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Multiplicity Formulae for Discrete Series

R. Hotta* (Hiroshima) and R. Parthasarathy (Bombay)

Introduction

In a series of papers [20, 21] and [22], Schmid obtained several
important results on the discrete series for semisimple Lie groups. The
purpose of this paper is to prove Schmid’s results by somewhat different
methods and to relax as much as possible the restriction imposed on the
regularity of the parameters of discrete classes. Though the basic line is
similar to Schmid’s, the main difference is that our methods do not rely
upon complex analysis on the non-compact flag manifold G/T as
developed in [20] and [21]. Rather, we just rely on some elementary
differential calculus on the symmetric space G/K. This difference gives
rise to less restrictive assumptions since the results on the vanishing
of I2-cohomologies in the symmetric space situation seem to be sharper,
so far. Our work also leads to some interesting results concerning the
multiplicity formula of discrete classes in I*(I' ~G). In our development,
we shall give an alternative proof of the key fact (Theorem 1, § 4) which
is obtained in [20] using the complex analysis on G/T. Our proof, given
in § 5, will be carried out directly in the symmetric space situation, and
some standard theory of sheaf cohomology centering the Borel-Weil-
Bott theorem on the compact flag manifold K/T will be used as in [20].
In this proof, our methods seem to be quite elementary.

We now give a more precise description of the contents of the paper.
Let G be a non-compact real semisimple Lie group with discrete series
&, +¢. Assume, for simplicity throughout the paper, that G is a connected
real form of a simply connected complex semisimple Lie group G©.
Harish-Chandra [7] showed that there exists a compact Cartan sub-
group T of G and that, if one denotes by T’ the set of regular characters
of T, there exists a distinguished surjection w: T'—&, Wefix T and a
maximal compact subgroup K containing T once and for all. Let g% t©
denote the complexifications of the Lie algebras g, t of G, T respectively.
In considering the discrete class w(A) for a given regular character AeT”,
we always choose a positive root system P for the pair (g%, t) such that A
is regular dominant with respect to P, i.e., P={a; (4, oc)>0} Here as
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usual, the character group T of T is identified with a lattice in the dual
space of t% which is equipped with the inner product ( , ) induced by the
Killing form of g. We denote by E, (resp. B) the set of positive compact
(resp. non-compact) roots. For a set Q = P, we write {Q>= Y o, and put
p=14<P), p, =1 (B> and p,=3(B). "<

The central results may be stated as follows.

Theorem. For a regular character A, choose a positive root system P
as above and put A=A — p. Assume that

(i) (4, 0)>0 for every aeP,, and

(i) (4, a)gér}:apx (p,—<@>, a) for every aek,.

Then

{(I) (Realization). The discrete class w(A)=w(l+p)eé&, is realized
by the left regular representation on the Hilbert space consisting of all
V. . 2,,-valued square-integrable functions f on G such that f(gk)=k™'f(g)
(g€G, keK) and v(Q) f=(A]>—1p|*) f. In the above, V,,, denotes the
irreducible K-module with highest weight A+2p, and v(Q) denotes the
ordinary action of the Casimir operator Q of G.

(IT) (Lowest K-type theorem). Let m be any irreducible unitary
representation of G, and consider the restriction n|K to the maximal
compact subgroup K. Suppose that n|K contains the irreducible represen-
tation of K with highest weight A+ 2p, but does not contain those with
highest weight 2+2p,—o for any aeP. Then n belongs to w(A+ p) and
the multiplicity of the representation of K with highest weight L +2p,
in ©|K is one.

(II1) (One part of Blattner’s conjecture ). The restriction to K of an
irreducible representation belonging to w(A+p) contains the irreducible
representation of K with highest weight u with multiplicity not greater
than b, (1) where b, (1) is the integer defined for A, u by Blattner (sec § 4).

(IV) ( Dimension of spaces of automorphic forms). For a discrete sub-
group I' of G such that I'~G is compact, the multiplicity N, , (') of
w(A+p) in the right regular representation of G on I2(I' ~G) can be
explicitly computed (Theorem 4, §8). If I' has no elliptic elements other
than the identity, then the formula is

N, (l+p)(r):dmu+o)v(r\G)’

where d,; , ,, denotes the formal degree of w(A+p) and v(I'~G) is the
volume of the fundamental domain I' \G.

It should be noticed that the assumption (i) in the theorem can be
replaced by the following two more complicated but weaker ones:

(i (A+p, 02 max (p, —{Q), o) for every ac F, and
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(i)° for every Q<P such that A+2p,—<Q) is dominant with respect
to B, A+ p,—<Q) is also dominant with respect to E,.

Furthermore, we shall see that if the positive root system P satisfies
a certain condition {“admissibility” defined in the beginning part of §9),
the assumption {i1)* can be removed { Propisition 9.1, § 9).

Under more restrictive assumptions on /A, {I) has been shown in
[9, Theorem 2]; (II) in [21, Lemma 97; (I1I) in [22, Theorem 2]; (IV) in
[21, Theorems 2 and 3). Further, there have been several other works
[16, 18, 217 and [22] on realization of discrete series. In [18], w(L+ p)
has been realized on the space of harmonic spinors only under the
assumption (i).

For a moment, we concentrate on (IV) which gives us some new
information on the multiplicity of certain discrete series in L*(I' ~\G).
In the case of G=SL(2, R), the following is classically known. If T is
identified with the set of non-zero integers in a standard way, N, (I
(neZ — {0}) equals the dimension of the space of automorphic forms of
weight |n]+ 1, which turns out to be |n|(g—1) for |n|%1, or g for [n]=1,
when I' has no elliptic elements other than the identity. Here g denotes
the genus of the compact Riemann surface with fundamental group I.
From the viewpoint of representation theory, w(n) is an “integrable”
discrete class in the sense of [6, V1] if and only if |n[# 1. Since [n|{g —1)=
d,m V(I ~G), one sees, in this case, that the formula in (IV) holds if and
only if w{n) is integrable. In general, by means of the Selberg trace
formula with some results of Harish-Chandra [7], Langlands showed in
[13, 14] that if (A + p) is integrable, then the formula in (IV) is valid.

However, as was noticed in [10, §4], even for the “holomorphic”
discrete series such an “integrability” condition has nothing to do with
the validity of the above type of simple formulae {see also [4]). Our
results indicate that the same phenomenon occurs in general, since one
knows at least a necessary condition in order that w(A+ p) is integrable
by the result of Trombi and Varadarajan [23]. In fact, though the
conditions (i) and (ii) may not cover all integrable classes, one can see
that in many cases the formulae in (IV) seem to be valid for infinitely
many non-integrable discrete classes (for more details, see Remark 2 at
the end of §8). Actually, for G=SU(m,1) or Spin(2m, 1) (=the two-
sheeted covering of the identity component of SO(2im, 1)}, we shall see
in §9 that the assumption (ii) can be removed and, if m= 1, then every
Weyl chamber contains infinitely many 4 such that Theorem is true for
o(A)e&, though w(A) is not integrable (Proposition 9.2, § 9).

In concluding the remarks, we understand that the method of the
Selberg trace formula may be still effective to get information about
the multiplicity of non-integrable discrete classes (see [4]). For this,
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there is an unpublished work of Langlands for SL(2, R) and recently
Sally, Jr. has obtained some results for the covering group of SL(2, R)".

We finally sketch the outline of the proofs, introducing what will be
discussed in each section. Our first aim is to construct a certain elliptic
complex IE, 5, :

) I T (Eyy )0

0 C*(E 2, C®(E,

V;.+2p,,) Vis2p,
over the symmetric space G/K whose first term C°°(EV“2P") is the
space of C* sections of the vector bundle over G/K associated to the
irreducible K-module V, _,, with highest weight 1+2p,. This IE, ,
should have the following property: the elliptic operator & + 2* reduces
to the Dirac operator considered in [18] where 2* is the formal adjoint
of & under a suitable metric on each vector bundle (Lemma 3.3, § 3).
For this, we shall introduce several facts about spinors in §2. We note
that observations similar to some of those in § 2 were made independently
by Ozeki. The elliptic complex [E, ,, turns out to coincide with that
obtained in [8] under a condition like (ii)* stated after theorem (Lem-
ma 3.4). This fact will be used for the proof of Theorem 1 in §4.

Secondly, we shall need the K-types of the G-module H°(IE, +2)
which is defined as the kernel of the first Z: C* (Ev,, 2,;,) — C® (EVIK+2ph)
(Theorem 1, § 4). This has already been obtained by Schmid in [20] and
will play a key role afterward. Roughly speaking, the K-types of
H°(E, ,, ) satisfy Blattner’s conjecture as in Theorem (IIT) under the
assumption (ii)*. We shall give a different proof of Theorem 1 in §5.
Our method is to look at the first terms of Taylor expansions of sections
in H°(IE, +2p,)- For this, we develop the elementary framework of jets
in §1, and, in § 4, recall some lemmas of Schmid in [20] on K-modules
constructed out of sheaf cohomologies over the compact flag manifold
K/T. Since Schmid’s proofs are short, we shall reproduce them for the
sake of completeness.

Thirdly, considering the I*-cohomologies H%,(I'; E, , ,, ) of IE; ,
over I'~G/K for a discrete subgroup I of G, we prove the vanishing
theorem

HY,(T'; E,

A2 pn

)=0 for ¢>0

under the assumptions (i) and (ii)® (Theorem 2, § 6). The idea is similar
to that in [18]. In view of the alternating sum formula of Nara-
simhan and Okamoto [16], the unitary representation on the space
HG (UL, ., ,,) then belongs to the discrete class w(4+ p) (Theorem 3,

! We are grateful to Professor P.Sally who informed us of these results, and kindly gave
valuable linguistic advice to one of us (Hotta) during the preparation of this manuscript.
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§ 7). This proves Theorem (I), and, with the aid of Theorem 1, (II) and (III)
are completed in § 7 by arguments similar to those in [21, 22].

Also, those arguments verify the equality
Nyay o) =dimHS (I E, , ) for T

with compact quotient I'~G (Lemma 8.1, §8), where the right-hand
side can actually be computed by the index theorem of Atiyah and
Singer as in [10] combined with the vanishing Theorem 2 (Theorem 4,
§ 8). We will thus complete the proofs of (I) ~(IV).

In §9, we illustrate a few examples for which better information
is obtained.

Before starting the discussion, for the convenience of the reader,
we will make notational remarks most of which will be repeated when
they first appear.

§ 0. Notations

We first collect symbols some of which will appear without definitions
throughout the paper. We denote by Z, R and C the ring of integers,
the field of real numbers and the field of complex numbers. For a set Q, |Q|
denotes the number of elements in Q; when @ is a finite set of vectors,

we write
Q=)
xeQ
as already introduced.

When E i1s a C* vector bundle over a C* manifolds X, C®(E)
(resp. Cg (E)) denotes the space of C* sections of E (resp. with compact
support). Usually, 1, will denote the trivial bundle over X with fibres C;
hence the space of complex valued C® functions on X will be denoted
by C*(1). When E is a complex vector bundle equipped with hermitian
metrics on the fibres and X has a volume element, I?(E) will denote the
Hilbert space consisting of square-integrable sections under those
metrics. (We, however, preserve the usual convention and denote by
L*(I' . G) the space of square-integrable functions on the manifold I'\ G.)

When a vector space V is defined over IR, V* denotes the complexi-
fication V@gT of V. In this case, if a complex vector space W is given,
V® W will denote the tensor product over IR, but will often be regarded
as a vector space over € through the identification V®gW=VE®,W.
These conventions will be adopted also for vector bundles.

For the convenience of the reader, we collect here the basic notations
which occur throughout the paper. Some of these will be repeated when
they first appear. Fix G K> T as in the introduction, and let gof>t
be the corresponding Lie algebras. Except in §2, we assume that the
symmetric pair (g, T) is of non-compact type. The letter X will stand for
the symmetric space G/K except in §1. We denote by W the Weyl group

10 Inventiones math., Vol. 26
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for the pair (G, T), i.e., the quotient group of the normalizer of T in G
modulo T. Note that W is then isomorphic to the Weyl group for (K, T)
or (I, t9). We denote by p the subspace of g in the Cartan decomposition
g=I@® p, and often consider p as a K-module through the adjoint action.
The root system for (g%, t€) will be denoted by X (which also stands for the
summation). For a root ae X, ¢* denotes the one-dimensional eigenspace
of o in g&. When a positive root system P is fixed, we set

R={aeP;g* 1%,
and

P={aeP;g*=p%},
and call roots in R, {resp. P) positive compact (resp. non-compact). We put

p=%(P), p=3<B> and p,=3{B) ©.1)
as in the introduction; m=|P|(=%dim X) and s=|B] (the letter s may
be used also for a section of vector bundles).

