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ABSTRACT

The paper deals with the theory of the diffraction pattern of helical - .
structures having the number of units per turn (n) neither integral nor
rational. The conventional treatment suffers from the defect that the
repeat spacing along the axis of the helix is taken as the standard of
reference, and this does not exist, being infinite, when # is irrational. “The -
difficulty is got over in this paper by focussing attention on the ‘unit
height® (h = resolved component of a unit along the axis) and ‘unit twist’

(¢ = fraction of a complete rotation for one unit, — 1/n), which vary con-
tinuously irrespective of n being rational or irrational. Explicit formula
are obtained in terms of their Bessel indices for the observed layer line- =~
spacings which turn out to be very simply related to the reciprocals of
the unit height and the pitch of the helix. A technique of analysing
the observed diffraction pattern for the elements of the helical structure
is also given, with examples. The case of a coiled-coil is seen to have
the same general features as the simple coil, the layer line-spacing being
now related to two pitches, namely, those of the major and the minor
helices, and the unit height. The relationship of the diffraction pattern
of a helix in its uncoiled and its coiled-coil form is also found to be rather

simple, being similar to the multiplet splitting produced by a magnetic
field in spectral lines.

1. THEORY FOR A SMPLE HELIX WITH A NON-INTEGRAL SCREW AXiS

IT is well known that the characteristic feature of the X-ray diffraction
pattern of a fibre containing helical chains, with the number of links (units)
per turn, n, non-integral, is the occurrence of strong layer lines whose layer-
spacings are not all in the ratio of 1:2: 3, etc., as is found in the rotating
crystal diagram of an ordinary crystal. An explanation of this was given
in terms of the Fourier transform of a helical structure by Cochran, Crick
and Vand (1952). Taking in particular the case of M point atoms arranged

at regular intervals in N turns of a helix of radius » and pitch P, so that the
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repeat spacing along the axis is ¢ = NP, the intensity distribution in reci-
procal (Fourier) space (R, #, Z) on the layer line [ with Z = //c essentially
depends on the value of the Bessel function Jq (27Rr), Whele g is an integer
which satisfies the equation

Ng +Mm=1 (g, m, [ integers). (1)

Now denote the projected distance between two successive atoms along
the axis of the helix by % (= ¢/M), which may be called the ‘unit height’,
and the fraction of a full rotation corresponding to one such unit by
t (= N/M), which may similarly be called the ‘unit twist’. Clearly the
unit twist is the reciprocal of the number of units per turnm, i.e.,

1
t=_. | 2)

Since only J, (x) has a finite value for x = 0, all other Jq4 (x) being zero
for x = 0, and since the first maximum of Jg (x) occurs for larger and larger
values of x and is relatively lesser in height as g increases, it follows that
the prominent layer lines are those for which ¢ is a small integer and of
these only those with g = 0 contain a meridional reflection. Thus, restrict-
ing ourselves to layer lines with spacings between ¢ and ¢/M = h, ie.,
=1 to M, the principal layer lines are seen to be as below™:

For g = 0, [=M; Z=Mlc;
Forg=1, [=N, M—N; Z = N/e, M — N)/c;
For g = 2, [=2N,M —2N; Z=2N/¢,(M —2N)/c.

‘Now, suppose that the helix undergoes a small deformation, so that

| the unit twist 7z, which was equal to N/M, increases very slightly (say). It

is obvious that the repeat spacing ¢ would completely change, e.g., taking
the a-helix with 2 = 1-5 A, n = 36, which corresponds to N =5, M = 18,
¢ =27 A, if n increases to 3-625, then N =8, M =29, ¢ =43-5A, while
if n increases to 3-61, then N = 100, M = 361, ¢ = 541-5A. Thus, the
repeat spacing ¢ undergoes wild fluctuations as the number of units per

“turn (n) or ¢ is changed even by a minute amount—actually ¢~ oo if 1 is

irrational. However, it stands to reason from physical grounds that the
diffraction pattern would only undergo an infinitesimal change for such an

