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1. INTRODUCTION

IF a beam of light passes through a cloud of opaque spherical particles, con-
taining N particles per unit volume each of cross-sectional area a, then it is
readily shown that the variation of intensity I, with depth z is given by the
differential equation '

dIz = e NaIde (1)

whose solution is
Iz —_ Ioe‘—N“z- (2)

This corresponds to the so-called geometrical optics case, in which all diffrac-
tion effects have been neglected.

It is also possible to work out the above problem by considering the
effect of each particle in turn on the energy content of the transmitted beam.
This bas been done by the author (Ramachandran, 1943. This paper also
contains an account of the physical optical approach) and the theory leads
to the formula

E ' n ~
2=0-%) ©)
for the energy content of a beam of cross-sectional area A after it has en-

countered » particles, each presenting an area « to the beam. Since n="NAz
we bave from Equation (3)

f=E- (-0 ®

It is clear that Equations (2) and (4)‘are not identical, but that the latter goes
over into the former when o/A <1. Thus, the exponential formula (2)
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28 G. N. RAMACHANDRAN

is really an approximation valid only when the continuous a}pproximation ir
Equation (1) is made, although in practical examples, the difference betweer
(3) and (4) cannot be noticed.

The problem of finding the energy content of the beam after it has en-
countered n particles of cross-sectional area o is identical with one in whick
n discs, each of area a, is thrown at random over an area A, and it is required
to find the probable area covered by the » discs. An essential step in obtain-
ing this is the following. Suppose Ay, is the uncovered area after m discs
have been thrown and By, = (A — Ap) is the covered area, then the prob-
able. additional area that is covered on throwing the (m -+ 1)th disc is

1B = (4. 5)

This is obviously true if a, the area of the disc, is small compared with the
area An, for the probability that its centre occurs in the uncovered area is
exactly Ap/A and when it does so, it covers an additional area a, so that
the probable additional area that is covered is (Ap/A) a.

However, the result does not follow so simply if the arca of the disc is
not small, for the additional area that is obscured will be less than « if its
centre lies close to the boundary of a region of the uncovered arca A,, and
further the (m + 1)th particle may cover a portion of the region A,, even if
its centre lies outside the region A,,. The calculation of the mean additional
area that is covered by the (m <+ 1)th disc would, therefore, appear to be
very difficult. However, it is the purpose of this paper to show that Equa-
tion (5) is still true under all conditions for the probable (or mean) addi-
tional area that is covered and that it is independent of the size or shape of
both the disc (¢) and the aperture (A). This very surprising result follows
quite generally from a simple theorem connected with the integral of the
Faltung or convolution of two functions. In fact the general approach can
be used to work out the mean transmission through a cloud of n particles,
or discs, when each particle is not only of arbitrary cross-section but exhibits
variations in transmission coefficient over its area. Even in this case, it
follows that the probable (mean) reduction in energy of the beam due to the
(m 4 D)th particle is exactly equal to (Em/Eq) 7, where n is the energy
absorbed by a single disc when a uniform beam of unit Intensity falls on it.
In order to bring out the physical ideas clearly,

: some simple examples are
worked out below directly without reference to

the general theorem.
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2. SIMPLE ONE-DIMENSIONAL ANALOGUE—THE STRIP PROBLEM

Suppose there is a straight slit PQ of length L having uniform width and
suppose we throw opaque strips each of length / whose width is larger than
that of the aperture, such that they fall on the aperture with their length
parallel to the length of the aperture, but with their centres distributed com-
pletely at random within the length L, (Fig. 1. ‘

A B

(/77740 cV/ /7]
P RLS - Q
PQ=L,, RS=d, Kcazﬁ, OC=x

Fic. 1

Consider the situation after m strips are thrown. Some of them will
overlap, and in general, there will be a number of gaps R;S; (i =1 to k) of

length J; which are uncovered. Let Ly = f‘ d; be the total uncovered length.

1

Let the (m + 1)th strip AB be now thrown and let the probability p (x) dx
of its falling with its centre C in an interval dx within PQ be given by p (x) dx
= k dx, where k is a constant. (Note that we are now neglecting boundary
effects.) In order to work out the mean additional length that is covered
by this strip, consider one of the gaps R;S; which we will denote by RS for
. convenience, and let its length be d (Fig. 1). Suppose that it is the only gap
in the slit, and denote the position of the new strip AB by the co-ordinate x
of its centre C measured from the centre O of RS (Fig. 1). Then, denoting
the additional length that is covered by this strip for different values of x
by f(x) the function f(x) will vary as follows:

@ d>1

F(X)=0 for x < — (EI_%I) and x> -+ (d-F l)