On the dual space Hom(}/ —11, R) of Y — 11, one can define the
inner product ( , )in a usual way by the Killing form of g% We then set

={peHom(}/ — 11, R); 2(, a)/(et, )€ Z (x€ X)},

F
Fy={ue; (n, a)20 (xR} 0.2)

and
F¢ ={neHom(} — 11, R); 2(x, a)/(e, )€ Z and 20 (xeR)}.

By our assumption in the introduction, # is isomorphic to the character
group T of T by the map which takes ue # to e*. For ue %, V, stands for
the irreducible K-module with highest weight y, and for ue #f, V, stands
for the irreducible f-module with highest weight .

In general, when two K-modules ¥V, W are given, Homy(V, W)
denotes the subspaces of Hom(V, W) consisting of linear maps which
commute with the K-actions, and we set (V: W)=dim Hom,(V, W), the
intertwining number. For the compact group K, one can consider the
complex reductive group K¢ where K is a real form of K% Then for
a finite dimensional K-module V over €, we shall often regard V as a
holomorphic K®module by extending naturally. Adopting the con-
vention stated before, for a K-module W defined over R, we may consider
W®V=WC®cV as a holomorphic K*-module.

For a finite dimensional K-module V, E,, will denote the vector
bundle over X =G/K associated to V. We shall often identify C*(E,)
with the space of V-valued C*® functions f on G such that f{gk)=k! f(g)
(geG, keK). For C¥(E,) and L*(E,), we adopt similar identifications.

From §2 until § 5, we shall consider the Borel subgroup B of KT
whose Lie algebra is

b=t*® ) ¢*.

xePy
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For a linear form pe Hom{(t%, C), we denote by lu the one-dimensional
b-module obtained by extending trivially on the nilpotent radical ) g%

ae Py

When ue#, 1, also stands for the B-module given by it. Since p® has the
structure of a K%module, p?® also stands for the B-module obtained by
restriction. Then p, = Y, g* is a B-submodule of p® For the subspace

e Pp
p_= ZP a~% we shall regard p_ as the quotient B-module p_ =p¥/p .

For a holomorphic B-module m, H'(m) stands for the i-th cohomology
space with coefficients in the sheaf of germs of holomorphic sections of
the vector bundle over K%/B associated to m.

§ 1. Elementary Differential Calculus

For later use, we fix some generalities about differential operators
on vector bundles. For the standard language of jets of vector bundles,
more detailed accounts are found in [17, Chap. [V].

Let X be a paracompact C* manifold, E a C® vector bundle over X.
For a point oe X, we consider the filtration of the space C*(E) of C®

sections of E,
Co(E)=10(E)> L} (E)>- > HE)> -, (1)

where I!(E) is the space of C* sections of E whose derivatives up to
the ({—1)-th order vanish at o (1=0, 1, 2,...). More precisely, take a small
open neighborhood % of o with coordinate system x=(x,, ..., x,)€R"
(n=dim X, and x(0)=o0 the origin of R") such that the restriction E|%
of E to 4 can be trivialized. Choosing a trivialization E{#% ~=» % x E_,
where E, is the fibre of E at o, one can regard a section se C*(E|%)
as an E -valued function 3eC*(1,)®E,. We adopt the multi-index
notation: )
a=(a,...,o,) (,=20and eZ},

ey &Ky,

[:x[=z ;s

ol olel
oxt IxB . OxE

The property

feel
((’;xa s) (=0 for lal<I—1, seC*(E|@),

is independent of choice of coordinate system and trivialization on %,
and I(E) consists of se C*(E) whose restriction to % satisfies this
property.

10*
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By definition, the space of I-jets of E at o is J/(E)= C*(E)/I!*'(E),
which turns out to be a finite dimensional complex vector space. The
natural projection C®(E) onto J)(E) is denoted by ji. Let T, be the
tangent space of X at o and T} the cotangent space at o. Under the
coordinate system chosen above, denoting by dx =(dx,, ..., dx,) the dual

0
basis in T,* to ( o, e

n

) , one has the map

I ~l
BE)os— T oo ®( 55 3)  0eS(TISE,. (12
ot 2! ox*

where a!=a,!...a,! and (dx)*=dx¥ ... dx*eS'(T*) for a=(ay, ..., a,).
Here S'(T*) denotes the I-th symmetric power of T;*, which will be also
regarded as the space of polynomial functions of homogeneous degree [
on T,. By this map, one then has an exact sequence

0—I'YE)— I{E)—> S{T})®E,—0 (1.3)
([17], Chap. 1V, Lemma 3]). On the other hand, by the canonical map
jb: I(E)— JYE), one has an inclusion

IEYI (By—JA(E)

since Ker ji=I!*1(E). Composing this map with that obtained by the
exact sequence (1.3), one has a natural inclusion SYT*)®E,—J!(E).
It can be seen that

0—S(T*®E,— J'E)— JI"Y(E) >0
is exact (the jet exact sequence) where JY(E)— J.~!(E) is the projection
obtained by the natural inclusion I!*!(E)<I}(E). Making the [-jet bundle
J'(E)={ JJ(E), one has the jet bundle exact sequence

oo 0 SUTHQE — JUE)— J*1(E) - 0 (1.4)
where T* is the cotangent bundle of X ([17], Chap. 1V, Theorem 1}).
For JY(E), one also has the l-jet extension map

it C*(E)— C*(JYE))
obtained from j! where o runs through points of X.

Let F be another C*® vector bundle over X. An [-th order differential

operator
9. C*(E)y— C*(F)

is by definition a linear map given by the composite Z= A for some

linear ma -
P A: C”(J’(E))H C*(F)

induced from a vector bundle map
A: J(E)—F.
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When A is composed with the map S'(T*)® E — J'(E) in (1.4), the vector

bundle map
6=0(2);. S(TYQE —~F

is then called the symbol of 2.
Now assume we have a first-order differential operator
D: C°(E)— C*(F).

Fix a point oeX once and for all, and consider the filtrations (1.1)
of C*(E) and C*(F) by I'(E) and I(F). Since 2 is of first-order, clearly
@(I;(E)}clf)’ YFY;

hence one has a map

L(E)/IFYE)— 17 (F)/L(F) (1.5)
for each 1=0,1,2,... (I; }(F)=I2(F)). Let
o, T*®E,—F,

be the symbol of & at o. Denoting by 1, the trivial bundle over the
tangent space T, at o, one has an exterior differential

d: C*(ly)— C*; )®TF
where

of

Cox;

df=} ®dx; for feC*(,;);
i=1

in particular,
d: S(T}) > S"HTHRT}

where elements of S'(T*) are regarded as polynomial functions on T,.
Composing the maps

SUTHQE, 2L s {THRTH®E, 27 s (T} ®F,,
we have the map
9Y: S(TY®E,—~ S~ H(T)®F,,
which will be called the polynomialization of @ at o.
Lemma 1.1. The diagram

IEYIHE) —— SUTHQE,

J J«@(”

I Y (FYI(F) —— S (T} ®F,
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commutes for each 1=0,1,2, ..., where the two horizontal isomorphisms
are those induced from the exact sequences (1.3), and the left-hand side
vertical map is (1.5) induced from 2.

Proof. Take a small neighborhood  of o in X with coordinate
x=(x, ..., x,) (x(0)=0) and trivializations of E|#% and F|%. Let

D= ‘.;1 ai(x) ECT+b(x)

be a local expression of 2 on % under them, where
a;(x), b{x)e C*(1,)®Hom(E, F,).
Then the symbol ¢, at o is expressed as
o,((®e)= Z ¢a

for
E=Y & dxeT* (£eR), ecE,.
i=1

Under the map I(E)/I}**(E)—— S(T})®E,, sel}(E) is mapped by
(12) to

L (dx)“@( ? 5) o)

| = ! a! ox*
which goes to

n al
> Z dx)a(l)®a (0) (( FRC §) (0))
i=1 = X
under S'(?}*)@EOQS’*(T;“)@FO, where a(i)=(a;, ..., a;,— 1, ...,,). On
the other hand, under the map
L(E) %> L7 (F) > S {T*) ®F,,

> gn: dx)ﬁ®a(o)(( o i§> (0)),

1Bl=1-1i

5 goes to

which proves the lemma. q.e.d.

Among differential operators we shall later meet, specific first-order
operators of the following type will often appear. Consider the jet bundle
exact sequence (1.4) for I=1

0 T*QE—>JYE)— E—0.
A splitting of the sequence gives a connection on E, which induces the
covariant differential operator

V: C®(E)— C*(T*Q®E),
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by composing
Coo(E) jt Coo(JL(E)) conneclinL) Coo(T*®E)

When E has a connection and a bundle map ¢: T*®E — F is given
for F, one has a first-order differential operator

2. C*(E)— C®(F)

whose symbol is the given o, by Z=¢G0oV, whereg: C*(T*®E) — C*(F)
is induced from the bundle map ¢. In this situation, we shall call 2 the
differential operator associated to the symbol o.

§ 2. Spinors Associated to Symmetric Pairs

In this section, we shall recall and develop several facts on spinors
arising in the symmetric space situation.? For those results which appear
without proofs, we recommend that the reader consult the references
[1,3,11] and [18].

Let (g.f) be a symmetric pair; i.e., g a real semisimple Lie algebra,
f a subalgebra corresponding to a stabilizer in a group of isometries of a
symmetric space whose Lie algebra is g. Let g=f@®p be the Cartan
decomposition for (g, f); i.e., p is the orthogonal complement of { in g
with respect to the Killing form. We henceforth assume that rank
g=rank f; hence we have a Cartan subalgebra t of g in f. For the com-
plexifications (g%, %) we have a root system 2. Denoting by ¢* the one-
dimensional eigenspace for a root zZX, we set

I, ={ael, g*ct®}
and

Z,={ael; g®<pT}
where pC is the complexification of p. Then clearly £=2, U X, (disjoint
union). Fix a positive root system P in 2 once and for all, and put
B=PnZX and P=PnZ,. Under this positive root system, we consider
p, p, and p, as in (0.1) in §0. Notice that pe# and (p, 2)>0 (xeP);
Prs PrEFS and (p,, ®) >0 (xe B) in the notation (0.2) in § 0.

We have a non-degenerate bilinear form { , ) on p obtained by
restricting the Killing form to p. We then have the Clifford algebra
Cliff(p) of p with this form ( , ); i.e, the quotient algebra of the tensor
algebra over p modulo the two-sided ideal generated by all elements
X®x+(x, x) 1 where xep. The complexification Cliff(p)€ is regarded as
the Clifford algebra of p® with the complex-linear extension of ( , ).
It is well-known that Cliff(p) is a simple algebra central over €; hence

2 Results similar to some of those in this section have been obtained also by Ozeki in-
dependently.
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isomorphic to a matric algebra of rank 2™ where m=|P,|=1dimp.
Put p, = ) g** Then we have a direct sum p®=p, ®p_ as linear

aelP,

subspaces. Under the form ( , ) on p% these two subspaces are totally
isotropic. Letting C? (resp. C") be the subalgebra generated by p .
(resp. p_), we therefore have algebra isomorphisms

CP~Ap, and CV~Ap_, 2.1

where Ap, are the exterior algebra generated by p,. Let e, be the
non-zero element in C* whose corresponding element in A p, spans the
top degree A™p, (unique up to scalar multiples). Then the left ideal L
generated by ep is minimal and

L=C¥. e, =Cliff(p)C- e, (22)

([3, 11.2.2]). We observe that the map C¥>xr—x.e,cL is a linear
bijection. For an element x e Cliff(p)T, define [ eEnd Lby [_y=xy (yeL).
It can be seen that Cliff(p)®sx+—[ €End L is an algebra isomorphism.