‘infinitesimal change in #n or f. Actually, that this is so can be verified by

" * These conclusmns continue to hold even when there are a number of atoms in the
repeatmg unit, provided they all follow the same helical pattern,as is the case in a helical structure,
which is fully specified by the two parameters % and ¢ (or #). ’
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fully working out the pattern according to thg abg‘ve theory for var{ous
rational approximations to a given number. This pgmt has been recognise
by Cochran et al. (1952), but they have not considered ?he general case.
It would, therefore, be worthwhile reformulating the theqry in such a manner
that no such rational approximation is needed. As will be s’hown below,
it turns out that what is relevant to the speciﬁcqtmn of a helical structgre
are the parameters unit height (%) and the unit txv1§t (0. lene repegt spacing
¢ need not enter the picture at all in the formulation. It is obvious t.hat,
from the stereochemical point of view also, the only data that are specuﬁed
for a helical chain is the relationship between one unit and the next, which
is precisely the same between that and the next and so on. The repeat
spacing ¢ is never specified as such.f

Thus, since ¢ is unspecified, the only reciprocal spacing which can be
used to describe the pattern is the reciprocal of the wunit height 4, i.e.,
1jh = Z, (say). This is in fact the spacing of the meridional reflection.
Therefore, let Z = 9Z,, instead of /. (1/c¢) as before. Then, in Eqn. (1)
[ = nclh =M, so that we have

Nq + Mp: = nMs

or dividing by M throughout and remembering that N/M = ¢, we have

g +m=7, Z=

=3

= nZ,. (3)

The layer lines are now given by the number 1, Which is not an integer (and
which is not even necessarily a rational number). The prominent layers
correspond to ¢ =0, 1, 2, ...... in decreasing order of prominence. Con-
sequently, it would be more useful to use the Bessel index ¢ to denmote the
layer lines in the diffraction pattern of a heli

ng = (tg +m) gives its location,

X, and the corresponding f

In order to get a clearer picture, let us restrict ourselves to layers with
|Z| < 1/h, ie., those occurring within the first meridional reflection.
Taking n°'=3-6 as for the a-helix, ¢ = 0-278 and the layers with Bessel
indices [g] =0, 1, 2, 3, 4 occur at 7 — Zy, Z=0-278Z, and 0-7227,,
Z =0-556 and 0-4447,, Z = 0-834 and 0-166Z,, Z = 0-112 and 0-888Z,.

t It has been possible to wo;k out-specific formulz, which give (@) the orientation: of the
helical axis, () the unit height and (c) the unit twist () when the stereochemical relations between
successive units are given, but this will be ‘reported separately. T
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Fic. 1.(a) Schematic diagram, showing layer lines of a simple belix with n=3-6. The
thickness of each layer roughly represents its intensity. (b) Relative intensities of the layers
actually observed with poly-L-alanine. Note the occurrence of layers even with large ¢ (up to 6)
at low angles (small Z), but the relative absence of layers at larger values of Z.

These are schematically shown in Fig. 1 and the general formula may be
written in the form:

Zg=1IlgtN1Z;, and Zg = (1 — [[g7]]) Z,, 4)

where [[x]] stands for the fractional part of x. Those with ¢ = 0 are meri-
dional, while the others are non-meridional. In terms of the X-ray crystallo-
graphic { = AZ, the {-values of the prominent layer lines can be deduced
from Eqn. (4) to occur at

(=N} and £=(1—[gAD)}. )

It will be noticed that these very simple formule contain no reference
at all to the repeat spacing ¢, but require only the specification of A, the
projected height of one unit along the axis of the helix and », the number
of units per turn. The formulz are equally valid when 7 is integral or is
the ratio of (simple) integers. Since, in the limit when » tends to an irra-
tional number, there is no quantity in the formule which fluctuates indefi-
nitely, the formule are also true in the limit when » is irrational. Thus,
they can be taken to be valid quite generally. Then, the intensity distri-
‘bution in reciprocal space on a layer of Bessel index g is given by the
formula of Cochran et al., viz.,
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.+zmz4] (6)

where (r;, ;. z;) is the position of a j-th type atom and f; is its scattering
factor, and Z is given by Eqn. (3).

2. ANALYSIS OF LAYER LINES BY THE NEW FORMULA

The new form of the diffraction formula for a helical structure given
by Eqn. (3) will be found to be very useful in practice as will be evident
from some examples to be given below. Thus, in interpreting a helix dif-
fraction pattern, the first thing to ook for should be the truly meridional
reflections. Owing to disorder, some non-meridional reflections would
occur as arcs bridging the meridian, but these can in many cases be resolved
by taking inclined fibre photographs. So also, the truly meridional reflection
can.be brought out by such a photograph, as in the case of the 1 ‘5 A of the
alpha helix. Having thus obtained %4 and hence ¢, (or Z,), the next step
‘should be to look for the other prominent layer lines with ¢ < . If two
such can be found, say ¢, ¢’ such that

L+ =, )
then it is clear from Eqn.(5) that

LiI=(g)?{ and (1-gp) g, (8)

.most probably with g =1, so that {/ {o gives at once the unit twist t, and
' #, the number of units per turn of the helix. Sometimes g may not be
“equal to one, but 2 for the most prominent layer lines owing to the fact
that the Fourier transform of the unit itself is weak near the meridian cor-
Tesponding to the layers with g=1 1In any case, further confirmation
of the assignment can be obtained by comparing the {-values of the other
observed layer lines with the values calculated from Eqn. (5).

