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We extend our study of hysteresis to the O (N)symmetric (%) model in three dimensions with
the dynamics of the nonconserved order parameter given by a Langevin equation. We analyze both
thermal and magnetic hysteresis within this model. We study the systematics of the shapes and
areas of hysteresis loops as functions of the amplitude and frequency of the applied field and other
parameters in the theory. In the case of magnetic hysteresis we obtain pinched loops for a range of
values in parameter space and demonstrate a scaling behavior of the area of the hysteresis loop with
the amplitude H, of the magnetic field for low amplitudes: A =H§, where the exponent o =5.
This puts the magnetic hysteresis behavior of the ($2)° model in the same universality class as that
of the (®*)> model. Thermal hysteresis, obtained by cycling the temperature in the presence of a
small magnetic field, is characterized by asymmetric loops. We find that the area of the thermal
hysteresis loops scales as a function of the amplitude of the periodic temperature (for low ampli-
tudes): A=rg, where a= 1. we show that our study is relevant to the physics of ferroelectric ma-
terials and charge-density-wave systems. Our observations are consistent with existing experimental

data on ferroelectrics and charge-density waves.

I. INTRODUCTION

In the past few years"? there has been a considerable
amount of study on nonequilibrium behavior associated
with first-order phase transitions. A prototype example
of this phenomenon is the growth of domains following a
thermal quench of a system from a high-temperature
disordered phase to a low-temperature ordered phase.
Questions relating to the initial growth of order (nu-
cleation and spinodal decomposition) and the late-stage
growth of ordered domains have been focused upon. Rel-
atively little work has been done on the kinetics of driven
systems>* and on systems in the presence of a periodic
driving field. In particular, hysteresis, a widely observed
phenomenon in experiments, has not received wide atten-
tion.

In some recent papers>® we had initiated a study of
hysteresis in simple model-spin systems subjected to
periodic magnetic fields. The model-spin systems we in-
vestigated were (i) a continuous-spin model in three di-
mensions where the order parameter is an N-component
vector and where the free-energy functional has a (®?)?
interaction with O (~)symmetry. The dynamics of the
nonconserving order parameter is specified by a purely
relaxational Langevin equation, (ii) a discrete-spin-lattice
model in two dimensions where the order parameter is an
Ising spin variable with the Hamiltonian has a nearest-
neighbor ferromagnetic coupling. The dynamics of the
order parameter is generated by a Monte Carlo single-
spin-flip algorithm.

The principal motivation for our study was to con-
struct a nonequilibrium statistical-mechanical theory of

hysteresis in a variety of spin systems where in fluctua-
tions of the order parameter are incorporated. Our
theory was used to study the dependence of the shapes
and areas of hysteresis loops on the amplitude H, and
frequency Q of the magnetic field and on temperature. [t
made several qualitative predictions which are borne out
by experiments on insulating ferrites® In addition, it
made the prediction that the area of the hysteresis loop
scales as a power law of the amplitude and frequency of
the magnetic field for low values of the amplitude and fre-
quency. We found that the area scales as HQP, where
a=0.66 and B=0.33 are exponents that are independent
of temperature. This is in qualitative agreement with the
scaling observed in a wide variety of soft magnets. This
empirical scaling behavior, known as the Steinmetz law,’
suggests that for low values of the magnetic induction B,,
(ranging from 500 to 15000 G in iron) the area goes as®
1.6
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Our work on the two-dimensional Ising model, though
consistent with such scaling behavior, was not extensive
enough to extract accurate exponents. Based on these
observations we conjectured the existence of universality
classes which would be characterized by the same set of
exponents a andpB. This motivates us to study other spin
models and check our "universality hypothesis* (for our
reason for expecting scaling, see Sec. | of Ref. 6).

In this paper we extend our analysis of hysteresis to an
N-component Spin system with O (N)symmetry in three
dimensions, whose free-energy functional possesses a
(®?)* term. As in Ref. 6, the dynamics of the noncon-
served order parameter is specified by a purely relaxa



tional Langevin equation. A distinct feature of the (®?)
model is that, in addition to the conventional magnetic-
field-driven first-order phase transition, it exhibits a
temperature-induced first-order phase transition. We can
therefore study the hysteretic behavior of the magnetiza-
tion either as the field or temperature is cycled periodical-
ly across the phase boundary. On cycling the magnetic
field, we obtain pinched hysteresis loops for certain
values of the parameters r, u, and v [see Eq. (2) for a
definition of these parameters], in addition to loops simi-
lar to those obtained in Ref. 6. We see that the construc-
tion in the pinched loops increases as one goes towards
the triple line from the ordered phase (see the phase dia-
gram, Fig. 1). This constriction is very prominent when
the parameter values are such that the system is initially
at equilibrium in the disordered phase and when the am-
plitude of the magnetic field is large. Experiments on the
hysteretic response of ferroelectric systems such as Ba
TiO; and SbSl (Refs. 9-12) show a similar trend. We
find, as in Ref. 6, that the area of the hysteresis loop ex-
hibits a power-law dependence on the amplitude of the
magnetic field, for fixed values of the parameters r, u, and
v. The scaling, valid for low values of H, and ft, is of the
form 4 =~H§, where «=0.601+0.05. The exponents a
and 3 seem to be independent of ft, r, u, and v and equal
within error bars to the values obtained in the (®?)* mod-
e. Thus the magnetic hysteresis behavior of the (®?)°
theory seems to be in the same universality class as that
of the (®2)? theory. By cycling the temperature across
the first-order boundary, we get asymmetric hysteresis
loops with very little enclosed area (compared to the
loops obtained in magnetic hysteresis). The area of the
loops increases with the amplitude of the periodic part of
the temperature. We aso see that, fixing the amplitude,
the area increases as the frequency decreases. This isin
qualitative agreement with the behavior of certain
charge-density-wave (CDW) systems.!> The loops get
narrower as one goes towards the tricritical point (see
Fig. 1). The area of the thermal hysteresis loops exhibits
a power-law scaling with the amplitude of the periodic
part of the temperature 4 ~r§, where a= 1.0+0.03.
Thus thermal hysteresis in the (®?)® theory seems to be-
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FIG. 1. Schematic phase diagram in the r-u plane for