The Lie algebra o(p) of the orthogonal group on p with respect to
( , ) can be embedded in Cliff(p) as a Lie subalgebra as follows. Let
{x;}2™ be an orthonormal basis of p and consider the subspace p®
of Cliff(p) spanned by elements x; x; (i< j). It is easy to see that p® is a
Lie subalgebra of Cliff(p) and for xep<=Cliff(p) and yep?®, o(y)x=
yx—xyep in Cliff(p). Here the map p?sy—¢@(y)cEndp gives an
isomorphism from p'? onto o(p). Hence one has the spin representation
of o(p) on L.

We now consider the following filtration of L. Using the isomorphism
(2.1), we define the subspace Cf;’: Alp_ for 0<qg<m. By (2.2), set

=Y CY-ep,

isq

and (2.3)
L*= Y CJ ep.
(—1)at1
We first notice that "= L= L+ @ L~ where L are known to be irreducible
o(p)-module (the half-spin modules). Since f is a subalgebra of o(p),
L and L* have {-(or f%)module structures by restriction, which are also
denoted by the same letters. It can be seen that the set of weights of the
f-module L* is respectively

{Pi—<Q>; Q= h (= 1)¥=+1}.
Though I may not be a f-module, we do have the following result.
Lemma 2.1. Let b be the Borel subalgebra of 1% defined by

b=t @) g

ae Py
Then 17 is a b-submodule for 0 < g<m.
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Proof. Consider b as a Lie subalgebra of the complexification o(p)®
which is isomorphic to p¥’®C in Cliff(p)*. Embed p, in Cliff(p)<.
Then for xeb,

[x,y]l=xy—yxep, forany yep,. (2.4)

By this, we first show that I is stable under the b-action. In fact, it is
easily seen by (2.4) that for xeb, xep,=epx+cep for some ce C; which
implies e,xeL=Cliff(p)*-e,. On the other hand, e,xee,- Cliff(p)®
which is also a minimal right ideal of Cliff(p)*. Since the intersection of a
minimal left ideal with a minimal right one is of dimension one ({3,
L1.17),ep Cliff (p)* n L= Cep=L°. Hence ep x € 17, which implies x epe L.

For I4, it can be seen that x-CY-e,cli+() CY)-xep for xeb
since [x, y]lep® for yep®. By the above argumenf,qxe,,edie,,. Hence
x - CY - epc L4, which proves the lemma. q.ed.

By the Clifford multiplication p® L— L, we mean the multiplication
of elements in p with those of L in the algebra Cliff(p)® via the natural
embedding p = Cliff(p)®. By the definition, we easily see that

p® 14 maps into [I+!,
and (2.5
L'=1+p- 1!

where p - I denotes the image of p®L in L and I/ +p - ¢ denotes the
subspace in L spanned by If and p - [Z

We now look into the b-module structures of those 4. First we
notice that the one dimensional b-module I has a weight p,. This can
be directly checked by computation of the action of the Cartan subalgebra
t€ using root vectors of pC. We denote by 1, this one-dimensional
b-module with weight p,.

Next p, < p® is, by the choice of b, a b-submodule of p% and we
regard p_ as the quotient b-module of p® modulo p,, as introduced
in §0; i.e., we have a b-module exact sequence

Oﬁpwk —)pc—»pi—»(),
Define the map
> A%p_ ®1pn

by 1=3 C¥-ep— CY-ep > A'p_®], . This depends only upon the
choice (;fgtqhe isomorphism I’ =Cep = |, (up to scalar multiples).
Lemma 2.2. In the above situation,
0> >L—Ap_®l, -0

is a b-module exact sequence.
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Proof. The exactness as linear spaces is clear. We shall show the map

> Ap_® lp" commutes with the b-action. Let xeband x, ..., X EP+ -
Then the action of x on x; ... x,epel? is given by

q
x(x, ...xqe,,):_Zx1 o exd oxgeptxg L x xep,
while the action of x on x; A - A x, @ve A'p_®], is given by
n
XX A AX,@v)= Z AL X]T A AX, @b X A AX, R X,

where [x, x;]” denotes the image of [x, x;]ep® by the projection
p®—p_ and v is the image of e, under the isomorphism L°-+1
When we write [x, x]=[x, x]* +[x,x;]~ where [x,x]*ep,, then
g - [%x]* .. x,epelf'. Hence

q
X o[ x ] xgep= ) % [x,x]7 .. x, mod 471
1 i=1

M.n

i

il

which shows our assertion. q.e.d.
Lemma 2.3. The diagram
PR IS —— [I+]

o

POANP_®L, — AT p_®1,

commutes, where the two vertical maps are given by the maps in Lemma 2.2,
the upper horizontal one is the Clifford multiplication in (2.5), and the lower
one is given by the exterior multiplication

POND_ =p"®AIP_ P _®APp_. > AT p_

Moreover when we regard p@ L, p® N\ p_®]I, as b-modules, as noted
in § 0, then all the maps are b-module homomorphisms.

Proof. Let xep and yeC) -ep. Write x=x*+x~ where x*ep,.
Then x y=x~y mod I4 Hence all the assertions of the lemma are clear
from the definitions combined with Lemma 2.2. q.e.d.

§ 3. Dirac Operators and Certain Elliptic Complexes

In this section we shall first recall some facts about the Dirac operators
on a symmetric space discussed in [18], and next investigate certain
elliptic complexes obtained from the Dirac operators which are closely
related to those in [8].
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As in the introduction, let G be a semisimple connected Lie group of
non-compact type, which is, for simplicity, assumed to be a real form of a
simply connected complex Lie group G=. We assume that rank G =rank K
for a maximal compact subgroup K; hence we have a compact Cartan
subgroup T of G contained in K, which will be fixed once and for all. The
corresponding Lie algebras g, f and t then satisty the assumption of § 2
and the notation associated to them will be kept as in §2; i.e, fix a
positive root system P in the root system 2, etc. As noted in § 0, the charac-
ter group T of T will be identified with the lattice & in Hom(]/-—;lt, R),
and the other notations %,, #; are defined as in (0.2) in § 0.

In general, for a K-module V, consider the homogeneous vector
bundle E, = G x ¢V over the symmetric space X =G/K associated to V.
For the K-module p in the Cartan decomposition in §2, one has a
canonical covariant differential operator

Vi C®(E,)— C*(E,gy)
defined by

2m
V=3 x,®v(x) (.1)
i=1

where {x;}2™ is an orthonormal basis of p and v(x;) denotes the left
invariant vector field generated by x; which acts on elements in C*(E,)
as differentiation of V-valued functions on G. We notice that E, can be
regarded as the cotangent bundle over X since p is self-dual under the
restricted Killing form. If another K-module Wand a K-map p® V- W
are given, one then obtains a first order differential operator

C*(E,)—> C*(Ey)

by composing ¥V with the map C%(E g,)— C*(Ey) induced by
p® V—W. This is a differential operator associated to the “symbol”
p® V— W, in the sense of the last paragraph in §1.

For Ae# such that A+p,e#F, we have the irreducible f-module
Vi . With highest weight 2+ p,. Let L be the spin -module given in § 2.
Then the f-action on L&V, , can be lifted to a K-action ([13, Re-
mark 3.2]). As in § 2, we have the Clifford multiplication

POL®YV,,,, » LOV,,,
The Dirac operator
D: C*(Epoy,,,)— C " (Erev,, ,)
is by definition the differential operator associated to the above Clifford

multiplication as its symbol, with ¥ as in (3.1). We notice that D maps
Coo(E“@VHp ) into C*(Er=gy,,, ) where L&V, , breaks up into

L®Viiy, =" @V, )OL @V, ).
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Lemma 3.1. D is elliptic and
D= —v(Q+(i+pl*—|pl?)

where 2 is the Casimir operator of G whose action on C‘”(EL®VAW ) is
denoted by v(£2).

Proof. See [18, Proposition 3.2].

We shall consider an elliptic complex whose “bootstrap” turns out to
be the Dirac operator of the above type; i.e, we will untie the Dirac
operator.

Let V, be the irreducible K-module with highest weight pe%,.
Assume p—p,e#;. One can then consider the irreducible f-module
V., _, and the Dirac operator

H—p
D: C™(Ergy,_,) > C*(ELgy, )

Note that one of the components of L is the f-module V, with highest
weight p, and that v, is contained in L* ® V.. pncL® | with multi-
plicity one; V, can be regarded as the irreducible componentof LY @ V, _
generated by L°®uu_ o> Where I? is as in (2.3), and v,_,, 1s a highest
weight vector of V,_, . Define the K-submodules in L@V, _, succes-
sively as

Liw=Y,

=V,

L(w=L(w+p L
D)= (w+p- ()

where p- 127! (p) is the K-submodule of L&V, _, which is the image
of the Clifford multiplication

PQL W)~ LV, .
We thus have a filtration of the K-submodules
V=L@elWeclwe ...

(g=0,1,2,...).

Lemma 3.2. (i) L"(u)=L®V,_, where m=|F|.

(i) If Io(u) = [297 1 () for some q4,0< gy, <m, then ()= L® Vo pn

(iii) Put I (=L (wnL*®V, , . Then L(w=L, (@I ()
L, (w)y=07"(w) for odd g, and 1% (p)=L4"" () for even q.

Proof. By the definition and (2.5) in §2, I*(x) contains I'®v, .

Therefore L"(u) contains ["®u,_, =L & Ve pos hence L®xuv,_, for
any xef, hence L@V, which shows (i). The assertion (ii) follows

—Pn?
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immediately from (i) since p - [#°(u) < I#(u). As for (iii), L (u)=L’_ (p);
hence p-L’(u)=L"(w, and L' (W)=I"(x) by the definition since
p-L*®V,_,cLF®V,_,. Assume that (iii) holds for g—1. Then
12, (=L St p - 195 () and 197 ()= 19 (@ L9~ (). 1f q s odd,
then 14~ 1(u) D2 by the assumption. Hence

L (=L (w+p- N we i (w).

If gis even, we havea similar argument, which shows (iii) forevery q. q.e.d.
We now define the K-module

VA=DW/LE ) O0<q<m).

If Vio=0, then VM""+1 =-=V"=0 by Lemma 3.2, (ii). Since under the
Clifford multiplication p - 17~ ! (1) = I4(u), we have the induced map

PRVI— Vit (32)
for each ¢. That is, the diagram
PRL(W) —— L1 (1)

L

PR VI Vit

commutes, where the upper horizontal map is the Clifford multiplication.
For each g, we define a first order differential operator

9: C”(Enq)a C”(E;Lqﬂ)

as the operator associated to the symbol (3.2). The Dirac operator D
maps C*(E., ) into C*(E,.,), and by (3.3) the diagram

COO(EL‘I( )“‘“—’C (E1q+1(u))

|

C*(Eyg)—2— C*(Eyy )
commutes for each g. By Lemma 3.1, one can see that D* maps C*(E L)
into itself for each g. Hence, in the sequence
Cm(EVz)A:”L» C°°(E,,3H)i> C°°(E,,z+z)
we have 22 =0. We thus have the following lemma.

Lemma 3.3. For ue%, such that u—p,e#y, we have a differential
complex IE :

0— C®(Ey) > C™(Eyy) > -~ C*(Eyp) 0
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defined as above. The complex IE is then an elliptic complex with length
less than or equal to m=4% dim X. Moreover, there exist isomorphisms

Y VIS LEQV,.

(—1)9=1*1

~Pn

such that, considering the formal adjoint operators D* of @ under suitable
metrics on the VI, we have D=2+ 9* under the above isomorphisms.
Moreover, the laplacian (1=22*+ 2* 2 of IE, has the form

O=—v( Q)+ (u—p,+p > ~1p1®)

where Q is the Casimir operator of G.

Proof. The ellipticity of the IE, follows {from that of D by the standard
argument if we show D=2+ 2*. Then, the formula for [J also follows
from Lemma 3.1. Introduce a Spin(p)-invariant metric ( , ), on L such

that
(xu,v), +(u,xv),=0 for xep, u, velL

(18, Lemma 4.1]). Consider the metric ( , ) gy,_, On LOV,_, given
m the usual way by the above metric on L and a K—mvarlant metric
on V,_, . It is then known that the Dirac operator D is formally self-
adjoint w1th respect to the metric on E gy, o given by ( , )L®,,“_p"
(X has an invariant volume element) ([18, Lemma 4.2]).