Thus, it is seen that the analysis of the X-ray diffraction pattern -of a
helix for its elements 4 and ¢ (or m) is quite straightforward, so long as the
layer lines are clear and the meridional and non-meridiona] reflections can
‘be clearly distinguished. We shall illustrate the procedure with reference
to the data on the a-form of poly-y-methyl-L-glutamate (Bamford eral.,
1956). The mean values of { for the observed layer lines are Q- 109, 0-173,

0-2865, 0-461 and 1-028, the last of which is meridional. The strongest
layer- is the ‘one with {=0-2865, ‘

£
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Obviously {, = 1-028, giving 7 = 1-50 A. A more accurate value of
{y=1-034 may be deduced from the later data of Brown and Trotter
(1956) which is also in agreement with the measurement 4 — 1-491 A of

Yakel (1953). No two of the {’s satisfy an equation of the form (7).
However,

2 x0-2865 +0-461 = 1-034
and S .
3 X 0-2865 +0:173 = 1-0325

and the sum in either case is close to {, = 1:034. From the general theory,
these equations are consistent with the assignment

0-2865 = 14, (g=1)
0-461 = (1 — 26) ¢, (g=—2)
0-173 =1 — 35 ¢, (g=—23)

The mean value of n(= 1/f) obtained from these assignments is 3-58.

This value leads to ¢, = (4¢ — 1) {, = 0-106, which is close to the observed
value of 0-109.

Thus, our analysis shows that the observed pattern is consistent with
a structure with 4 = 1-491 A and n = 3-58. Actually Bamford ez al. have
tried to index their observations on the basis of a cell with M =29, N =8
giving n = 3-625 and M = 69, N =19, i.e., n = 3-632 in addition to the
simple n = 3-6 helix with M = 18, N = 5. If {,= 1-028 is used, the mean
value of n obtained is 3-61 (variation 3-58 to 3-64), which is close to the
rational approximation attempted. These facts suggest that the rational
approximations are not particularly relevant, unless they are dictated by
some special considerations such as symmetry.

A similar analysis may be made of the pattern of a-poly-L-alanine
(Brown and Trotter, 1956; Bamford ef al., 1956). Brown and Trotter have
given a table of observed {’s of the various layer lines conveniently as reci-
procal spacings Z in A~'. We shall designate the layers by A, B, C....K
whose Z-values are listed in Table I. 'The last one K with Zg = Z; = 0- 668;
is the only meridional reflection, giving A = 1-495 A.

Of these, Z¢ +Z; = 0-665 ~ 0-668, and C is a prominent layer line, so
that we may identify these with ¢ = 1, giving Z¢ = tZ, and Zy = (1 — 1) Z,.
Now, from Eqn. (3) it follows that

7 = =m L gt ©)
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TABLE T

List of observed layer lines and their indexing by Bessel indices q for
poly-L-alanine. Note that layer lines with q = 3, 4 ar 0-555 and 0-597
are absent while those with q = 5, 6 actually occur

Layer Z gl Z|Z, Z, =17,
line (from theory) (from obsn.)
A 0-0713 4 4r—1 0-1850
B 0-114 3 1—-3¢ 0-1849
C 0-185 1 ot 0-1850
D 0-233 6 2—6t 0-1840
E 0-257 5 5t—1 0-1851
F 0-298 2 1-2¢ 0-1858
G 0-367 2 2t 0-1835
H 0-411 S 2—5¢ 0-1852
I 0'433 6 61—1 0-1836
J 0-480 1 1—¢ 0-1886*
K 0-6686 0 1

Mean .. 0-185 4 0-001

* Omitted in obtaining the average and standard error.