2
o d—1 d—1
f=1for — (5=) << (2
and f(x) varies linearly in the intermediate positions
) d<i

J(x) =0 for x < «-(é.j—z_‘_{) and x > ([”_—_I—z_cj)




90 | ~ G. N. RAMACHANDRAN

3 I—d I—d
f(x)-—dfor——(-——z——)gxg —5
and f(x) varies linearly in between.

The variations are shown schematically in Figs. 2 (a) and () from which
the integral of f(x) from — (d + 1)/2 to + (d 4 1) 2 is seen to be /d in both
cases. Thus, the mean length that is additionally obscured by AB is

Q
or@a K TT@a /
{p () dx R (L)] ®)

i.e., it is a fraction d/L of I

Clearly, if more than one gap R;S; is present, the contribution from each
gap of length d; is equal to (d;/L) /, so that the mean additional length cut off
by the (m + 1)th strip is

ThyLmg 9

Thus,

Lma=(1- %) L | (10)

or each additional strip cuts out, on the average, a fraction //L of the un-
covered area (neglecting boundary effects).
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d<2

e—dz)\\ —> £
SN

d2 \dz
=\ N 2N
2\ 2
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Fic. 2 (b)

N

The most interesting aspect of the above derivation is the fact that it
does not depend on the magnitude of the length / of the strip and the final
result is true irrespective of whether it is larger or smaller than the individual
gaps. This comes because what is gained in the swings is lost in the round-
abouts.

It might appear that such an exact balance will be possible only if there
1s a linear variation of f (x) when it is varying, as is the case here. However,
such a condition is not all necessary, as will be seen from the more general
problem to be considered in the next section.

3. GENERAL ONE-DIMENSIONAL CASE—STRIP WITH VARIABLE ABSORPTION

Suppose in the example considered in Section 2, the strips are not
opaque, but exhibit variations in transmission. This may be defined by a
function g (x) which gives the variation of the absorption coefficient, (i.e.,
the fraction of the incident intensity that is absorbed) with distance x’ from
a chosen point (say the centre C of the strip). Thus, if light of intensity unity
(per unit length of the slit PQ) is incident on the strip of length /, then the
energy absorbed by it is

+liz

1= | g(x)dx. an

Thus each strip absorbs an energy I where I is the incident (linear) intensity.
We shall now consider what happens when the (m -+ Dth strip is added.
Suppose light of (linear) intensity I is incident on the slit PQ. Then its total
energy is Eo = LI. Let the distribution of intensity along the length of the
slit after m strips have been thrown be given by the function hp (x), x being
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now measured from P [Fig. 3 in which the function g (x) is also schematically
represented]. Clearly,

Epp = [ i () dx. (12)

Now, let the probability of the centre C of the (m - 1)th disc falling in an
interval dx at x be p (x) dx = kdx as before. When it does fall there, the
amount of energy removed from the transmitted beam is given by

L +oo
J8 " = x) hm (") dx" = J 8 (" — x) hm (x") dx”

= gChp (x). (13)
since /i, (x") is zero for values of x” outside the range 0 to L.

/ i

= X~2X

ot 1z

-/X\/
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| = >|
. x +x'=x” S|
l -

Fi1G. 3

The symbol gChyy, stands for the “correlation function’ of the function g (x)
with 7, (x) (see Appendix I for the definition of °correlation function ).
Since g (x") becomes zero outside the length 7 of the strip, the limits of integra-

tion in the first expression in Equation (13) are justified if boundary effects
are neglected.

The result (13) is for the case when the centre C of the strip falls at x.
Consequently, the mean energy abstracted from the transmitted beam is
obtained by averaging overall values of x from 0 to L. This gives a value

[2 () eChm(x) dx
f P (x) dx

By the correlation integral theorem discussed in Appendix I (Equation A 10)
the last integral is equal to

L
=1 f gChum (x) dx. (14)

L +112 . ’
Jh () dx - 4 {; g (x) dx = Eppn. (15)
0 -2
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Thus, the mean reduction in energy due to the (m -+ 1)th strip is nEp/L or

Ena=(1-1)En (16)
which, by iteration, leads to the result
1 — n
En = —T—’? E,. (17)

It will be noticed again that Equation (16) is true irrespective of the
nature of the variations of the functions /.y, (x) and g (x). This is analogous
to the result found for the opaque strip, namely, that the relative dimensions
of 7 and the widths d; of the various gaps is immaterial to the problem. Thus,
the intensity may fluctuate to any extent over the length of the slit and the
transmission of the strip AB may also widely vary over its length, but these
are immaterial to the problem so long as we are interested only in the prob-
able (or mean) reduction in energy due to the (m + I)th strip. The mean
reduction (Eq — Emyy) is then simply a fraction n/L of the total energy con-
tent Epp.