Define the embedding 1*: V2> I!(1) by regarding V7 as the ortho-
gonal complement of I[1~ 1(u) under the restriction of the metric
(, )L®V,,_,,"- Since IF ® v, are mutually orthogonal, we have iso-

morphisms

—Pn

® & @ Vi=LV,_,

(—1)a= %1  (-1)a=+1

in view of Lemma 3.2, (iii). We introduce a metric on each V? by the
restriction of that of LV, _, . If we denote by n’: L®V,_, — V! the
orthogonal projection, then (1%)* ==? where (1%)* denotes the adjoint of /2.
Under those metrics, for 2: C®(E,,)— C*(E,,..) and its formal adjoint
@*: C®(Eygei)— C*(E,,), we have P=n?*1Df and P*=niD2+!
since D is fc;rmally self-a“djoint. We shall show that the diagram

C(Eyg) =% C*(Eygigyg 1)

Jﬂ Jvlq*‘@ﬂ'l

C*(Ergy, ., )—2— C*(Eyqy,_,)

commutes. For se C*(E,.,), (2 +2*)s=(n""*@®n*"") Ds. Therefore it
suffices to show that Ds bglongs to the image of #*+1@ 111,
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For se C*(Eygy,_, ). € C5(ELgy,_, ) we have a coupling
(s, S'): y (S, SI)L@Vu—pn dg
G

We note that Dse C*(Ep, .. ,) for se Cw(EVﬁ). For any s'e C5(E 4 -2
(Ds,s")=(s, Ds')=0 since Ds'e C*(E 4 1,) On the other hand we have
(Ds,s")=0 for any s”"€ C§(Ey,), since Dse C*(E . gy, _ ) according to
whether (—1)?= F1. Hence Dse C®(Eyq-1gvasth which implies our
assertion. q.e.d. ) :

We shall finally discuss the relationship of the elliptic complex IE,
defined above with that obtained in [8]. We start with recalling the
well-known Borel-Weil-Bott theorem about compact Lie groups.

For the compact group K, let K® be the complexification of K
and B the Borel subgroup of K% corresponding to the Borel subalgebra

b=1"® ) g* given in Lemma 2.1. Consider the complex flag manifold
ac P

S=K%B and put s-=dim.S=|F| as in §0. When a holomorphic B-
module m is given, one has the holomorphic vector bundle ¥, over §
associated to m. Then the cohomology space H'(S; O(7},)) with coeffi-
cients in the sheal @(¥7) of germs of holomorphic sections of ¥, has
a K% (or K-)module structure. As noted in § 0, we denote by H'(m) the
above K®- (or K-)module given by the cohomology space H'(S; 0(#7,).

For ue#, one has a unique holomorphic B-module [, of dimension
one with weight p extended trivially to the unipotent radical. For the

K-module H(l,) we have the Borel-Weil-Bott theorem:

(i) If (e—p,,2)=0 for some aeF,, then Hi(lu)=0 for every i.

(i) If (u—p;, =0 (xeR), then H'(l)=0 for i*i, where i,=
{oeP; (u—py,®) >0} In case (il) H*(l) gives an irreducible K-module
with highest weight w(u—p,)—p,€F, where w is the unique element in
the Weyl group W for (K, T) such that w(u—p,)€Z,.

For the proof, see, for example, [2] or [12]. We notice that for the
sign representation ¢(w) of we W, we have e(w)=(—1)**5 As a special
case, if ue #,, then, among H"(lu+2pk), the only nonvanishing H*(!
gives an irreducible K-module with highest weight p.

We shall often use the following conventions. Let m be a K®-module.
By restriction to B, we have the B-module structure on m. Then the
associated vector bundle ¥, over S is holomorphically trivial and
ma~ H%(m) as K%modules. If another B-module n is given, then, by the
cup product, we have K®-module isomorphisms

m® Hi(n)~H°(m)® H:(n) = H(m®n). (34)
Even when m is a real K-module, we have a K-module isomorphism
m@H{(n)—— H(m®n) (3.5)

u+2m<)
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in the sense that
Mg H (N)=m* Q¢ H (") —— H'(m® Q@¢n)=H(m @gn).

For pe#,, we now consider the following b-module exact sequence
obtained by tensoring the one dimensional b-module ! with the
exact sequence in Lemma 2.2,

0_’Lq_1®lﬂ+2f)k—9n—’Lq®lI‘+2ﬂk“pn_) /\q p—®lﬂ+2Pk_)O

for each g. It is easy to see that this turns out to be a B-module exact
sequence. If H'(A"p_®1,,,,)=0 for every i<s, then the associated
long exact sequence of cohomology reduces to a short one,

O“)HS(Lq_l®lu+2pk~on)“’Hs(Lq®,
S HA(N p_®1,, 5,00

The above vanishing condition on H( Np_®lL,, ,,) will dominate
most of the remaining sections. Therefore, for the convenience of state-
ment, we make the following definition.

B+ 2P0k~ pn

u+2pk—/1n) (3 6)

Definition. We say that pe# satisfies the condition (#) when
H(ANp_®l,,,,)=0 for every i<s and for every ¢, 0<g<m.

We put, as K-modules,
A {p] :Hs(Lq®lu+20k—ﬂn) 3.7
UZ:HS(/\‘I p—®lu+20k)
for each q. In this terminology, under the condition (#) for ue#,, we
have an exact sequence by (3.6)
0— L~ [p]— I*[u] - U; -0 (33)
for each q. By (3.4), we have an isomorphism
L® Vu—pn — H*(L® lu+lpk—pn): L' p.
Though Land I, , p«- p, M2y not be B-modules, one can verify the above
after taking a suitable covering of K (and so B). Setting 4=0 in (3.8),
we also have an isomorphism
Lp]=~V,
by the Borel-Weil-Bott theorem. Hence under the condition () for g,
we have the filtration
V=Ll el uW]=LOV,_,. (39)

Tensoring the Clifford multiplication p@ L'~ —>I? with 1, ,,.

gives rise to the map .
P [u]- L] (3.10)
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which is the interpretation of the induced map
Hs(p ® o ® lu+2m‘—pn)ﬁ HS(H@ l:l+ zﬂk—Pn)

by (3.5) and (3.7). Under the embeddings (3.9), it is easy to see that the
map (3.10) is nothing but the Clifford multiplication (or more precisely,
the restriction to 12~ '[u] of that of L® V,_,.)- By Lemma 2.3, we have
the commutative diagram

QL[] —— ]

T e

pQUIT — Ul
where the lower horizontal map is given by the exterior multiplication

p®/\q_l p_®ll‘+20k%/\q p~®lu+2pk'
We can consider the differential operator
78 C‘”(EUZ-I)% C”(Euz)

associated to the symbolp ® UZ_J*’ U#in (3.11) composing the covariant
differential operator F like (3.1), and obtain the sequence IE, :

0 C*(Ey,) > C*(Ey,)— - — C*(Eyy)—0.

In [8], this [E, has been shown to be an elliptic complex under the
condition (4) for ¢ and further, under a specific choice of positive root
system P. We will, however, see that IE, is nothing but the elliptic
complex IE, given in Lemma 3.3 only under the condition (#) for u.

Lemma 34. Under the condition (#) for pe#,, Ilu]l=Iw for

each q, hence Ul = V. Thus the elliptic complex IE, in Lemma 3.3 coincides

with the sequence IE,, defined as above.

Proof. The first assertion for ¢=0 has already been shown. Note
that the map p® U?~'— U} is surjective. Hence by (3.10) and (3.11)

Plulel [ +p- ],
and the inverse inclusion relation is clear. Hence
Pld=1""[u]+p- L' 4]

By the definition of I4(u) and L°(u)=1I"[u], we have Lf(u)=IL[u].
Hence Ul =V}l The second assertion follows from the first one and the
diagram (3.11). q.e.d.

11 Inventiones math., Vol 26
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§ 4. Some Results of Schmid

Here we collect several results dealing with the compact flag manifold
in Schmid’s thesis [20] which will be used later. Since the results restated
here (except Theorem 1) have simple proofs and Schmid’s thesis [20]
might not be available to everyone, we will reproduce the proofs for the
sake of completeness. For Theorem 1, we give a more elementary proof
in the next section. The notation and setting will be as in the previous
sections.

We first start with a criterion for the condition () defined in §3.
In special cases, sharper results will be obtained (Lemma 9.1, §9).

Lemma 4.1 ([20], Lemma 5.5). Let pe#. If (u+p,—<Q>, )20 for
every o€b, and every Q< P, then u satisfies the condition {(#); i.e,
H{(N p_®1,,,,,)=0 for every i<s and every q.

Proof. One has a flag of B-modules

0=Apcd,c - cA=Np_®l,, ,,

such that
04, =4~ 2,00

for some Q< P. By the Borel-Weil-Bott theorem, the assumption in the
lemma implies that H'(l, _,,, _ (oy)=0foreveryi<s. Thelong cohomology
exact sequence shows that if H'(4;_;)=0 for every i<s, then H'(4)=0.
Here H'(A4,)=0 for every i. Hence H'(4)=H'(A'p_®l,,,,)=0 for
every i<s. q.e.d.

For pe#, Q,(1) denotes the number of distinct ways in which p
can be expressed as a sum of precisely | positive non-compact roots

in P, (Qo(0)=1). Put
QW :lZ,OQJ(.u) .

We define the Blattner number b, (1) for A, ue # by
b= ) ew) Q(w(u+p)—(A+2p,+p1),

weW
where W is the Weyl group for (K, T) as before. For this, one knows
the following result.

Lemma 4.2 ({207, Lemma 6.10). For pue%, Q) is actually finite;
hence b,(u) is finite. Moreover, b,(A+2p,)=1 for A+2p,€%,.
I
Proof. If Q,(1)#0, then =) o, (x,€FB). Hence
i=1
!

(o, )= ¥ (p, )21 min (p, ).

i=1
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Note that min (p, 0)>>0. Hence if | is sufficiently large, then (p, u)
<] mm (o, o¢) v;hlch means Q,{u)=0. Hence Q (4)is finite. For 1+ 2 p, e %,

(A43p 4 prr >0 (€ P). Hence for w1 in W, 2420, 4 pr—W(A+2p,+py)
is expressed as a sum of elements in E. Hence if

Q(W(t2p,+p)—(2+2p,+p))+0
for w1, then a sum of elements in P turns out to be zero. This is a
contradiction. Hence b, (A1 +2p,)=0(0)=0,(0)=1. q.e.d.

Lemma 4.3 ([20], Lemma 5.3). Assume the condition (#) for
A+2p,eF,. Let S'(p,) be the B-module given by the I-th symmetric
power of p_.. Then for the K-module given by the top-degree sheaf
cohomology H*(S'(p,)®I,,,,) and the irreducible K-module V, with
highest weight u, we have

(HS(SI(p+)®11+2p)3 Vu)‘: Z c(w) g, ( (+pp)— /+2pn+pk))

weW

where (:) denotes the intertwining number (see § 0).

Proof. As in the proof of Lemma 4.1, let
O=AgcAyc - cA,=Sp)®L,,,
be a flag of B-submodules such that

0-4;,_ —A4-1 —0

A+2p+ar+- 4o
for some [-tuple (o, ..., a,) of B,. For a B-module m, put

)

xm)=Y (= [H(m)]

i=0
in the character ring Z [K] of K where [H'(m)] denotes the elements in
Z[K] given by the K-module H'(m). We then have
X(Sl(p+)®ll+2p)=z X(ll+2p+z1+---+a1)

where (o, ..., %) runs over all unordered /-tuples in F,. In Lemma 5.3 of
the next section, we shall show that H'(S'(p . )®1,,,,)=0(i<s)ifi+2p,
satisfies the condition {4 ). Hence in this case

[HS(SI(p+)®lA+2p)]:(—I)SZX(12+2p+m+~--+a,)-
Applying the Borel-Weil-Bott theorem for y(l;, ;,,4 4. +a) W€ have
the lemma. q.e.d.

Remark 1. Schmid shows the formula under the less restrictive condi-
tion (A+2p,,2)>0 (zeR) using. Griffiths’ vanishing theorem for

1*
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H'(S'(p,)®1,, ,,) which is sharper than the above one. For our later use,
this sharper result, however, plays no roles, hence we have stated the
weaker version.