v <v.= 167>, When an external magnetic field is applied, the
first-order boundary develops two first-order wings on either
side of the H =0 plane.

long to a different universality class than magnetic hys-
teresis in the same model.

In Sec. 1l we discuss the equilibrium behavior of the
(®*)* model when N— . In Sec. III we derive the
equations describing the response of the magnetization to
atime-varying magnetic field and a time-varying temper-
ature in the large-N limit. Section IV contains the results
of our calculations and a discussion of their experimental
relevance—both for magnetic and thermal hysteresis.
We conclude (Sec. V) with afew additional comments.

Il. THEO(N = )-SYMMETRIC,
(®?)-THEORY EQUILIBRIUM PROPERTIES

The model we study is an O (N)continuum generaliza-
tion of the Heisenberg modd (N =3) in the presence of a
magnetic field. The order parameter characterizing the
model is an N-component vector ®,(x,1) (a runs from 1
toN). Themodel is defined by the free-energy functional

BF="a% -;—(tha-vtbﬂH- % (P,P,)+ ﬁ( D0, )

il P—v'N _

e (P, P, NH,®, 2
We investigate this model explicitly in three spatial di-
mensions [in Eqg. (2) we sum over repeated indices]. The
parameters u, v, and H are scaled with appropriate
powers of N to obtain a systematic 1/N expansion; r is
proportional to the deviation of the temperature from the
mean-field transition temperature.

We determine the equilibrium phase diagram of the
model described by Eq. (2) for N= «. A lattice version
of this model with a different parametrization scheme
was analyzed by Emery'* and Sarbach and Schneider.'®
They obtained the phase diagram in the limit N= o.
The phase diagram of the above model has also been re-
cently analyzed by Lawrie® We present an outline of
the calculation in the Appendix—details can be found in
Refs. 16 and 17. The model has a low-temperature fer-
romagnetically ordered phase and a high-temperature
paramagnetic phase. The phase diagram depends sensi-
tively on the spatial dimension d —our results are only
valid in three dimensions. We concentrate on the section
of the phase diagram which exhibits a thermally driven,
first-order phase transition (r,v >0, u <0). We summa-
rize the principal results of the equilibrium properties
below.

A. Equilibrium propertieswhen H =0

In d =3, there exigts two digtinct types of phase dia-
grams in the u-r plane depending on the value of v. The
phases are distinguished by the values of two order pa-
rameters, namely z=N"'(®?) and M= (@) . For
0<v <, = 1677, two phases—the ferromagnetic and the
paramagnetic phases—are obtained, as shown schemati-
caly in Fig. 1. The two phases will be described below in
greater detail. From Fig. 1 we see that the two phases
are separated by a first-order phase boundary (represent-
ed by a solid line) and a critica line (represented by a



dashed line) which meet at a tricritical point (TCP) at
(ryoup). Thus at fixed v ( <v, = 1672 and u ( <uy), an
increase in r drives the system from an ordered phase to a
disordered phase across a first-order phase boundary.
The numerical values of the first-order phase boundary in
the r-u plane are given in Table | for v = 105.2758<uv,.

For v >wv,, the tricritical point disappears—the two
phases are now separated by a first-order line and critical
line which meet a critical end point. The first-order line
extends farther, ending in an ordinary critical point. We
do not exhibit this part of the phase diagram and hence-
forth v shall always be taken to be less than v,.

The expressions for the magnetization and the correla-
tion functions to O(1) in a 1/Nexpansion in both the
paramagnetic and the ferromagnetic phases are given
below. These expressions will be used later as initial con-
ditions for the dynamical equations we derive in Sec. Ill.

1. Paramagneticphase

In the high-temperature paramagnetic phase the mag-
netization (at H =0) is zero. By isotropy (in the absence
of a magnetic field) al off-diagonal components of the
two-point correlation function C,;= (¢a(q)®ﬁ(—q))
are zero. The diagonal components of the correlation
function, namely C,,(g)=(®(q)®(—q)}, are al equal
and nonzero. Averages are taken over the equilibrium
thermal distribution. Higher-order cumulants of ¢, are
smaller than C,, by factors of 1/N. Therefore, in the
N-— oo limit, these higher-order correlation functions
vanish. The diagonal components of the correlation
function are given by

Coo=1/(r +g*+uS +v8?) fora=1,...,N, (3)

1 1 5
S=-7 [ Caut™dq . @
Since the theory is regularized on a lattice, we take the

upper momentum cutoff to be 1. Equations (3) and (4)
are solved self-consistently to obtain C,,,.