The interesting point is that the evaluation of the function (13), giving
the reduction in intensity when the centre of the strip falls at x, may be
extremely difficult in any practical case. However, the theorem of Appendix I
reduces the mean of this to an extremely simple form, namely, to the evalua-
tion of the transmission of a single strip when kept in a uniform beam. Thus,
we are able to show that Equation (16) is exactly true, analogous to Equa-
tion (10).

Incidentally, the centre C of the strip AB may be replaced by any fixed
point on the strip in the above derivation and all the results would still be
true. This is of interest in connection with the generalisation to two dimen-
sions.

4. EXTENSION TO Two DIMENSIONS—THE Dis¢ PROBLEM

We shall now return to the disc problem, but will no longer restrict our-
selves to circular discs. On the other hand, suppose that the discs are of
arbitrary shape, but that they are all identical in shape and size (each of
area o) and that they fall in exactly the same orientation on the area A, but at
random positions. The randomness may be specified by stating that the
probability that a chosen point on the disc falls in an area dA at ris equal
to KdA, where K is a constant.

Let us denote the uncovered regions after m disc are thrown by Ap,
and use Ap to denote also their area. Analogously to the strip problem,
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we shall prove that the mean additional area that is covered by the (m + 1)th
disc is (Ap/A) a. A reference to Fig. 4 will show how surprising this result
is at first sight, all the more so, since an attempt at proving this directly even
for a circular disc turns out to be very difficult, because the shape of the indi-
vidual apertures in the region A,, cannot be specified analytically.

Fic. 4

We shall, therefore, prove a very general result by resorting to the
theorem on the integral of convoluted functions: and then deduce the above
as a special case.  Consequently, let the function g (") denote the variation
of absorption on the disc, the vector s’ being measured from a specified
origin C on the disc. ~Similarly let hm, (r) be the distribution of intensity over
the plane of the area A, after m discs are thrown, r being measured from an
origin O on it. Clearly

Em = { n (r) dr. (18)

(Here dr denotes an element of area dA as in Appendix 1.) Now, let the

(m + Dyth disc be thrown. Then for a particular position of this disc with

_é

OC = r, the energy absorbed by the disc is analogous to Equation (13),
T8 — 1) " = gChp (). (19)

Cjonsequenﬂy, the mean energy abstracted from the beam by the (m + Dth
disc is similar to Equation (14) and is equal to

% f g Chm (l‘) dt’, (20)

which by the correlation-integral theorem (A 20) of Appendix I, is equal to
1 . . '
K~J‘lzm(,r)a?r-fg(r)drz]%’31—”“~7-7 (21
A @
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where
1=[g()dr @
is the energy absorbed by one disc when unit intensity is incident on it.
Hence,
Enu=En ( 1 — %) (23)

and by iteration

E, = E, (1 - "’)". 24)

Clearly, when the discs are opaque, 7 is just equal to o the area of the
disc, and Equation (22) reduces to the form of Equation (3). The result is
however true for a disc of any shape.

As stated in Appendix I, the correlation-integral theorem is true even if
the two functions which are convoluted are functions of any number of
variables. However, there is no analogue of the light transmission problem
in three dimensions of real space.

5. DiscussioN

We had neglected the boundary effects in all the previous secfions. The
variations occurring near the boundary would have negligible effects only if
the area o is small compared with the total area A (similarly for the one-
dimensional case). However, the main point of the results proved above is
that the variations inside the area A all get averaged out exactly, irrespective
of the shape or nature of the discs and of the individual apertures within A,
provided we assume that the probability of a chosen point on the disc occurring
anywhere within the area A is a constant. If this last proviso is satisfied, all
our results are mathematically correct. Thus, this condition is satisfied in
the case of a light beam passing through a random cloud of particles of uni-
form density when the cross-section of the beam is completely inside the

cloud.

It is interesting to note that although the phenomenon in its elementary
form is subtractive, i.e., each disc removes a certain amount of energy from
the beam, the effect of each additional disc is found to be multiplicative owing
to probability effects, when the average is taken. It would be of interest to
study the distribution of the energy E, after encountering » discs, quite apart
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from its mean value, which we have shown is equal to Ey (1 — a/A)", but this
is not attempted here.

