distortions were produced in the image. A
more serious difficulty was a displacement due to the non-parallelism of the
two surfaces of the glass plate, as a result of which rotated optical transforms
could not be recorded. The masks were later prepared using a pantograph
punch on a scale 0-185 mm./A. Each lattice point was represented by a
hole 0-45mm. in diameter. The first minimum of the diffraction pattern
from a hole of this size occurs at £ = 0-75, which is well beyond the range
(€ < 0-30) of the optical transform useful for study. These holes were
punched on a blackened photographic film. The drawings, from which the
masks were prepared, were constructed on a scale nine times larger. In
order to plot the points of the lattice, their loci (either concentric circles or
the spiral, as the case may be) were drawn first. The lattice points were then
set off at equal distances along the curve, their positions being checked and
corrected at least every 90°. The optical transforms were photographed
directly on a fine grain photographic plate and enlarged for reproduction.

A comparison with the X-ray results can be best had when the transform
is obtained with the mask continuously rotated in the optical diffraction
apparatus. The transform thus obtained may be called ‘rotated transform’
and for a satisfactory result, neither accurate centering of the mask nor
gbsolute uniformity of motion is required, The only requirement is. that
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the plane of the mask must remain the same during rotation and this is readily
achieved by using a good ball-bearing.

(a) Cylindrical lattice—The optical transforms obtained for the two
possible cylindrical lattice structures of collagen [(Figs. 2 () and 2 (b)] are
shown in Figs. 5 and 6, along with their rotated transforms. The similarity
between the two transforms is remarkable. In both cases, the six-fold
symmetry of the pattern arises from the relation 2ma = 6b. The sharpness
of the maxima, their fine structure and the arch-like distribution of the diffuse
reflections are all to be expected from theory.

The two rotated transforms contain rings of large intensity only at
integral multiples of a unit and not at multiples like 4/3, 4/7, etc., which
would be expected for a simple hexagonal lattice. The distinction between
the cylindrical lattice and a simple hexagonal lattice of the same dimensions
is easily seen by comparing their rotated transforms shown in Figs. 6 (5) and
7(b). The absence of rings corresponding to the reflections 1, 1 and 2, 1
with the cylindrical lattice is particularly noteworthy and supports the theo-
retical prediction.

A number of weak rings (subsidiary maxima) are found in the rotated
transform of the lattices, and are particularly clear in the central region inside
the first ring. However, their number and spacings differ, e.g., they are quite
different for the two types of cylindrical lattice structures discussed here.
In fact, it was the number and spacings of the subsidiary maxima near the
central region which enabled the authors to choose the structure shown in
Fig. 2 (b) as the proper one. The spacing of the rings for this structure are
shown in Table II in the second column. The agreement between this and the
observed spacings is seen to be good. In the photographs reproduced, only
the stronger among the subsidiary maxima are clearly seen.

(b) Spiral lattice.—The optical transforms of the spiral lattice appropriate
to collagen are shown in Fig. 8. The similarity between these and the trang-
forms of the cylindrical lattices is striking; however, the symmetry is only
approximately six-fold in this case. In the ordinary transform many of the
spots making up the pattern do not lie in exactly the same positions on the
various arches, a fact which clearly arises from the spiral character of the
lattice.

As before, the rotated transform contains intense rings only at integral
multiples of a unit. The spacings of the subsidiary maxima near the central
region obtained from this lattice are given in Table II in the third colump,
The agreement between this and the observed spacings is again good, A
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TABLE II

Observed spacings (in A) in the X-ray diffraction pattern of collagen
and the spacings calculated from measurements on the diffraction
pattern of cylindrical and spiral lattices in an optical diffractometer

From rotated transform of
From X-ray pattern

Cylindrical Spiral
lattice lattice
101 99
. 67 65
490 49-0 49
37-0 38-0 39
31-0 32-0 32
27-0 27
245 {24~0 23
20-5 21-0 20
18-8 . ..
17-0 17-0 17-3
14-9 15-4 14-8
13-5 14:2 14-0
126 12-6 12:6

oy

comparison of the rotated transforms of the cylindrical and spiral lattices
shows that there is more of intensity in between the principal maxima with
the spiral lattice. This is to be expected, since there is less order in a spiral
lattice than in a cylindrical lattice. The phenomenon is seen particularly well
in the region between the first and second principal maxima in Fig. 8 (0).
Thus all the evidences available so far are in accord with spiral lattice also,
with the added advantage that the formation of a roll in the form of a con-
tinuous sheet is much more reasonable.

It is quite possible now that collagen has definitely been shown to have
a cylindrical lattice structure, that other fibrous proteins also may have such
a structure. This is particularly to be expected since the number of spots
found in their X-ray pattern are very small, e.g., in keratin, compared to those
found in the patterns of some polypeptides. In fact, the published X-ray
pattern of sea-gull feather keratin (Bear and Rugo, 1951) clearly indicates
the occurrence of a cylindrical lattice. Only row lines corresponding to
h £,are found with £ =1, 2,3, 4 and £ = 0-045. The absence of any other
intermediate row lines of sharp spots clearly shows that a cylindrical lattice
structyre is present and also that the ratio afb is probably the same as in
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collagen. There is also an extension of reflecting power in some layer lines
in between the principal row lines. Probably the a-keratin group also has
this structure, as only one type of repeat spacing has been found along the
equator.

SUMMARY

It is suggested that the structure of collagen is based on a cylindrical
lattice. The protofibrils, consisting of triple chains, are packed together in
a hexagonal array close to the centre, and are extended outwards in the form
of cylindrical sheets. Each sheet has a pseudohexagonal symmetry about
the common axis. This cylindrical lattice explains () the large number of
equatorial reflections of long spacings observed in the diffraction pattern of
native fibres and (b) the absence of the 110 reflection and its analogue in all
layer lines. The number of sheets in a single cylindrical rod is about 7 and
its diameter about 200 A.

The above results were verified by model optical diffraction experiments.
Also, from these experiments it is shown that the structure can also belong to
the roll type with the added advantage that the formation of a roll in the form
of a continuous sheet is more probable from the point of view of fibrogenesis.
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- EXPLANATION OF PLATE X

Fic, 5, Transforms of the structure shown in Fig. 2a. (a) Ordinary transform, (5) Rotated
transform. -

Fi. 6. Transforms of the structure shown in Fig. 26, (a) Ordinary transform, (b) Rotated
transform,

Fig. 7. ‘Transforms of a simple hexagonallattice. (a) Ordinary transform, (b) Rotated transfotm,

Fic. 8, Transforms of the spiral lattice shown in Fig, 4. (o) Ordinary transform, () Rotated
transform,
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