TABLE |. Phase boundary in the r-u plane
vV = 105.2758 > 1677, H =0.
¥ 7rf U = uf
0.28241 —10.9078
0.38241 —12.7664
0.48241 —14.4883
0.58241 -16.1227
0.68241 -17.7080
0.78241 —19.2594
0.88241 -20.7267
0.98241 —22.0670
1.08241 -23.3083
1.18241 -24.4791
1.28241 -25.5945
1.38241 -26.6639
1.482 41 -27.6929

2. Ferromagneticphase

The low-temperature phase of the theory is an ordered
phase in which a spontaneous magnetization M and z de-
velop nonzero expectation values. The thermodynamic
quantities and correlation functions in this phase are ca-
culated (see the Appendix) in the presence of an
infinitesimal magnetic field in the a=1 direction, i.e,

H,—0"8,,. The spontaneous magnetization M) is
given by
M, = {®(g))=({—ut(u?—4r)"?]/20}
— (12522, (5a)
while
2= D) = [—ux(u?—4m)'"?]/20. (5b)

We choose that value of the root for which the free-
energy density, given by
2 m2
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is a minimum. The off-diagonal components of C,; are
zero (axial symmetry about the ordering direction). The
broken-symmetry axis defines adirection in spin space al-
lowing for fluctuations of the order parameter normal to
this direction to be different from those parallel to it.
The transverse correlation function C, (which isthe com-
ponent perpendicular to the direction of spontaneous
magnetization, a1), clearly describes a zero mode, since
it is associated with spin-wave fluctuations and hence
divergesin the long-wavelength limit,

Coalg)=q 7% . (5¢)

All higher-order cumulants go to zero in the large-¥lim-
it.

B. Equilibrium properties when H 50

We now turn on a uniform magnetic field along the
a=1 direction. We will merely investigate the effect of
the magnetic field on the phase diagram in Fig. 1. The
first-order line develops two symmetrical first-order
"wings' on either side of the r-u plane (the H axis points
out of the plane of Fig. 1). The first-order freezing tem-
perature r therefore depends on the val ue of the magnet-
ic field. We find (and this is to be expected) that the or-
dering temperature r,(H)>r,(H,) when H >H,. We
aso find that for a certain range of values of the parame-
tersr and u, a change in the magnetic field drives the sys-
tem from a paramagnetic phase to a ferromagnetic phase
across the first-order wing. The magnetization in the fer-
romagnetic phase is obtained by solving the following set
of self-consistent equations:

H

M=——, 6a)
202 (68)

p?=i(r +uz+vz?) , (6b)
1 3 2 H2

=['— | —4— |dg+ . 6c
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These equations may not lead to a unique solution for M
for afixed choice of parameters. The equilibrium magne-
tization is the value of M which minimizes the free ener-
gy [Eq. (AT7)].

From our analysis of the equilibrium phase diagram of
the (®?)* model we see that there are two distinct first-
order phase boundaries. (i) the phase boundary between
ferromagnetic and paramagnetic phases traversed by in-
creasing the temperature r [keeping u, v, and H (small)
fixed]; and (ii) the phase boundary between the ferromag-
netic phase with positive magnetization and the fer-
romagnetic phase with negative magnetization traversed
by changing the magnetic field from positive to negative
values through zero (keeping r, v, and u fixed). We study
the kinetics of the (®2)* model associated with both the
first-order phase boundaries by cycling either the temper-
ature or the magnetic field periodically across them. This
will lead us to an analysis of thermal and magnetic hys-
teresis.

I11. DYNAMICS OF THE (®*®)* THEORY

As we argued in Ref. 6, the order parameter &, is not
conserved and its evolution in time is governed by a
Langevin equation. Thermal fluctuations are mimicked
by a random noise (whose time scale of variation is much
smaller than the time scae of relaxation of the magneti-
zation). The Langevin equation is

By = BBR L -

)t
a - 8, (x,t) ¢

where BF is given by Eqg. (2). The noise 5 is a Gaussian
white noise with the foll owing statistics:

(nix,1))=0,
(X, e(x’s 1" ) =208(x—x")8(1 —1")8 5 .

I' is amicroscopic kinetic coefficient, which we take to be
independent of g since @ is nonconserved. T can be es-
timated from linewidth measurements in ferromagnetic
(electric) resonance.

Starting from Eqg. (7), we can derive an infinite hierar-

dt

chy of dynamical equations in the n-point correlation
functions of ®(x,7). In the limit N -— o this infinite set
of different equationsistruncated.

In order to derive the dynamical equations for the mo-
ments of ®(x,7), we substitute the model free-energy
functional Eg. (2) into the Langevin equation Eq. (7). In
momentum space we get

d s
N PR E & R R Pr r }d) T i
pn - A t)Hlu /N,
+@/N)WVs+HS, 18, 0] +040q,0) ,
8
where

V= f f‘ba(q_ql!r)q}ﬁ(‘h_QZ’”‘:D,B(qZ)”dJQIdqu s

V5=fffq’a(q_QI,f){Dﬁ{m_QZ)”@B(QZ"QH,”
X®, (43— 11D, (qq 1)
Xd’q,d’q,d’q;d g,

and repeated indices imply a summation from 1 to N.