From this, it is obvious that a number of observed Z-values must differ by
multiples of Z, (= Z,). Tt will be seen that this is in fact true. Thus,

Zy — Z, = 0-185
Zp — Zy = 0-184
Zo — Zg=10-182

Zy — Zp = 0-178
Zy — 7y =0-176
Z; — Zp=0-182
Zg — 7, =0-188,
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This clearly establishes that our identification of Z; =0-185 by ¢ =1 is
correct. A further confirmation of this comes from the fact that Zy + Z¢
= 0665 ~ Z; and the relation Zy ~ 2Z; holds. The indexing of all the
observed layers is, thereafter, straightforward. The values of g are given
in the third column and the value of Z/Z, from theory in the fourth column,

Using the data from the fourth column, the value of Z; (= tZ,) is
deduced from each of the measurements and they are given in column 5.
It will be seen that all of them are very nearly a constant except the one
deduced from Z; which has a larger error. This layer is very weak in the
diagram and so this value may be omitted in finding the mean which comes
out to be 0-185 4+ 0-001, where the 4+ gives the standard error. Taking
the value of Z, to have a relative error of 4 0-2%,, as given by Brown and
Trotter, we find that

n=3:61540-02.

It is interesting that the mean value is identical with that assumed by Brown
and Trotter, namely, 47/13 = 3-615. However, their quoted probable
error -~ 0-003 is far too small. It is not clear how they have deduced their
probable error, but their own data giving ¢, and , in their Table I
(their Z is our Z) show a percentage deviation of the order of 1% (e.g., 0-233-
0-228, 0-433-0-441, 0-480-0-484, etc.) which would be more in accord
with our standard error (0-6%) than theirs (<0-19%). This shows that
the experimental data cannot prove that a chosen rational approximation
is the correct one.

Thus, it will be seen that the analysis of the diffraction pattern of a
simple helix can be made into a simple routine. This is so even if the truly
meridional reflection does not record, for Z, can be deduced from the fact
that pairs of Z-values will have their sums equal. In the present case, we
have several such, e.g.,

Zy +Zc = 0665
Z; +Zp=0-666
Zy +Zg = 0-668
Zs +Zz = 0-665
Mean = 0-666
Tt will be noticed that the mean is nearly equal to the directly measured

value of Z, (namely 0-6686) which is highly satisfactory. Modifications
of these methods could, of course, be worked out to suit particular cases,
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So also, it is seen that, in the ordinary way, it is not possible to prove
that there is a definite repeat spacing ¢ in which the helix makes an integral
number of 'turns. Actually, in such structures, which are not stablilised
by rigid bonds connecting one helix with another, small variations are likely
to occur, and the interesting fact that has come out of the present study is
that such variations only insignificantly affect the diffraction patterns. The
layer lines may be slightly shifted about (not all in the same direction), but
the strong ones would continue to be strong and the weak ones weak.

3. THEORY FOR A COILED-COIL

In the above discussion, we have been dealin g only with simple helices.
When there is a further oiling of these, leading to superhelical configura-
tions, the nature of the diffraction pattern changes somewhat. In order to
get the picture clearly, we shall write the formula of Crick (1953) connecting
the various Bessel functions orders in a form more akin to our equations
(1) and (8). His equation is, with a small change in notation (N instead
of Nj), ‘ ‘

Nop + (N’ = No) g +Ny's +(Ny' + No)d + Mm = 1,
with p, q, s, d, -m',‘ [ integers » S ‘ | o (10)

for a layer line with Z = Ife, ¢ being the repeat spacing which contains M
units, N, turns of the major helix and N,’ turns of the minor helix. Let
1y = M/N, be the number of units per turn of major helix, n;’ = M/N/,
the number of units per turn of the minor helix in a rotating frame of refer-
ence following the major helix. As in the case of the simple helix, write
Z=1.(l/h), so that /=M and let to=1/ny, #," = 1/n,’. Then Eqn.
(10) becomes ‘ ‘

tp +(6" — 1) g +t's + (1 L) d +m = 7 (11 4)
Z = nZ,, zo=%. o (11 5)

Thus, the repeat spacing ¢ has disappeared and the layer is now specified
by the number % (not necessarily even rational) which corresponds to the
Bessel indices (p, ¢, s, d). The intensity distribution in this layer continues
to be given by Crick’s Eqn. (13) for a coiled-coil with one atom per unit
having unit scattering factor (see his paper for details of notation);
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F(R, ¥, Z) ,
=335 %‘,’ Jp (27Rro) Jq 2aR7)) . J5 (2aZry sin o) Jg (27R4)
xoxp i | p(¥—do+3) +a(~ 4+ +7)
w
(= b +m) +d (b + +F) — miby + 27z, (12

The most prominent layer lines correspond to small values of p and g. The

index s = O for all layer lines with Z < Z, but s = 1 may occur for Z ~ Z,.