We are now going back to the elliptic complex given in § 3. By Lemma
3.3, for Ae # such that A+ p,e Z¥ (hence A 42 p, e Z,), we have the elliptic

complexIE,  ,

0—C*=(E ) C2(E ) CR(E )—0

1 m
Vaivap Vaisap, Vi+2on

over the symmetric space X =G/K. Consider the 0-th cohomology
H°(E,,,, ) of this complex IE, , , , in the C*-category, i.e, H(E,, )
is the kernel of the first @: C*(Ey, ,, )= C®(Ey;,,, ). Then H(E,,,,)
has a natural G-module structure. Denote by H°(IE, , ,, )° the space of
all K-finite vectors in H°(IE, , ,, ), and by (H°(E,,,)°:V,) the multi-
plicity of the ¥, in H°(IE, , ,, )°. Then we shall prove the following result
in the next section.

Theorem 1. Under the condition (#) for A+2p,e%,,
(H°(IE,,,, )°:V)sh,()  for ue,.
In particular, (H*(E, , ,,)°:V, )<1.

A+ 2pn

Remark 2. By Lemma 3.4, our IE, , is the same as the elliptic com-
plex in [8], where the first term 2: C°°(EV““")—> COO(EVLZ,,,.) is shown
to be the same as Schmid’s operator & in [20]. In [20, Theorem 7.4],
Schmid obtained a stronger result which gives equality in Theorem 1
under a more restrictive condition on 4 than above. This result has been
improved by him in [22] (also see [8, § 6]). For our final results on discrete
series, only the inequalities stated in Theorem 1 will be used. Schmid’s
proof of this theorem uses complex analysis on the complex flag manifold
G/T extensively, while our method in the subsequent section will rely
on elementary differential calculus on the symmetric space X =G/K.

§S. K-Types of H'(E, , »,,)

The purpose of this section is to give the proof of Theorem 1 stated
in §4, based upon the framework given in § 1. Hence the situation will
continue as in the final part of § 4.

We shall use the following adaptation of the Dolbeault lemma on
differential forms with polynomial coefficients. Let S’ be the space of
polynomials of homogeneous degree ! in 2m variables

21521329529, 252y, 2

e Ems fm>

and A%? the space of (0, q) forms on €™ with constant coefficients, i.e.,
the vector space spanned by dZz; A--Adz; for all 15i < <i,Sm.
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The operator

where ¢(dz,): A% %— A% %! denotes the exterior multiplication, maps
S'1® A% into $'"77 '@ A% 1*! for each [ and q.

Lemma 5.1. The sequence
0—+S£,ol—>Sl il Sl——l®/\0,l o.,..._° Sl—-m@/\o.mﬂo

is exact, where S., is the space of holomorphic polynomials of homo-
geneous degree | on C™, i.e., polynomials in m-variables z,, ...,z

Proof. A standard proof of the ordinary Dolbeault lemma depends
upon the solvability of the equation

af

oz, U
and the other part is quite formal by induction (see [, Proof of 3, Theo-
rem, p. 27]). It is clear that for any pe S’ there exists geS'*! such that

dq

oz, 7
and if p is holomorphic with respect to z;, ,, ..., z, then g is so chosen
that ¢ has the same property. With this fact, the proof can be carried out
quite similarly to that in the above book. q.e.d.

We are now going back to the situation of the final part of the previous
section. Let 1e% satisfy 1+ p,e Z. We then have the elliptic complex
IE

A+ 2pn"

0—>C°0(EV“20 ) C*(E )_”""’Cm(EVT”,,")—'O‘

t
Vi+t2o,

Hereafter throughout this section we assume the condition {3 )forA+2p,,

e H(N'p_®l1,,,,)=0 forevery i<s and every g.

We can then identify IE, ,, with [E; , = defined cohomologically in

§ 3, by Lemma 3.4. More precisely, we may identify
Vi 2 = H(NP_®L,5,) (5.1)
and the symbol of &: Cm(EV1+2p")H Cw(Evi:‘zpn) is given by the map
PRH(NP_® 2, )=H (PO NP_®L,5))

S H(A ' p_®li,s,)

where the first identity is an application of (3.5) and the map is induced by
the exterior multiplication p® A%p_— N*p_.

(52)
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We now fix the origin o= {K} of the symmetric space X =G/K and
consider the “polynomialization” of each & at ¢ in the sense of § [. If we
identify the cotangent space at o with p and the fibre of Eyq,,, atowith
Vi then the polynomialization i

A+ 2p,°
G0 SR VL, ,, — ST HPIRVE S,
at the origin o is obtained by composing the map

STUPM@VE, 5, L ST P @ POVE, 5,
1® (symbol) Sl_q—l (D)@ Vq+1

2+ 2pn
2m

for each I, g, where d= ) ———® x, for an orthonormal basis {x;}?

m

L of p.
It is clear that those plozl;norznializations 2" are K-module maps.
Lemma 5.2. Under the condition () for A+2p,e%,., we have an
exact sequence as K-modules
0—’HS(SI(9+)®lx+2p)_’Sl(P)®VA+2p"
->S"H ) V;+2pn_’"'—’sl_m(p)® Ve ™0,

where the maps S'™4(p)@VE, ,, S (p)RVES,,. are the poly-

A+2pn
nomializations 2~ at the origin oe X for each 1 and 0= g<m. The first
; g q

inclusion map is the map
H(S'(p ) ®@Li,5,) > (S (PI® 1, 5,)
induced from the natural inclusion
S' (0@ 2, S (PIB L, 2, =S (MIBL 5,

where HY(S'(P)®L,, ,,)=S"®®V;,,,, by (3.5, and S'(p,) is as in
Lemma 4.3.

For the proof, we first consider the exact sequence obtained from
Lemma 5.1. Equip p with a complex structure so thatp _ is identified with
the antiholomorphic cotangent space. Then : S'(p)QA'p_—S(PI@ A'p_

+2p

. = 8 .
can be written as d= z @—®8(X—=) where x_,ep_ is a root vector
achP, x_—a

for —axe —F. The maps & are B-module maps when we consider
S'(p)® A'p_ as B-modules, since @ is the composite of

SEROANP_ L2 PP Ap 2SS (PIOAP_

where both maps are B-module maps. Since the space of holomorphic
polynomials S, is S'(p,) in our setting, we have a B-module exact
sequence

0-8'(p, )= S'PRC-S''Ep_— =5 "P® A"p_—0. (53)
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We consider the sequence (5.3) tensored with the one dimensional
B-module ; _,, and their top-degree cohomologies.

Lemma 5.3. Under the condition () for ++2p,, the sequence induced
Jrom (5.3) tensored with 1, _, ,,

0 HS' (P )@, 2, )~ H (S DR, ,,)—
—SH(S"PIOA"P_®1,,,,) 0
is exact. Moreover, H'(S'(p ,)®1, . ,,)=0 for everyi<s.
Proof- In (5.3), define the subspace
Whic S 1(pm@ Alp
as the image of 0. We then have the short exact sequence
0— Wi S-1(p)@ Np_ -S> Whi+l 0. (54)
Note that W'™=8""(p)® A"p_. We then claim that, if
HWH @1, ,,)=0  (i<s),

then H"(W’*q®li+2p)=0 (i <s). In fact, considering the long cohomology
exact sequence associated to (5.4) tensored with [, , ., we have

Hi S 0@ ANp_®L,, )~H W@l ,,)
for i<s, and
OHHS(Wl'q®IA+2p)H H (S (p)® /\qp_®l/1+2p)

- HSWh @1, )0 (>:3)
by the assumption. On the other hand,
H(S"™PQNP_®lLi,,,)=S"1P)@H (Np_®l,,,)=0
under the condition () for 2+ 2 p, by (3.5). Hence
H(W™®l,,,,)=0 for every i<s. (5.6)

Now for g=m,
H WL, ,,)~S" " p@H (A\"p_®1;,,,)

which vanishes for i<s under the condition (#) for A+ 2p,. Hence (5.6)
holds for every ¢ and so (5.5) holds under the condition (#) for A+2p,.
All statements in the lemma immediately follow from this. q.e.d.

We now prove Lemma 5.2. According to (3.5), the map in Lemma 5.3

STIP@H (N p_®1,,,) S @ H (N p_®L,,,,)
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turns out to be the composite

STIUPQH (N p_®1,,,,) 5 S (M@ pQH (Np_®L,,,,)
=S PIQH PN P_®L,,) S T PQH(N T p_®li, ).

where the last map is induced by the exterior multiplication p& AT p_—
A2+1p | which is nothing but the symbol map (5.2). Hence the maps in
Lemma 5.3 coincide with the polynomializations 2~ at the origin oe X
in Lemma 5.2 under our identifications (5.1). Thus we have completed
the proof of Lemma 5.2.

The proof of Theorem | in §4 goes as follows. For a moment, put
F=H%IE, ,,)°, the K-module consisting of K-finite vectors in the
kernel of 2: Cw(EV“zP,,)“’ C‘”(EV}H“ ). Considering the filtration of
C*(E ) by I'=I,(E,,,, )at the origin o€ X as in § 1, we make the
filtration of F by F'=F ~I' (I is a non-negative integer). By Lemma 1.1,
we have a natural inclusion

F'/F'*1sKer @)  for each I

Vai+ip,

where the right hand side is the kernel of the polynomialization
29: S' POV, 2, ST POV, 5.

of the first 2 in IE; ,, at the origin o. The inclusion is clearly that of
K-modules. Since 2 is elliptic, F consists of real analytic sections; hence

() F'=0. Therefore

i=0

F~Gr F=® FY/F'*'-@ Ker 29
1=0 =0

as K-modules. By Lemma 5.2,
@ Ker @g)’l’ @ Hs(Sl(p+)®ll+Zp)'
= =0

1=0

In view of Lemmas 4.2 and 4.3, we see
(F:V)<b, (1)

for pe#,. We thus have completed the proof of Theorem 1.

§ 6. Vanishing for [*-Cohomologies of IE; , ,,,

For Ae # suchthat A1+ p,€ % we consider the elliptic complex IE,  , .

0— C*(E )= C*(Ep oo > C%(Ey,  )—0

Vis2e, A+2p A+2p
n n



Multiplicity Formulae for Discrete Series 161

given in Lemma 3.3. Equip each V{ , ~with the K-invariant inner

product ( , )Vﬂ+ . considered in Lemma 3.3. Let I' be a finitely generated
discrete subgroup of G. Denote by C*(I"; E,,g”pn) the subspace consist-
ing of I-invariant sections in C“O(Evgnpn). Fixing a Haar measure dg
on G, one can define, in the usual way, the inner product

(s, 8= S(s, s’)yi”p dg
'~ G n

whenever this has meaning for s,s'e C*([; EVZ+ . y as in [10,§17.
Denote by I*(T'; Ey, . ) the Hilbert space consisting of I“invariant 2
sections of E,, under the inner product ( , ), i.e., the completion of

A+ 2p,

the pre-Hilbert space
(SCC™(T: Eyy )i IShp<co},

where ||s|7=(s, s). Letting the differential operators 2 act on
LA(T; Ey, ) extending maximally, we have the I?-complex

0= I2(I5 By, )= 2T By Voo LT3 By )50, (611)

As noticed in [10, § 1, (1.3)], due to the completeness of the Riemann

metric on '~ X (when we assume that I is torsion-free), the I*-complex

(6.1) enjoys a nice property. That is, similar to [18, Lemma 4.3], if
Islp<oo and |Osllp<oc for seC(I'; EV:{+2 )

then

1Zs)2+12*s|2< 0 and ([s,8)r=(s, O9)r=l12slF+2*sl} (6.2)

and the laplacian [ is essentially self-adjoint, where &*, (] are as in
Lemma 3.3.

Defining the 1?-cohomologies of (6.1) by
HL(TE, )= {se (T3 By | ); Ds=0}

A4 2pn

where [J acts on I2(I; EV3 ) in the sense of distributions, one has
+2p,

HL(MIE J={se C™([; Eyy | ); [Islp< o0, Z5=D*s=0},

A+2pn
by the above property (6.2).
We have the following vanishing theorem.