Magnetic hysteresis is obtained when the magnetic field
is cycled periodically in the a= 1 direction of spin space,
i.e, H,=Hgsin(t)8, . Thermal hysteresis is obtained
when the temperature r (t)=rg Jrocos(Q) (here r, is
the ordering (first-order transition) temperature, and #, is
the amplitude of the oscillating part of the temperature).
We derive kinetic equations for both these cases in the
N — » = limit. The details of the derivation can be ob-
tained from Refs. 6 and 17.

A. Magnetic hysteresis

When the magnetic field is varied periodically, the
magnetization responds periodically but with a phase lag
and higher harmonics. The dynamics of the magnetiza-
tion M = {®,(q,?)) can be obtained by taking averages
with respect to the noise n,(q,)of al the terms in Eq.
(8). Thus

d u
£ M(q,t)=—T (r+q2)M(q,t)+—X(ff('bacbﬁcbg}dq,dqz

u
oy [ | [{o. 20,0, )dqdq,dq:dqs+HS, 8, | - )

In Ref. 6 we had shown that if the dynamics of the or-
der parameter is governed by Egs. (2) and (7), then the
magnetization of the n-point correlation functions will be
translational invariant at al times provided the magneti-
zation and the n-point correlation functions at t =0 are
translationally invariant. Thus in the present study the
magnetization will be homogeneous at al times and
therefore the g dependence of M (¢) can be dropped. Our
initial conditions are such that the magnetization points

i

aong the a=1 direction of spin space. The above
dynamical equations, with thefieldin the a= 1 direction,
maintain this orientation of the magnetization (see Ref. 6
for a derivation). Thus the a1 components of
{®,(q,¢)) are equal to zero at all times. ForN — « the
three-point and five-point correlation functions factor ex-
actly into products of one-point and two-point correla-
tion functions.
Also,



N
S (B,0,)= (®,0,)+(®0,)
a=1

a¥ |
=(N—1)C,+C, , (10)

whence we seethat I 1 /N)3 (@, P, > issimply C, inthe
limit N— . Thus, for N=o00,

AM
o T slAaM@+HD],

(I1a)

A()=—(r +uM?*+uS +oM*+20M2S +vS?), (11b)
_ 1 14 .

S“’_z—wzfo" C,(q,)dq (11c)

%Cl(q,t)=—[q2—A(t)]Cl(q,tH-l , (11d)

H()=Hysin(Qt) | (11e)

where the (1,(q,1)®,(—q,t)) term is evaluated using
Noviko's theorem,’® which is valid for a Gaussian white
noise. In the above eguations we measure time in units of
(2r) . Equations (11a—11e) are the set of two closed
integro-differential equations that describe exactly the
time evolution of our model Eq. (7) for N= . It can be
easily verified that the stationary solutions of these equa-
tions are precisely the equilibrium values of the magneti-
zation and the transverse correlation function, Eq. (5).

The initial conditions required for the solution of these
differential equations are the equilibrium values of M and
C,. This set of equations has to be solved numerically.
We have used an Euler method and a Runge-Kutta
method to solve the differential equations and a 20-point
Gaussian quadrature for the integral. We obtain analyti-
ca solutions in the large-Q limit. We present the results
for magnetic hysteresisin Sec. IV A.

B. Thermal hysteresis

To study thermal hysteresis we work with a very small,
constant magnetic field H in the a=1 direction. Thus
the a=1 component of {®,(q,z)) is nonzero at t =0.
The a1 components are zero at t =0 [Egs. (6)] and con-
sequently remain zero at al times. At t =0, we begin
with the system in equilibrium in the paramagnetic phase
with a magnetic field H and r(H)>r;(H),where r,, the
first-order transition temperature, depends on H, », and v
(Fig. 1). We now subject the spin system to a periodically
varying temperature that takes it back and forth across
the first-order wing of Fig. 1 (keeping u, v, and H fixed).

The equations describing the time evolution of the
magnetization are

d

LMO=1[4(OM()+H] , (129)
A(t)=—[r(t)+uM?*+uS +oM*+20SM*+sV?] ,
(12b)
suwﬁ [la*Cigndq , (120)
%Cl{q,nm—[qz—A(:}}C;(q,t)+l, (12d)

r(t)=rp+jrocos( Q1) , (12¢)

and r(0)=rg+ 57, such that the system is in the
paramagnetic phase at f =0. The initial conditions for M
and CL are given by Egs. (6). For general values of the
parameters, Egs. (12a)-(12¢) have to be solved numerical-
ly [the numerical codes are the same as the ones used to
solve Egs. (11)]. Once again, analytical solutions can be
obtained in the large-Q limit. Our results for thermal
hysteresis are given in Sec. IV B.