The index d must be put zero in most cases.

Before working out the consequences of Eqn. (11) under these condi-
tions, it is worthwhile examining the relation between the transform of a
coiled-coil and of the simple coil from which it has been obtained. Now
in Crick’s paper, Ny’ is the number of rotations made by the minor helix
in a rotating frame which rotates along with the major helix. (Crick calls
this ‘the number of rotations made by the minor helix in its own frame of
reference’, which appears to be not a happy wording, although its con-
notation is quite clear in his paper.) Now consider the number of turns
N; made by the minor helix in space when the major helix makes N, turns.
Under the conditions adopted in Crick’s paper (left-handed minor helix,
right-handed major helix, i.e., the senses are opposite), it will make a smaller
number of turns than N, actually N; = N;" — N,. The significance of
N, is best visualised by considering the case when the radius of the major
helix shrinks to zero. There is no coiled-coiling in such a case and Nj is
then the number of turns made by the minor helix in the repeat ¢. The
number N; thus specifies the undistorted minor helix (and not N;') and
consequently it is used in all the formule derived below.

Thus, let N; be the number of turns of the minor helix in the repeat
¢. The associated number n; = M/N; is the number of units per turn of
the minor helix and its reciprocal # = 1/n; is its unit twist. In terms of

‘these, Eqns. (10) and (11) become

Nop +Nug + Ny +No)s +(Ny +2Ng)d +Mm =/ (13)
top +1q +(ty +t))s +m=r1 ' B (14)

where d is put zero in Eqn. (14). Eqn. (12) continues to be valid with this

notation also.

We shall now consider the consequences of these equations,
(@) s=0,
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As already mentioned, Jg (27Zr, sin ) does not have éppreciable values
for small Z, except for s=0. In such a case, we get

tp +hg +m=n, Z=n1Z, | (15)

which may be compared with Eqn. (3) where ¢ = #;. In general #,, the unit
twist of the major helix, will be much less than #, that of the minor helix
so that fop <#,9. Thus the effect of coiled-coiling is to split up each of
the layers given by the simple helix into a series of closely spaced layers,
becoming weaker on either side of the original one for the simple coil.
This follows from the fact that J, (2#Rry) and Jq (2=R¥,) occur multiplied
together. The situation is shown schematically in Fig. 2 for two cases
(@) 1, <Lt and (B) #, ~1;. There is a close analogy to the multiplet
structure of spectral lines, which might have struck the reader even in the
case of the simple helix diffraction pattern (e.g., the occurrence of constant
differences, constant sums, etc.). The multiplets (p different) may be
close together or well separated depending on 7, being small compared
to #; or not.

Thus, it is seen that there is no meaning in asking whether supercoiling
exists or not, but only whether it is appreciable or not, for when the pitch
of the major helix is very large, we would only find a slight broadening
of the observed layer lines.

(b) s#0.

Since (fp +1,q) contains also all the values occurring in the sum
top +1q +({y +1) s + (¢ +2t) d, no layer lines can occur at positions
other than those given by Eqn. (15) and sketched in Fig. 2. On the other
hand, the functions J; and perhaps also Jg with s, d=£0 may also con-
tribute to some of the reflections. Thus, their intensity might be quite
prominent.

Important examples of this type are the possible layer lines near
Zy (n = 1) for which J; (2#Zr, sin o) with s = 1 has an appreciable value.
In such a case, for ¢ =0, p = —1, —2, etc., there occur layer lines at

Z= ZO: ZO (1 _ tO): ZO (1 - 2%): etc.,

i.e., a series of layer lines with constant differences corresponding to 7,7Z,.
Such layer lines cannot occur for a simple helix, and since g = 0, they will
occur very near the meridian.

In fact the simplest way of finding the value of ¢, seems to be to look
for such layers close to Z=0 and Z = Z,.

]
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Fic. 2. Splitting of layer lines due to coiled-coiling.