Theorem 2. Let Ae %,. Assume
(1) (2, a)>0 for every acP,, and
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(2) for every Qc P, such that 1+2p,—<{Q>e%,, we also have A+
pn_<Q>e‘9'70k'

Then Hi,,(I'; IE
Proof. Applying the results of Kostant [12], we first show that

|i+p—<{Q>|<|A+p} forevery Q+@in P, (6.3)

under the assumption (1). By [12, Lemma 597, p—<{Q)e% is a weight
of the irreducible g®-module with highest weight p. Hence

lpl?z1p~<Q>1
by [12, Lemma 5.8]. This gives
—2(p, <@))+ K> 0.
On the other hand, by the assumption (1),
—2(L,<0>)<0 for Q=+fFin P.

Hence —2(;+p, (OD)+[{0>|*<0 for Q+¢ in P, which implies (6.3)
immediately.

To prove the vanishing, we now assume H{,(I'; I, ,, )0 for some
g>0. Then there exists non-zero se [*([; Evg”p ) such that

)=0 for every q>0.

A+2pn

v(Q)s=(11+p*—lpl*)s,

by the formula of [] given in Lemma 3.3. Therefore we may assume that
there exists an irreducible component V,< V7 _, = with highest weight
ue %, for which there exists non-zero

se}(I'; Ey ) (6.4)

such that v(Q)s=(Z+p|*—1p|?)s, where I*(I'; E, )= L*(I'; Eypg  )is

the space of I-invariant I” sections of the vector bundle E, associated
to ¥, under the metric restricted to V, of (, Wy, - By the construction
L+2p,

of IE, ,, (in Lemma33), V,cV, &L and p=+4i+2p, Since the
highest weight of an irreducible component of a tensor product can be
expressed as a sum of the highest weight of one and a weight of another,

there exists @ +# in P such that
H=2+2p,—<{@re#,

by the observation in § 2. By the assumption (2), u— p,e%,. Hence one
can consider the elliptic complex IE, by Lemma 3.3, whose laplacian ],
has a form

O,= —v(@)+(u—p,+p 2 ~1p?).
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The corresponding - complex (6.1) of IE, has the first term L*(I'; Ey ).
Letting [, act on sel?(I; E, )as chosen in (6.4), one has

[, 5= =v(Q) s+ (u—p,+p > —=1pl*)s

(o2 =12+pP)s+(u—p,+ o> =1p1*)s
(u—p,+pl>=1i+p2)s
(A+p—<QP—1A+pP)s

where one should note that se C*(I"; E,) Since [],s=2*%s in IE,,
this leads to

it

It

12517 =(4+p =< —12+p1*)Isl}

in view of (6.2). By (6.3), the right hand side is strictly negative, while
the left hand side is non-negative. This is a contradiction; hence the
theorem. q.e.d.

Remark 1. As is seen in the above proof and in the proof of [18,
Theorem 2], the assumption (2} can be replaced by (2) for every irre-
ducible K-submodule V, in V,,, ®V, , u—p,eF where V, is the
irreducible f-module w1th highest welght p,,efo"

§ 7. K-Types of Discrete Classes

In this section we shall prove (1), (II) and (III} of the theorem stated
in the introduction, applying Theorems 1 and 2 of the previous sections.

We first recall the basic facts on the discrete series &, for G according
to Harish-Chandra [7]. Since G has been assumed to have a compact
Cartan subgroup T, the discrete series &, of G is non-empty. Denote
by &’ the set of regular integral linear forms in &, i.e.,

F'={AecF;(A,0)+0 (ae2)}.

Harish-Chandra’s surjection w: #'— &,, which has been referred to in
the introduction, has the following properties. First @ (A)=w(A’) for
A, A'e " if and only if there exists a we W such that wA=A". Here, as
before, W denotes the Weyl group for the pair (G, T) which is identified
with that for (K, T). Secondly when Ae%’ is given, a positive root
system P in X is chosen such that

P={xeZX; (A, a)>0}. (1.1)

Then, the restriction of the distribution character 8, ,, of w(A) to the
set of regular elements of T has the form

X

(=Y ewe “’"/]—I Z—e 2

weW acP
where m=|PJ.



164 R. Hotta and R. Parthasarathy

For Ae#", choose P as in (7.1) and put
A=A—p. (7.2)

Then 2 is dominant with respect to P and A+p,e%;. Hence we can
consider the elliptic complex IE,  ,, and its [*-cohomologies as in § 6.
Spﬁ:ciﬁcally for T =_{1} the identity group, H‘{?)({l}; E,;,,,) gives a
unitary representation nf for each 0<q=<m. As in [18, § 6], one can see
that = is a finite sum of discrete series representations since the rep-
resentation space is an eigenspace of the Casimir operator; hence it has
the distribution character Trace n4.Based on the method of Narasinhan-
Okamoto [16], one then has the alternating sum formula
Y (= 1) Trace n4 =0,
q=0
in view of Lemma 3.3 and [18, Theorem 1]. Combining this with
Theorem 2 in § 6, we have the following realization theorem.

Theorem 3. For Ac%, define ) by (12). Assume moreover that 7
satisfies assumptions (1), (2) of Theorem?2 in §6. Then the representation
7 on H&)({l}; IE,, ,,.) belongs to the discrete class w(4+ p)=aw(A).

We are now ready to show (I) and (II1) of the theorem in the introduc-
tion. Since the assumption (ii)® in the introduction is the same as (2) in
Theorem 2, (I) now follows from Theorem 3 and the formula for the
laplacian in Lemma 3.3. For (III), the space of K-finite vectors of
HY({1}; B, ,, ) is clearly embedded in H°(E, ,,)° of §§4,5 as
K-modules. By Lemma 4.1, the condition (3) for A+2p, is satisfied
under the assumption (ii)* in the introduction. Hence by Theorem 1
in §4, the multiplicity of ¥, in n% is dominated by the Blattner number
b,(u) for every ue%,. We thus have shown one part of Blattner’s
conjecture (III).

The proof of the lowest K-type Theorem(Il) can be carried out
quite similarly to that of [21, Lemma 97, by combining Theorem 1 with
Theorem 3. For the sake of completeness and later use, we reproduce
the arguments, some of which have been unpublished. We start with a
lemma which is the last proposition in [20, Announcement]. Let
C*(14)®End V, ,, (resp. C*(l)®@Hom(V,, 2,., Vi, »,,)) be the space of
C*-functions on G with values in End V, , ,,, (resp. Hom(V, ., . Vi, ,, )}
Define the first-order differential operator

2: C*(1,;)QEnd V, —C*(lg®Hom(V, , ,, , V,szn) (7.3)

+2pn

as the composite of

Ve Iv* : C“’(]lG)@ Vl+29n® VA*+20,._’ c” (]lG)®p & VH 29,.® VA*+2pn

i+2p,
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and
1C°°UG)®0-®1V1+29": Cw(nG)®p®Vl+2p"®VA*+2p,,
~>C°°(]IG)® /1+2p ®Vi*+2pn

where Visas in (3.1)and 0: p®V,, ,,,— Vi, 2, is the symbol as in (3.2).

In the above, we have adopted the natural identifications

1 1 *
EndV/HZp V7~+20n® A+ 2pn° Hom( A+ 2pn? VA+2p) VA+2ﬂn®Vl+2pn

where V¥, is the dual space of V, Then Schmid obtains the

following result.

Lemma 7.1. Assume (H°(EE,,,, )°:V,,,, )S1. There then exists at
most one Fe C*(15@End V,  ,, such that

(1) F(1) is the identity map of V; 5, ,

(2) F(k gk,)=k; ' F(g) k! for k,,k,eK and geG,

+2pn"

(3) $F=0.
In this statement, (3) can be replaced by
3y j,( )F)(gk)dk=0 for every character y of an irreducible

component of VA+2p,.~ Here for every xep v(x) denotes the action of x on
F as a left invariant vector field.

Proof. Let FeC*(;)®EndV, ,, satisfy (1), (2), (3). For veV, ,,..
define F,e C*(I5)®V;, ,,, by F(g)=F(g)v)e V“zp"(geG) By (2), £, can
be regarded as an element of C*(Ey,, ) and by (3), F, is annihila ted by
9. C*(E ")*» C*(E,: yin IE Define the map

Vi+2o,
p: V, —HY(IE

A+2pn

Visap A+2pn°

i+2m.)

by @(v)=F, for veV,,,, . By (2), ¢ is then a K- module map and ¢ is
non-zero by (1). Since (H°(IE,, 5, )°:V;, 2, )= L, ¢ is unique by (1) and
(H°(IE,, ,,.)°:V,,,,,)=1.Since F(g)(t)= ¢ (v)(g), such F must be unique.

We next show that (3) implies (3). It is easily seen that every compo-
nent of the K-module V, ®p has multiplicity one. Hence by the

A+2pn

definition (7.3) of &, in order that F =0, it is sufficient that
{7k &, x,®(v{x) F)) dk=0
K ;

for every character y of an irreducible component of V,,, o, Where
(Zx ®(v(x;) F)) denotes the action of k on the part p®V, ,, in

p® Vie2o,®V¥ 5, In view of the K-invariance of ) x;®v(x;) the

above means i
Zx@jx (v(x) F)(gk™") dk=0
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for geG. If (3) holds for F, then the above holds for F; hence (3) holds.
g.ed.

We notice that if ¥, =V, ,, is an irreducible component, then
u=/i+2p,—o for some aek, by the definition of ¥, , in §3. Using
Lemma 7.1, the following lemma can then be proved in quite the same
way as in the proof of [21, Lemma 9], so we omit the proof.

 Lemma 7.2. Assume (H°(IE, ,, )°:V, 5, )<1 for a 267 such that
i+p,eZy Let n be an irreducible unitary representation such that the
restriction n|K contains V, _,, but does not contain V, _,, _, for every

ae P, such that A+2p,—oe%,. Then n is unique up to equivalence.

Now Theorem (II) in the introduction immediately follows from this.
Under the assumption (ii)*, the assumption in Lemma 7.2 is satisfied in
view of Theorem 1 and Lemma 4.1. It is easy to see that b, (A+2p,—a)=0
for ae P,. Hence by Theorem (I11)

(@G+PIK V12, -0=0  (ch).
As observed before, we actually know that
(wE+pIK: V0, )=1.
Hence Lemma 7.2 leads to the Lowest K-type Theorem (I1).

§ 8. Multiplicity of Discrete Classes in I* (I ~G)

In this section we shall concentrate on Theorem (IV) in the intro-
duction. Let I be a discrete subgroup of G with compact quotient '~ G.
Let G be the unitary dual of G, i.e., the set of equivalence classes of
irreducible unitary representations, and denote by N (') the multiplicity
of a class weG in the right regular representation on I2(I'\G). It is
then well-known that N (I') is finite for any weG, and I (I . G) breaks
up into a direct sum of irreducible components; i.¢e.,

B(Ir~G)=®N,(NH,, 8.1)
(UEG

where N, (I') H,, i§ the sum of N, (I") copies of a representation space H,
belonging to weG.
We now consider the I?-cohomologies of the complex (6.1) for our

I and write
HU B 45,,)=Hb (I IE;5,)
for Ae # such that i+ p,e ZF.

Lemma 8.1. Assume 1+ 2p, satisfies the condition (3 ) in the sense of
§ 3. Suppose that there exists w,eG for which the K-module HS, consisting
of K-finite vectors in the representation space H,, of w, can be embedded
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in H(IE,, 5 ,,)° as K-modules and actually contains the K-type V5 .
Then such w, is unique in G and N,,,(IN=dimH°(T"; E,, ,, ).

Proof. The uniqueness of w, is a consequence of Lemma 7.2 since the
condition (3) for A+2p, leads to the assumption of Lemma 7.2 and a
representation belonging to w,eG satisfies the condition of that lemma
by Theorem [. Note that (w;|K:V;,,,)=1 by our assumption.