IV. NUMERICAL RESULTS
A. Magnetic hysteresis

1. Evolution of shapes and hysteresis loops
as afunction of H,and ft

The dynamical equations Egs. (11) can be solved to ob-
tain the shape of the hysteresis loop as a function of the
amplitude and frequency of the magnetic field at all
points in the phase diagram (Fig. 1). We choose the tem-
perature r and coupling u (in our computation we keep v
fixed and equal to 105.2758) such that the spin system is
initially (time t=0) at equilibrium in the ferromagnetic
phase (with H,= €8, ; and e—0"). Asthefieldiscycled,
we go past the first-order phase boundary (surface) at
H=0. We fix H,, the amplitude of the magnetic field,
and monitor the shape of the hysteresis loop as a function
of Q, the frequency of the magnetic field. For a generic
point (#u) in the phase diagram [corresponding to the
ferromagnetic phase, and away from the first-order
boundary (dotted line in Fig. 1) in the r-u plane], the
shapes follow the same sequence of changes as observed
in the O(N=), (®?)? theory (Ref. 2): from a low-
frequency, spindle-shaped hysteresis loop to a high-
frequency elliptical loop in the upper half of the M-H
plane. Since these results are the same as those we ob-
tained for the (®2)? theory,"? we refer the reader to Ref.
2 for a detailed account of them. However, we reiterate
some of the conclusions of Ref. 2: mean-field hysteresis
[obtained by dropping C, from Eq. (11)] can occur only if
H > H, (the mean-field spinodal field, which is many or-
ders of magnitude greater than experimentally accessible
fields); to obtain symmetric hysteresis loops (i.e., the loop
must be symmetric when H-—-—H and M ——M) for
low-field amplitudes, one needs to include fluctuations of
the order parameter (via C, in the N= oo limit we con-
sider).

2. Shape as a function of parameters r and u:
pinched hysteresis loops

We now investigate the changes in the shape of the
hysteresis loop when r and u are varied across the phase
diagram (Fig. 1; u is held fixed and less than V, for con-
venience). We do not consider values of v larger than v,,
since the only qualitative change in the phase boundary
occurs in the neighborhood of the tricritical point while
leaving the triple line largely unaltered. A typical hys-
tereds loop (denoted as type-1 hysteresis loop in the



classification scheme of Ref. 6) is shown in Fig. 2. The
values of the parameters r and » for which such a
spindle-shaped loop is obtained are such that the system
is away from the triple line (in the ferromagnetic phase).
For values of r and u close to the first-order phase bound-
ary, we notice these hysteresis loops develop a dight con-
struction near M =0. This can be understood by the fol-
lowing the mechanical analogy [discussed in Ref. 6 for a
(®?)? model]. Consider a particle moving in a potential
of the form

Vix)=ax*+bx*+ex®,

wherea,c > 0 and b <0. This potential has three minima
ax=xq,0, andx, where XQ = —x,. Att =0, let the
particle be at x =x,. This corresponds to a positive
magnetization M =M., in our model. We now apply a
homogeneous, periodic field which couples linearly to x:

Vix,t)=ax% bx*+cx®—xHsin(Qt) .

As time evolves, the field goes from positive H, to nega-
tive H, and the particle decays'® from x; to the x,
minimum. For high H,, low ft and large r [close to the
coexistence curve in the (®2®)?* theory], the particle goes
from xJ to the x =0 minimum before decaying into the
x4 minimum. The time spent in the x =0 minimum de-
pends on r. The large time spent near x =0 (when r is
large) is reflected in the constriction of the M-H curve.
These loops are termed pinched hysteresis loops and are
observed in several ferroelectrics such as BaTiO;.

As we approach the tricritical point, the loops become
narrower and their areas decrease. This is because the
equilibrium magnetization decreases (this reduces the
remnant magnetization) and fluctuations become more
pronounced (this reduces the coercive field) as we ap-
proach the tricritical point.

Let us now choose the parameters r and u such that
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FIG. 2. A typical magnetic hysteresis loop. At t =0, the sys-
tem is in the ferromagnetic phase. The parameters are r =0.3,
u=—10.9078, and u=105.2758. The amplitude##,=0.5 and
frequency Q =5x 107°.

the spin system is initially [t =0 and therefore H (¢)=0]
in the high-temperature paramagnetic phase. The first-
order boundary (encountered while changing H, but
keeping r and u fixed) is situated at a nonzero value of the
field, Hp(r,u) (this corresponds to the first-order wings
coming out of the plane of Fig. 1; see Sec. I1B). There-
fore if the amplitude H, is made larger than H(r,u), the
spin system goes from a paramagnetic phase to a ferro
"up" phase, back to the paramagnetic phase, and then to
the ferro "down" phase. The constriction in the hys
teresis loops generated by such a cycle is very pro-
nounced. Figure 3 shows how loops of type 1 (in the
classification scheme discussed in Ref. 6) change their
shapes as a function of increasing r (u is held fixed). We
see that for low r and high H,, the pronounced constric-
tion leads to the appearance of double hysteresis loops.
This behavior is exhibited by various ferroelectric materi-
as and should be compared with the experimental loops
of Merz® for BaTiO, and Kawada®? for SbSI (see Figs. 5
and 6). In particular note that our theory successfully de-
scribes the trend of the variation of the shapes as a func-
tion of temperature.