The case when the particles of arbitrary but identical shape and size
take up not only a random position within the area A, but also a random
orientation, can also be readily worked out. Since for a definite orientation
the mean follows the iterative formula (23), it undergoes no further change
when averaged over all possible orientations. Consequently, Equation (24)

still holds for E,, and the only relevant factor is 7, the absorption factor for
each disc. ‘

The case when the particles vary in size has been treated in the earlier
paper by the author when the size is small. A study of the proof shows that
the results are equally valid when the size is not small, and by following argu-
ments similar to those in the last section, it is possible to show that the follow-
ing equations hold for the mean energy:

Em = Em_, ( ——my (25)

and

Eano('-—%)(1——7—£)...<l-—%—“ (26)

4

- where #; is the energy that would be absorbed by the ith disc if unit intensity
1s incident upon it.
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APPENDIX

FALTUNG AND CORRELATION INTEGRAL THEOREMS

I. THEOREMS ON FALTUNG OF FUNCTIONS

The Faltung (convolution) of two functions g (x) and #4 (x) of a single
variable x, denoted by gFA(x) [= f(x) say] is defined by*

+oo =
gFh (x) = f(x) =_j' g(x)h(x — x)dx, (AD
which is also equivalent to the form

Fe)= et —x)htxax (A2)

It is obvious that the functions gF# and AFg are identical.

Although the limits — cc and + oc is used for the integral, in practice
both functions might be zero beyond finite limits, in which case the faltung
f(x) would also have a non-zero value only within finite limits. In such a
case, it would be sufficient to evaluate the integral (A 1) or (A 2) within those
limits.

It is possible to show that the integral of the faltung of two functions is
the product of the integrals of the individual functions. We shall call this the
Faltung Integral Theorem. If we restrict ourselves to functions which occur
in physical problems, the only conditions required for its validity appear to
be that the integrals of g (x) and % (x) should be finite.

Let
G = Tog (x)dx and H = Jrfcoh (x) dx.
Then, | -

F=/(ds =__:f:°dx_fg )k (x — x) dx’

= T g dx'j”h (x — x) d (x — x') = GH. A3)

* To avoid confusion with the use of the star for the complex corjugate and also so as to
be in accordance with the notation of the correlation function below, tle symbtol gF# is uscd in
preference to g * & for the faltung of the functions g and 4.

97
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The condition for this to be valid is that the change in the order of integration
in (A7) should be justified which is ordinarily valid for physical functions.

Although the result (A 3) is a consequence of a well-known theorem on
the Fourier transform of the convolution of two functions [see e.g., Sneddon
(1951)], it does not seem to have been specifically noted and applied so far.
It appears to have applications in various physical problems.

If g'and h are functions of a number of variables x; (which may be col-
lectively represented by a vector r), then the following results hold. Define
the faltung by

£ = gFh (9 _—__Z" N ._:]jg )R (F — 1) dr. (A 4)

Then, we have the general faltung integral theorem

F=GH (A)5)
where
+co +oo
F=7] ... [gW@dr (A 6)

and similar integrals define G and H.

2. THEOREMS ON CORRELATION Fuxncrions

It will be noticed that the integrals (13) and (19) in the body of the paper
are very similar to that in the definition of the faltung function, but are
different from the latter. In fact, integrals of the type met with in this paper
also occur in other physical problems and it would be worthwhile to define
a function, which may be called the ‘correlation function ’.

The “correlation function of g(x) with & (x)” denoted by gCh (x) is
defined by : .

gCh(x)= [ ¢ h(x+x)de A7)

Clearly Equation (A7) is also equivalent to the form

Ch=Tew-Drxay gy
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However, gCh(x) is not necessarily equal to hCg (x), but
gCh(x) = hCg (— x) (A9)

The term “ correlation * for the function gCh (x) is justified by the fact that
the value of this function at x is obtained by taking the product of g at x’
and of 7 at x 4+ X', i.e., obtained by an additional shift x, and integrating
over x'.

The correlation function of g (x) with % (x) can be shown to be equal
to the faltung of g (— x) and / (x). Hence, from the faltung integral theorem

+co +o0 +oo
J eCh(x)dx = [ g(— x)dx - [ h(x)dx = GH. (A 10)
Thus, the integral of the correlation function of g with 4 is also equal
to the product of the two integrals of the functions g and / separately. We
shall call this the Correlation Integral Theorem. Tt will be noticed that the
integrals which occur in the body of the paper are all of the type defining a
‘ correlation function’. Since these functions vanish outside a finite range
of the argument, the limits in (A 10) can be set finite in these cases. The
extension of theorem to a number of independent variables x; is obvious.

Only the results required for the present paper have been derived in this
Appendix. It is proposed to discuss the properties of the faltung function and
the correlation function in a separate paper with examples of their applica-
tions in physical problems.