Let 7 be an irreducible unitary representation of G on a Hilbert space
H,.. We define the linear operator

n(@): Homg(H,,V,,;,)—Homg(H,, V] ,,) (8.2)

following [21]. We first notice that the space Homg(H_, V') of K-maps
from H, into a finite dimensional K-module V can be identified with
Homg(H?, V) by restricting maps to the space HY of K-finite vectors
in H,. Note that Homg(H,, V} is finite dimensional. Since elements in
H? are differentiable vectors and the Lie algebra g of G has a skew-
hermitian representation on H?, we can define the map

R(V): HomK(H:r)a VZ+2 p")v‘) HomK(H:[)s p® Vl+2p,,,)
by Zm
(Vo= Y x;Q@¢@on(x;) for pcHomg(HY, V;.5,,)
i=1
where {x;}i™ is an orthonormal basis of p. Composing 7 (F)with the

bol
Symbel map g p®VA+2an V/‘.l+2pn

in (3.2), we define

(@) p=con(V)@
which is easily shown to be in Homg(Hy, V., ,,,). Extending n(Z)¢
uniquely to Homg(H,, V3, ,,.), we have the map (8.2). Defining the map

6(x): Vigap— Viea,, for xep
by 6(x) v=0(x®uv) for veV, ., ,. , we can write n(Z) as

(D) o=2 0(x)opon(x) (8.3)

for peHomg (HY, V, ., ,,)-

Let n,, 7, be two irreducible unitary representations of G and denote
by Kerz,(2) (i=1, 2) the kernel of the operator 7;(2) in (8.2). We will
show now that if Ker 7;(2)+0 for both i=1 and 2, then =, is equivalent
to m,, of course under the conditions stated in the lemma: t.e,
Kern(2)40 assures the uniqueness of = up to equivalence. Write for
a moment n=7; (i=1 or 2). Let ¢ =0 in Kern(2). Then n|K contains
V142 ,, and one can choose Yy e Homg(V,, 5 ,,, H,) such that ¢ oy =1den-
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tity. Define an End V,, , ,, -valued function Fe C*(lg)®End V, ., , by
Fg)=pen(g™l)oy for geG.

Then F clearly satisfies the conditions (1), (2) in Lemma 7.1. We will show
that F also satisfies (3), 9 F =0. Equip the spaces V., Vi, 1, and H,
with the inner products (, )o, ( , ); and ( , ), respectively. Denote by
o (x)* and ¢* the adjoint operators of ¢(x)and ¢ under the metrics. Note
that n(x)*= —n(x) on HY for xeg. ForveV,,,, , ueV; ,, and geG,
RS G R0 i = Sl () (5 F) @), )

=Y ((v(x) F)(@)(v), 0 (x)* u)o

by the definitions. Denoting by ¢'*e G (te R) the one-parameter subgroup
generated by xeg, we see the last term equals the value of

d
Y (@ome™ ™) (g™ ey 0), o (x)* u)o

i
at t=0. Since 7 is unitary, it equals

L™ e @), m(x)op*o o (x)* u),.

i

Since @ eKer n(Z), Y 2(x)o 9% 0 0 (x)* =0

1

by (8.3). Hence £F=0. By Lemma 7.1, F is unique. Noting that F is,
by definition, a spherical function of type V., of n, the uniqueness
of F leads to the uniqueness of the equivalence class of = in G.
Now the proof of Lemma 8.1 is immediate. Let
B(r~G)=@N, (N H,

welG
be the decomposition of (8.1). Note that N, (I")=N,.(I") for the contra-
gredient class w* of w. Then a standard reasoning [for example [21],
Lemma 6], we have

H( I, ,,)= @ N, (I Kerw(2) (84)

weG
where Kerw(2)=Kern(2) and = is a representation belonging to the
class w. From what has been proved just beforf:, under the condition (3#)
for A+ 2p,€%,, there exists at most one wy€ G such that Ker wqg (2)+0.
By the assumption of Lemma 8.1, about w; we have (w;|K:V,,,,)=1
and (w;|K:V;, ,, _.)=0 for aeP, by Theorem 1. Hence

HomK(Hw;: I/:ll+2p,,):o
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and by the definition (8.2),Awe actually have dim Kerw,(2)=1. Since
Ker w(2)=0 for w+w, in G, by (8.4)

dimH°(I'; E,,,,)=N,,(I.
This completes the proof of Lemma 8.1. q.e.d.

We now consider dim H°(I"; [E; +2p.) In view of the relationship
of the elliptic omplex IE , , , with the Dirac operator observed in Lemma
3.3, the computation at the index level has already been given in our
previous paper [10, § 2] using the Atiyah-Bott-Singer Lefschetz fixed
point formula. We recall it here.

Following [10], we first introduce the function ¥, on the elliptic
elements of G (elements which are conjugate to those in T). Fixing an
element ye T for a moment, let G, be the centralizer of y in G, and G?
the identity component of G,. Then G contains T as its Cartan subgroup.
Denote by W, the Weyl group for the pair (GJ, T). Then W, can be iden-
tified with a subgroup of W, the Weyl group for (G, T). We denote by
[G,:GY] the number of connected components of G,. Denote by E, the
set of positive roots aeP such that ¢*(y)=1 and put p,=3{(B>. Then F,
is a positive root system for (g7, t%) where gf is the complexification of
the Lie algebra g, of G9. We denote by W, the Weyl group for the pair
(g, 1% and by (W] its order. We put m,=4% dim; G,/K,=|P,n E| where
K,=G,nK.

We now define the function ¥, on T by

V== WG, G [ (o) )7 ()

aeP,
fe h
or ye T, where Y ewyer@ro-e [T (w(l+p), )
W ()= =P
[T (t—e0)

aeP—-P,

(Notice that this ¥, differs from that in [10] up to the sign j(4) and our
W was denoted by W; there.) It is then seen that ¥, is invariant under the
W-action on T; hence ¥, can be extended to a function, which will be
denoted also by ¥,, on the set of all elliptic elements on G invariant on
the conjugacy classes.

We normalize the Haar measure on G, so that, for every discrete
subgroup I, of G, such that I, ~G,/T is a compact manifold, the volume
v(I;~G,) of I;~G, under this measure equals the Euler number of
I;~G,/T up to the sign (—1)™.

Lemma 8.2. For Ae & such that A+ p,eFy,
Y (— 1 dimHUTIE, 5 ,)=) 0([NG,) ¥i(y)

q=0 Y

122 Iaventiones math., Vol. 26
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where I,=I"n G, and in the summation y runs over representatives of all
the I'-conjugacy classes of elliptic elements in I

Proof. Note that by Lemma 3.3 ) (~1dim H(I'; IE, ,, ) equals
the index of the Dirac operator 9=0

D: C*(Ep+gv,,, )~ C7(EL-gva,,,)

over I'~ X, which is denoted by y(I'; ) in [10]. Lemima 8.2 is hence an
interpretation of [10, Theorem 3] in view of the difference of the defi-
nitions of ¥,. g.e.d.

We are now ready to prove Theorem (I'V) in the introduction. Let
AeF satisfy (A + p, a) >0 for all positive roots «e P If A moreover satisfies
the assumptions (1) and (2) of Theorem 2 in § 6, the representation w5
on H% ({1} IE;,,,,) belongs to the discrete class w{A+p)e&,. Let
w{A+ p) be taken as the w,e G in Lemma 8.1. Hence we have

Nyiasp(l)=dim HO(TE,, , on)

under the condition (#) for A+2p,.
On the other hand, in this case we also know
HYT;IE, )=0 for ¢>0

+2pn

by Theorem 2. Therefore we have the formula for dimH®(I';1IE, ;)
and hence N, 3, ,, (1)

Theorem 4. Assume that A F; satisfies

(1) (4,00>0(xeR),
(2) the condition (%) for A+ 2p, and the assumption (2) of Theorem 2
in §6. Then for the discrete class w(A+p)e&,,

N,

(0]

(1+p)(F)=dimH°(r; 1E1+2p,)zz (LG, ¥, (y)
Y

where the last term is as in Lemma 8.2.

To show Theorem (IV) in the introduction, it suffices to note that the
assumptions (ii)* and (ii)® in the introduction imply (2)’ (by Lemma 4.1)
and that, when I has no elliptic elements other than the identity, the last
term in the formula reduces to v(I"~G) ¥, (1) which has been shown to
equal d, ;. ,v(I' ~G)in [10, § 3].

Remark 2. A discrete class wed, is called “integrable” when the
K-finite matrix coefficients of w are integrable functions on G. Let &,
be the set of all integrable discrete classes of G. Trombi and Varadarajan
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showed in [23, Theorem 8.2] that, if w(A)e&, for Ae#, then

(A4, 0> > (B, o) forevery aek,. (8.5)
BeP

Now let P be chosen as in (7.1) for A%, and let n be the set of all
simpleroots in P Set my=n B, and n,=n~ B. Then one knows =, +.

For ae P, put
k()= (B, al/lal?,

BeP

which is a positive integer. In the Weyl chamber defined by

{ueHom()/ —~ 11, R); (i, @) =0 (xen)},

if w(A)ed|, then A must be away from every wall defined by aen, at
least by “distance” k(x)+ | by the above Trombi-Varadarajan criterion.
On the other hand, though the assumption (2)' in Theorem 4 means that
A=2+p is a “little” away from the walls defined by =,, the assumption
{1) means only that /4 is not one of the points “closest” to the walls
defined by =,.

Theorem 4 may not cover all integrable classes w(A)=w(4i+ p)eéy,
in general, because of the assumption (2)'. However, for simple groups G,
since the integers k(x) seem to become larger as dim G become larger,
it seems, in general, that Theorem 4 assures the validity of a simple
formula for N, (I") for infinitely many w(A4)eé,—&,. As mentioned in
the introduction, though this is not true for SL(2, R), in the following
section, we shall see that the above situation actually occurs for G=
SU(m, 1) and Spin(2m, 1) (m=+1).

§9. Examples; SU (i, 1), Spin(2m, 1) and Holomorphic Discrete Series

Finally, we illustrate our results in some cases, in which somewhat
sharper results will be obtained. The condition (4) is automatically
satisfied if A lies in a specific Weyl chamber. Next in the cases E1, E2
and E3 illustrated later, we shall show that every statement of the
theorem in the introduction is true without imposing the assumption (ii).

We call a positive root system P admissible when [[p,,p,],p,]=0
for p,= Y g% orequivalently,a+ f+7y is nevera root forevery a, f, yeB.

aeP,

We know that there always exist admissible positive root systems ([8],
Lemma 3.2). (There, actually, admissibility is stronger condition.) We
prove the following lemma.

Lemma 9.1. Let a positive root system P be admissible. Assume that
LeF, under this choice of a positive root system. Then the condition ()
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Jor A+2p,, is satisfied, i.e.,
Hi(/\qp— ®ll+2p)20

for every i<s and every q.

For the proof, it suffices to prove H(A'p_®I_;)=0 for every
i>0. In fact, by the Serre duality, the dual of H'(A'p_®1,,,,) is
H*"'(A"p,®I_,_,,) since the canonical line bundle over K%B is the
line bundle associated to the B-module /,, . One easily sees that the
dualof A""?p, equals A’p,®I_,, whileitalsoequals A"~ ?p_.Hence
the dual of H*(A"p_®1,,,,,) equals H*7'(A" " 9p_@&I_,), which shows
our assertion.

Consider the parabolic subgroup @ of K% consisting of elements
ke K® such that Ad(k)p,=p,, which clearly contains our Borel sub-
group B. Let 0= MU be the Levi decomposition where U is the unipotent
radical of Q and M is the reductive supplement containing the maximal
torus 7 When a holomorphic Q-module W is given, we denote by
H (KY/Q; W) the K®module given by the i-th cohomology space with
coefficients in the sheaf of germs of holomorphic sections of the
holomorphic vector bundle over K%/Q associated to W. Let ie %, and
W_, the irreducible M-module with lowest weight — 4, extended to
the Q-module trivially on U. The p_ =p%/p, has the Q-module structure
by quotient. One can then see that

Hi(/VP-@’-DZHi(KC/Q; Np_Q@W._)

for every i and ¢. For this, consider the fibration K¢/B— K%/Q with
fibres isomorphic to Q/B~M/M n B. By the standard argument of the
Leray spectral sequence (see [2, § 11]), it suffices to see that under the
above fibration the zero-th direct image of the sheaf associated to
Afp_®1_, is isomorphic to that associated to A?p_® W_, and that
al} the other direct images vanish. This can be easily seen by means of
the Borel-Weil-Bott theorem [2].