3. Scaling of the area of the hysteresis loop

Given a hysteresis loop, we can easily determine its
area. The area of the loop is a measure of the work done
in cycling the magnetic field through one cycle. Let us
fix the parameters r, u, and v and the frequency ft. The
area of the loops should increase as a function of H,.
Since our model does not have fixed-length spins, the
magnetization does not saturate completely, though the
area is bounded. We shall restrict ourselves to small H,,
i.e., Hy<<H,,,where H, is the mean-field spinodal field.
We find that the area of the asymptotic hysteresis loops
scaes with H, as

AxHY ,

where a=0.60£0.05. Figure 4 exhibits this scaling for a
wide range of amplitudes and frequencies of the field.
This exponent is, as far as we can tell, independent of the
frequency ft (for low frequency) and the parametersr, u,
and v (as long as we are in the same region of the phase
diagram). We thus conclude that for low vaues of H,
and ft, the area A =¢&(ru,v,Q)HE This exponent
should be compared with the scaling exponents obtai ned
in the (®2)> model. There we find (Ref. 6) that the area
of the hysteresis loop scales as a function of both the am-
plitude and the frequency of thefield as

A ~HEQP,

where a and g are consistent with 2 and 1, respectively.
In our study of the (®?)* theory, we have not investigated
the scaling behavior with respect to the frequency. We
thus see that without our error bars, the magnetic hys-
teresis behavior of the (®2)* model seems to be in the
same "universality class' as the hysteresis (magnetic) be-
havior of the (@?)?> model.



4. Analytical resultsin the high-frequency limit

Equations (11) can be solved analytically in the high-
frequency |imit by taking a Fourier transform with
This converts the set of nonlinear

respect to t.

tions. These integral equations can be solved iteratively
for the Fourier-transformed magnetization M(w) and
transverse correlation function ¢ (g,0). This is
equivalent to a large-Q) expansion. 1 he first iterates of
M(w) and C,(q,0) gre given py

differential equations into a set of nonlinear integral equa-
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FIG. 3. Evolution of pinched and double hysteresis loops with increasing r. H, and ft are held fixed (H,=2.5 and ft =2 X 10 .
The parameters i ( = —25.59) and v (=105.2758) are adso kept constant. The pinched constriction becomes more pronounced as one
nears the coexistence curve (from the ferromagnetic side) and crosses into the paramagnetic phase: (a) r =1, (b) r = 1.5, (c) r=2, (d)
r=2.5,and (e) r =3.



ol9

0.10

0.05

0.03 0.07 ol o.s
Hy06
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M (0)=(Hy/4Q)[8lo+Q)—8lo—Q)] (133)

and

C lg,0)=0 . (13b)

We see that, in the large-Q limit, M (¢) has the same
frequency as H (1), but is phase shifted. This gives an d-
liptical hysteresis loop in the upper haf [since
M (z =0> Q] of the M-Hplane. The area of the hysteresis
loopsis given by

_ [0 dH , .. 14
4 f0 M ()< dt=—mH /30 . (14)

We thus see that for large Q the shapes of the hys-
teresis loops are elliptical and do not possess a constric-
tion at M =0. Moreover, it is obvious from considering
higher iterates of the solution of the integral equation
that only odd harmonics contribute to the magnetization
profile at lower frequencies. We dso see that for high fre-
quencies the area of the loop scales as H3Q !, which is
the same high-frequency scaling seen in the (®2)> model.
This further leads credence to our assertion that the two
models belongs to the same universality class regarding
magnetic hysteresis.

5. Experimental status

The three-component (®*)* model provides a useful
description for phase transitions in displacive ferroelec-
trics. The order parameter describing the ferroelectric
phase transition is the electric polarization vector P. The
equilibrium behavior of these ferroelectrics (strictly
speaking, if the unpolarized crystal has a center of inver-
sion symmetry) is described by the well-known De-
vonshire theory:*°

F=p(P-P)+B(P-P}2+C(P-P)>—E-P, (15)

where E is the electric fieldand r = A(T—T,). The pa-
rameters A, B, and C are taken to be positive definite.
The system undergoes a second-order ferroelectric phase
transition. However, in displacive ferroelectrics such as
BaTiO,, the polarization vector is strongly coupled to the
lattice, so the spontaneous polarization causes a strain
which transforms the crystal from a cubic to a tetragonal
phase. The elastic modes decay faster than the order pa-
rameter and thus can be integrated out, leading to an
effective Hamiltonian of the form Eg. (15), with B posi-
tive or negative. A negative value of B leads to a
temperature-induced first-order ferroelectric transition.
An interesting feature of such ferroelectricsis that, in ad-
dition to standard hysteresis loops, they exhibit pinched
hysteresis loops as the electric field is cycled periodically.
Thisisin accordance with our results (Sec. IV A 2).

The hysteresis loops of good single crystals of fer-
roelectric BaTiO, exhibit rather sharp corners and are
distinctly rectangular. The value of the coercive field,
measured at room temperature, varies from a minimum
of 500 V/cm to a maximum of 2000 V/cm.”'® These ex-
perimental values are very much smaller than the value
expected on the basis of a smple Landau theory (indicat-
ing the relevance of fluctuations of the order parameter).
Merz!! found experimentally that the rate at which polar-
ization reversals occur is proportional (at low fields) to
the applied electric field. Thus the shape of the hysteresis
loop depends on the rate at which thefieldis cycled. The
coercivefieldis found to increase as afunction of the fre-
quency of the cycled field. These qualitative effects are
reproduced by our large-N analysis (see the discussion in
Sec. IVA 1).

Figure 5 shows the observed hysteresis curves for a
crystal of BaTiO; where the Curie temperature is 107 °C.
When T >T, and E =0, the crystal is in a nonpolar
state. The P-E curves are thus linear [Fig. S(a)] for small
fields. When E crosses a critical field strength, a distinct
change in polarization occurs and one observes a double
hysteresis loop [cf. our [Fig. 3].