Thus, the main point of interest is that the diffraction pattern of a
-oiled-coil is not frightfully complicated, in spite of the fact that Eqn. (13)
giving the Bessel indices contains four different parameters. In terms of
our analysis, it is seen that the layer lines have only two types of periodicities:

(@) t,Z, due to the major helix
(») ,Z, due to the minor helix
and the actual layer line spacings are given by Eqn. (15). Consequently,

if the Z-values of the layer lines are accurately measured, they must be
fitted to a formula of the type -

Z = mZ, +pE, +q5, (m, p, q integers). " (16)
Of these, the layer line with Z = Z, has intensity on the meridian, those

with Z = Z, &+ p&, have intensity close to the meridian, while the others
are definitely non-meridional. Having found Z,, {5’0, E,, the elements of

‘the coiled-coil are given by

h=ry =7 h=g W)
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In view of the above results, the nature of the diffraction pattern when
there is a still further coiling is easy to work out. If » is the number of
units per turn in the primitive coil, n’ the corresponding number for the
first superhelix and »” for the second superhelix, then the layer lines which
occur are at

Z=qZ, ‘ (18 )
where
n=1=t"u +t'p+tqg +m (u, p, q, m integers) (18 )
and
1 , 1 b 1
z-ﬁ, t_—r_f’ t“n” (18 ¢)

analogous to Eqn. (15). Obviously, layers with u, p, g small will be the
strong ones. _

4. CoNCLUSION

If one examines Eqns. (3), (15) and (19) respectively for a simple helix,
a coiled-coil and a coiled-coiled-coil, it will be seen that they are all of the
same essential form. The strong layer lines occur at Z-values which, when
expressed as a fraction # of the fundamental reciprocal spacing Z, = 1/A,
have a direct relation to the unit twists of the various helices. In the simple
helix, the various 7’s are just multiples of the unit twist (¢f. n=tqg +m,
with ¢, m integral). With further coiling, the periodicities of the other
(major) helices show up as a fine structure modulating the diffraction
pattern of the simple helix.

 In other words, if the observed data are plotted on the y-scale, i.e.,
"dividing the observed reciprocal spacing of the unit height, then they would
exhibit one, two or more periodicities, according to the number of coilings
~in the strucure. The problem is then only of finding this periodicity, taking
‘into account the fact that some of the layers may not be observed because
they are too weak. In general, the strongest layer line (Z = Z,) corres-
ponds to g =1 and its spacing P = 1/Z, would then be the pitch of the
“helix (as = already stated). The spacing of the meridional* reflection
h = (1/Z,) gives the unit height. The ratio of the two gives at once the
unit twist ¢ (= A/P) or the number of units per turn n (= P/h). Although
these are inherent in the earlier formuls, they are again explicitly given here
‘to emphasize the simple relationship between the diffraction pattern and
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the glements of the heljx. In fact, if the two halves of Eqn. (3) are combined,
we get - S ~ ) : S .o

SR R | ,1} T
where m and q are integrals. Thus, the prominent layer lines in'the diffraction
pattern occur at positions related to the reciprocal of the unit height and of
the pitch. The so-called repeat spacing along the helical axis is ‘nowhere
in the picture. ‘ o

The extension to the case of the coiled-coil is obvious and cémbinin’g
the two halves of Eqn. (15), we get

1
Z = mZ, +p(t0Z0)+q(tIZO)=m'—+p-i—i—q~~1~ (21)
h P, P;

where P,, P, are now the pitches of the major and the minor helices. The
positions of the layer lines now depend only on the reciprocal of the unit
height and the reciprocal of the pitches of the major and minor helices.

The great advantage of the ncw formalism is that one is able to get
out of the restrictions imposed by rational relations. It is obvious that
the degrec of coiling or supcrcoiling, when it exists, is determined only by
interatomic valence forces and that, so long as no rigid ordering imposed
by a crystal lattice exists, it is not limited by any integral or ratioral con-
ditions. This view-point has greatly helped in solving the helical structuse
of feather keratin (to be published elsewhere). So also even in the collagen
structure which has been considered in the past by the author himself to
have exactly 10 residues in 3 turns, a more careful study scems to indicate
that no such exact relationship exists, although actually the number of
residues per turn observed is close to it (also to be published elsewhere).

This turning away from the law of rational numbers was started by
Pauling and co-workers (1951) when they put torward the idea of non-integral
helices, i.e., that helices with n not equal to an integer can occur in protein
structures. It now appears that there is nothing sacrosanct in the use of
rational numbers and that any helix can occur in a fibre structure and that
it need not have even a rational number of residues per turn.

It must be stated however that if such helices form a crystal lattice with
rigid interhelical bonds which are strictly repeated by translational sym-
metry, then the rules of classical crystallography do hold and no values
other than n=1, 2, 3, 4 or 6 can occur i such a structure. Clv
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