Now the following can be also easily seen by Bott’s observations
in [2] for the Borel-Weil-Bott theorem for the parabolic Q in KT Let u
denote the Lie algebra of the unipotent radical U of Q. Suppose Vis a
K%module and put

W=V"={veV, xv=0 for any xeuj,
so that W is a g-module. Then
H(KYQ; w%=0 (i>0)

and H°(KY/Q; W*) gives a K®-module isomorphic to V*, where V¥ W*
are the contragredient modules of ¥, W respectively. Furthermore, if W,
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is a Q-module which is isomorphic to W as M-modules, then again, the
same conclusion holds for the vanishing of H'(K%/Q; W*). This follows
by using induction on a fength of the Jordan-Holder filtration of W
Denoting by W, the irreducible M-module with highest weight 4 extended
to the Q-module trivially on U, one sees that the dual of Ap, ® W, is
isomorphicto Ap_® W_,. Hence in order to show H{KYQ; Ap_QW_,)
=0 (i>0), from which Lemma 9.1 follows, it suffices to prove the next
lemma.

Lemma 9.2. When the positive root system P is admissible, \p @ W,
is isomorphic to (L® V,, , )" as M-modules, where L@ V; ., is as in the
previous sections.

Proof. Let m denote the Lie algebra corresponding to M. We first
note that W, , =V, is an irreducible m-module with highest weight
A+ p, which occurs with multiplicity one in V,,, . Moreover, since the
irreducible m-module W, with highest weight p, is one-dimensional.
Wi =W, ®W, and L&W, ~/Ap, as M-modules by a similar
observation to the one in §2. Hence LW, , ~Ap, W, as M-
modules. Define the M-module projection idd® p: L@V, , = LW, ,.
where p: Vi, , —W;,,, is the unique m-module projection. Then it is
easily seen that id®p maps the subspace (L® V,,, )" injectively into
L®W,, .. It therefore suffices to see the surjectivity of this restriction
of id®@p to (L& V;,,

We first consider the special case that A=0 and the K is mapped
onto the full special orthogonal group SO(p) via the adjoint action
(the case of G=Spin(2m, 1)). That is, let 0,=1{2eS0®9;g-p,=p,}
be the parabolic subgroup of SO (p*)~SO(2m, €) and let @, =M, U; be
the Levi decomposition as before. Note that U, = {geQ,: g x=x(xep_)}.
Let 11, be the Lie algebra of U, . We will then show that A p_, is isomorphic
to (L® L*)* as M,-modules where L is as in {2.3). Noting that L* is
identical to ¥, in case [®=s0(p®) and that L (L)~ Ap, as M;-
modules where (L*)* is one-dimensional, by the above observation we
have to show that the injection (L® LF)y*'— L& (L) is surjective. For
this, it suffices to see that the numbers of M,-irreducible components in
both sides coincide. First, since M, is isomorphic to GL(m, C) embedded
in S0(2m,C), every A?p, is irreducible as an M,-module. Hence
L®(L* "t~ A p, has m+1 M,-irreducible components. On the other
hand, the number of M,-irreducible components of (L® L*)" equals
that of SO (p)-irreducible components of L& L*, which will be shown to
be also m+1 as follows. In fact, it is known that L® L' and L® = have
the same number of SO (p}-irreducible components and that L&L~ A p®
as SO (p)-modules. Now A?pC is SO (p)-irreducible if g==m and A™p®
breaks up into two irreducible SO(p)-modules. Thus the number of

12b Inventiones math., Vol. 26
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S0 (p)-irreducible components of A p®~L®L is 2m+ 2, which implies
our assertion.

Before we go into the general case, we shall secondly see that if P
is admissible, then u<u; where u, is the above defined nilpotent Lie
algebra. For this, it suffices to see that u acts trivially on p_. We note
that u={p_,p,] In fact, since u is spanned by root vectors, g*cu (aeP,)
if and only if g7*¢m, e, if and only if there exists feP, such that
[a7% g¢?1+0 and [g % g’]¢p,, which means a—feP,. Then a=
(x—p)+B; hence g*=[g""%, g’ 1< [p,.p,] Hence u=[p,,p,] Now if
we assume that P is admissible, then [[p+,p+],p+]:0, which means
[u, p,1=0. Hence our assertion.

Finally, we shall show the surjectivity of the injection

d@p: (LRV,, , ) > LW, , .

We have to prove: given any element wo@weW, @ W,~ W,  and any
element le L, there exists an element ve(L® V, . , )" such that (id ® p)(v)=
IQ@wo®@w. Noticing that weeW, =(L*)", let ze(L®L')" be the
inverse image of [®@woe L®(LF)" under the established isomorphism
(L®Lry—— L@ (L) Next let ze L&V, be the image of the z under
the K-module projection L L*—L®YV, . Since ucu, under our
assumption, we then have ze (L® V, ). Considering the unique projection
V, ®V,— Vi, ,., we have the composed map

LRV, ® WLV, ®V,>LOV; .-

Let veL®V,,, be the image of zQwelL® V, ® W, under the above
map. It is clear that ve(L®V;,, )" Noting that there is only one M-
module projection L*@V,— W, , it can be seen that (iId® p)(v)=
[®w,®w. Thus we have completed the proof of Lemma 9.2, hence that
of Lemma9.1. g.e.d.

By Lemma 9.1, we have the following proposition.

Proposition 9.1. If the positive root system P is admissible, then every
statement of the theorem in the introduction is true under the assumption (i)
and (ii)®.

In all the following cases E 1, E2 and E 3, we notice that every positive
root system will be admissible in our sense.

El. G=SU(m,1).
Let {e;}"%! be an orthogonal basis of the euclidean space R™*!

such that
(e, e)=2m+1)""6; (=i, j=<m+1)
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where 9;; is the Kronecker symbol. Then, as a root system for g*=
sl(m+ 1, €), one may consider

I={t(e—e) 1Zi<jsm+1}

with the above inner product. Since €=sl(m, €)@ C embedded in
s[(m+ 1, €), one may assume that the set of compact roots is

Zk:{i(é’i—@j); Igi<jsmi.
We fix a positive root system B, for &, as
Po={e;—e; 1Zi<j<m}.
In the set of non-compact roots
Zn:{i(‘?i“em+1)§ 1gism},
we define for [=0,1,...,m,

POl (eime : g=1 for 1=ig!
mo TR T e 1 for I+ 1<i<m|”

Since the Weyl group W for (% t% may be regarded as the symmetric
group acting on {e;; 1<i<m}, PP=PB UPY (0<i<m) exhaust all W-
inequivalent positive root systems in X.

Since Hom ]/——1 t,IR) can be identified with the hyperplane in R™+!

m+1 m+1 m+1
defined by Z m;e; such that Z m=0, A= Z m;e;e# if and only if
m+1 i=1 i=
Y m;=0 and 2(/1, o; )l )P =m;—m;eZ where o, ;= e;—e;€ X (i+)). It is
i=1 m+1
It is seen that A= ) m,e, is regular dominant with respect to P if and
i=1

only if

m1>m2>"'>ml>mm+1 >ml+1>"’>mm.

For p"'=3 (P, pf =1 (P">, we have

p? 5{Z(m 2i+2)e;+ Z m—2j)e;+(m— ),,,H},

j=l+1

i m
pi,”=%{ Se— Y e;+(m+2]) e,,,H}

i=1 j=1+1
Now it is easy to see that every P is admissible in the sense of the
beginning part of this section. Hence by Proposition 9.1, every statement
of the theorem in the introduction is true without (i1)*.
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It is seen that A=/ —p"” satisfies the assumption (i) of the theorem
in the introduction if and only if

my > >0, m—m, 22 and m,  —m, < —2.

In this case, we see that the assumption (i1)° is automatically satisfied. In
fact, suppose A+2p —<(Q>eF, for Q< P¥. Then (A+p" —<0>,0)=
—(p, o) (x B,). It then suffices to show that (A4 p’ —<{Q>, x) 20 (xe P,).
When [=0 or m, then (p{, 2)=0 (ze B).

Hence one may assume that /40 nor m.

Putting o;=e¢;—e¢;,, (ISi<m—1), it suffices to check the above
inequality for a;. First (p'", 2;)=0 for i % I, hence for «; (i =) the inequality
holds. Secondly, 2(p\", 2,)/|2%|* = 1. Since ny—m,, ., =2 and m,,, — m,, .,
< -2, we have m;—m,,  24. Hence 2(4, ))/|o,|* =m;—m,,  —222. For
Q< P, 2(40>, o)/l ]? is possibly 0,1 or 2. Hence the inequality holds
also for o;.

Moreover, one can see that k{«)=m for ae X, where k («) is the number
m+1

defined in Remark 2 in §8. Hence, if w(M)eé; (Az > miei>, then

i=1
my—m, Zm+1and m ,~m, S —(m+1). By this, in case m# 1, for
every Weyl chamber positive for P there exist infinitely many non-
integrable w{A)e &, which satisfy the assumption (i).

E2. G=Spin{2m, 1).

Let {e;}i., be an orthogonal basis of R™ such that (e;,e))
=(2@2m—1))""8;. The root system of g®=so(2m+1,T) is then
Z=x0Z, where Xy ={+(e;~e), > (e;+¢); 1Li<j<mj} is the set of
compact roots, and X, = { +¢;; 1 £i<mj} is that of non-compact roots. Fix

B(t{ei+€j:ei—ej; 1€j<igm},

and put P‘¥'={+e,,e,,...,e,}. Then these two P*'= PR u B'*) exhaust

m

all W-inequivalent positive root systems. A= )Y mye;e% if and only if
i=]
2myeZ and m;—m;eZ (Vi,j). One sees that A is regular dominant with

respect to P if and only if 0 <m; <m, <--- <m,,; with respect to P~
if and only if —m,<m <0<my<my<---<m,. Putting A=A—p®
(p'* =1 (PE), the condition (4, ®) >0 (¢e B'*’) means additionally that
m; = [ for P my < —1 for P40 Tt is easily seen that P is admissible;
hence we do not care about the assumption (ii)* in the introduction.
It is also easy to see that if (%, #)>0 (xe P'®), then the assumption (ii)® is
automatically satisfied.

Moreover, k(a)=2(m—3%) (xeZ,). Hence, if w(A)ed,, then m, >m
for P'*), or m; £ —m for P*~). Incidentally, for this group, the sufficient
condition given in [23, Theorem 8.2] in order that m(A)ed&, coincides
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with the above necessary condition, which also coincides with the con-
dition given by Schmid [20]. Hence

Smy<my <<
@ﬂ:{w(meéz; M= = > OF }

—my<m < —mand m, <--- <m,

We have thus seen the following fact.

Proposition 9.2. For G=_SU (m, 1) or Spin{(2m, 1), every statement of
the theorem in the introduction is true under the assumption (i). Moreover
the set of discrete classes satisfying (1) covers all integrable classes, and,
when m= 1, contains infinitely many non-integrable classes.

Remark. 1f one uses Schmid’s work for Spin(2m, 1) in the last half
of [20], it can be verified that the statements (I), (II) and (III) in the
theorem are true for all discrete classes for Spin(2m, 1) (i.e., without
imposing (i)). Also the equality (Blattner’s conjecture) holds in (II1).
(See [8, §6].)

E 3. Holomorphic discrete series.

In this case, everything has been beautifully worked out mainly by
Harish-Chandra {6]. However, to see how the matters can be simplified
in this case, we illustrate it here. Nothing new is thus contained in this
paragraph.

The discrete class w(A) (AeF ) i1s called “holomorphic” when, for
the positive root system P such that P={xeX; (A4, 0)>0}, a+f¢F, for
any «, BeB,. Then the subspaces p.= Y g** must be abelian subal-

aeP,,

gebras of g© and stable under the K-action.
We notice that the condition (3) for 1+ 2p,e%, is always satisfied,

Hi(/\qp—®ll+20):HO(/\qp—)®Hi(ll+Zp):0 (i<s)

since p_ is itself a K®-module. (Of course, our P is admissible.) Also the
assumption (2) in Theorem 2 in §6 is automatically satisfied since
(0, 0)=0 for aeR. The vanishing thus obtained by Theorem 2 is due
to Matsushima-Murakami [15; Theorem 2]. We have thus seen that for
a holomorphic w(A4)eé&,, the theorem in the introduction holds under
the assumption (i). Further by the results of [6], (1), (II) and (III) (together
with the equalities) have been known to be true.

ie,
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