Double hysteresis loops and pinched hysteresis loops
have been observed in the displacive ferroelectric SbSI.!
Optical studies and polarization measurements indicate
that the ferroelectric transition on ShSl at approximately
20°C is of first order. The €electric displacement versus
electric-field hysteresis loops at various temperatures are
shown in Fig. 6. It is seen that above the transition tem-
perature, distinct pinched and double hysteresis loops are
observed. Note the qualitative similarity between our re-
sults (as discussed in Sec. 1V A 2) and those obtained from
the experiments quoted above.

Our next prediction concerns the scaling of the area of
the hysteresis loop with the amplitude of the magnetic
(electric) field for low values of the amplitude and fre-
quency. There has been no systematic study of the
dependence of the area of the loop with the parameters of
the applied field for ferroelectrics, in contrast to the im-
mense amount of work on ferromagnets (see the Intro-
duction). Whileit istrue that real ferroelectrics are more
complicated than what our simple model would suggest,
we fed that our qualitative predictions should still be
applicable. Most ferroelectrics possess strong dipolar
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FIG. 5. Hysteresis loops of BaTiO; at various temperatures and field strengths (after Merz, Refs. 9 and 11).

forces and lattice®! anisotropy effects and are therefore
highly anisotropic. We feel that even if these additional
complications were included, a scaling behavior of the
area would still exist, though the numerical value of the
scaling exponents would be different (different universali-
ty class). It would be very interesting to check for such a
scaling behavior for low amplitudes and frequencies in
real ferroelectrics.

B. Thermal hysteresis

1. Evolution of shapes
as afunction of amplitude and frequency

We have carried out a preliminary analysis of thermal
hysteresis in the (®?)® theory. Equations (12) are solved
numerically to obtain asymptotic shapes (hysteresis
loops) for various values of parameters. It is convenient
to turn on a small magnetic field (H = 10~ ¢in dimension-
less units) in the a= 1 direction of spin space which or-
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FIG. 6. Hysteresis loops of the ferroelectric SbSI at various
temperatures. The ferroelectric transition temperature is at
20°C. Note that as the temperature is increased, the pinched
loop evolves into adouble loop (after Kawada, Ref. 12).

ders the spins in the a= 1 direction in the ferromagnetic
phase (in corresponding experiments on CDW systems a
small electric field is turned on). We start from the
paramagnetic phase and cycle the temperature across the
first-order boundary (wings) into the ferromagnetic
phase. We compute the magnetization as a function of
the temperature r and study its hysteretic response. We
note that, keeping the frequency fixed, there is a progres-
sion of shapes as a function of the amplitude »,. For very
small amplitudes (the magnitude of », for which this is
true depends on © and r, », and V), the loop is extremely
narrow and does not enclose an appreciable area. Within
our numerical accuracy, we would claim that the area is
zero. As the amplitude increases the loop opens out (see
Fig. 7) to give an asymmetric hysteresis loop. This loop
is asymmetric about the freezing temperature r, (unlike
the symmetric hysteresis loops of Sec. IV A 1). The area
of the loop increases with »,. The value of », a which
the loop opens out is frequency dependent and decreases
as Q decreases. This is qualitatively similar to the
thermal hysteresis loops exhibited by certain CDW sys
tems such as o-TaS, (see Ref. 13).

We see from Figs. 7(b) and 7(c) that the loop changes
curvature and the magnetization remains constant (analo-
gous to magnetization saturation in magnetic hysteresis)
when M =0. This is because the magnetization is zero
throughout the paramagnetic phase, while it is nonzero
and temperature dependent in the ferromagnetic phase.
The hysteresis loops are asymmetric because the free-
energy is not symmetric under r,—r—r,+r. The
thermal hysteresis loops are qualitatively different from
the magnetic hysteresis loops. In the single-particle pic-
ture, thermal hysteresis corresponds to the motion of the
particle from the central well to one of the outermost
wells. This gives rise to the observed asymmetry in the
hysteresis |oops.

2. Shape systematics as afunction of the parameter u

We can now study the changes in the shape of hys-
teresis loops as the parameters r and u vary along the



first-order phase boundary. Wefix v to be below v, —this
corresponds to the phase diagram shown in Fig. 1. We
see that the area of the loop decreases as one moves to-
wards the tricritical point [i.e, as (r;,up)—(rp,uz)l.
The reason for this is clear—as we go towards the tricrit-
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FIG. 7. Thermal hysteresis loops. The loops are asymmetric
about the ordering temperature »,. Note that the loop saturates
only on the M =0 side of the curve. ft isfixed at 5X 10 3. (a)
rp=1.082, « =—23.3r,=0.3; (b) r,=1.082,u=—23.3,r,=1;
and (c) #,=0.3824, u = - 12.766, r,=0.1.

ical point, fluctuations of the order parameter get
enhanced. This decreases the coercivefield and hence the
area of the loop. Furthermore, as we move towards the
tricritical point, thejump in the magnetization across the
first-order boundary get smaller—this results in a de-
crease in the remnant magnetization which contributes to
a decrease in the area of the loop.

3. Scaline of the area of the hysteresis loop

From the solution of Egs. (12), we can compute the
area of the stable hysteresis loop. This area is a measure
of the work done in cycling the temperature through one
cycle. Given our earlier work (see Ref. 6 for a discus-
sion), we expect that the area of the hysteresis loop
should scale as afunction of the amplitude and frequency
of the applied field. We see that, as in the (®?)> model
and the magnetic hystersis in the (®2)* model, the area of
the hysteresis loop exhibits a scaling behavior (Fig. 8) asa
function of the amplitude of the temperature. We have
not done an extensive study to check for the scaling with
respect to the frequency of the periodic temperature.
Our data are consistent with the scaling law

A~r§ , (16)
where a= 1.0%0.03 seems to be independent of the other
parameters, namely fi, u, and v. This scaling behavior is
valid for low values of ry and £1. These exponents should
be compared with the scaling exponents one gets for the
(#%)2 model and the magnetic hysteresis in the (@?)?
model whereff =+. We thus conclude that thermal hys-
teresis of the (®?)’ model is in a different universality
class than the magnetic hysteresis in the ($?)? model and
(9?)° models.

4. Analytical resultsin the high-frequency limit

We can easily write the integral equations correspond-
ing to the differential equations, Egs. (12). From thesein-
tegral equations, one can find the harmonic content of the
magnetization, i.e, the different Fourier components of
the magnetization. The magnetization and the area can
be determined in the large-Q limit, by an iterative solu-
tion of the integral equations. From Egs. (12), the mag-
netization in the large-{} limit is given by

¥
o .
— ———sinf}¢

30 , (17)

M (t)=M,exp

where M|, is the initial magnetization, while the area of
the hysteresisloop is given by

A= rhmMmﬂdf
Yo dt

Id QM 27/ & -
= 0 __Qf "—Tq‘%sinui

5 sin{}7 dt

For large fi, this can be written as
Myry [ = Fy
- in =0 { 40

)
1 27 5
-— F Tsin® V¢ dr

rIJ Jn

A= (18)
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FIG. 8. Scaling of the area of the hysteresis loop as a function of the thermal amplitude »,. The dope of the lines gives the ex-
ponent a, which is found to be equal to 1, independent of Q, r, «, and v.

In the Q— < limit, the area A scales as r§Q ', as in the
magnetic hysteresis of the (®2)? and (®?)* models. This
reflects the fact that the high-frequency hysteresis is
governed by the decay of the order parameter in a single
(quadratic) well, which is the same in the (®2)? (magnetic
hysteresis) and (®?2)* (magnetic and thermal hysteresis)
theories.

5. Experimental status

Several ferroelectrics display a temperature-induced
first-order phase transition (from the paraelectric to the
ferroelectric phase). These systems thus display thermal
hysteresis when the temperature is altered periodically
across the ferroelectric transition temperature. As we
mentioned before, the N =3 version of our model, Eq.
(15), adequately describes the ferroelectric transition in
several displacive ferroelectrics. Our study should there-
fore be of relevance to thermal hysteresis in ferroelectric
systems. In particular, the scaling behavior of the area of
the thermal hysteresis loop, Eg. (16), could be easily stud-
ied.

In recent years®*—2* there has been a lot of interest in
the nonlinear response of conductivity in charge-density-
wave systems. A large number of experiments, which in-

clude thermal and electrical history dependence of the
Ohmic conductivity ¢, and thermal and electrical hys-
teresis of the dielectric function e(w), have demonstrated
the existence of metastable states of the CDW. For ex-
ample, experiments'? on the CDW system, orthorhombic
TaS,, have observed a hysteretic response in the conduc-
tivity (in the presence of a small external field) when the
temperature was cycled periodically through the Peierls
transition temperature. Figure 9 shows the results of the
thermal hysteresis experiment. It was observed that the
area of the hysteresis loop increased with the amplitude
of the periodically varying temperature. Furthermore,
the hysteresis loops were asymmetric about the Peierls
temperature 7, and did not saturate. The area of the
hysteresis loop decreased as the amplitude of the temper-
ature was decreased and was almost zero for very small
amplitudes. Extensive experiments have been carried out
in other pinned CDW systems such as NbSe; and
K, sMoO;. It should be mentioned, however, that hys-
teresis loops in these systems seem to be independent of
the rate of temperature variation. This is a reflection of
the details of the dissipation mechanism and the nature of
pinning.

We see a qualitative similarity between our results for
thermal hysteresis in the (®?)® theory and those obtained
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from observing temperature driven hysteresis in CDW
systems. However, we have not demonstrated that dy-
namics of our model Eq. (2) describes nonequilibrium
phenomonon in CDW systems in any way (as we have
done for ferroelectric systems). We can provide heuristic
arguments® to relate our model to a model describing
CDW systems when the electric field E, Q, and tempera-
ture T are small. A phenomenological model which ex-
plains most experimental data was proposed by Fukuya-
ma?® and Lee and Rice (called the FLR model).?’ The
model describes an incommensurate, sinusoidal charge-
density wave interacting with randomly spaced impuri-
ties. If the fluctuations of the randomness are neglected,
we recover the rigid model?® of CDW sliding. This mod-
el is equivalent to a commensurate CDW in random field.
The rigid approximation is useful when the electric field
is much smaller than the threshold field (e;=~100
mV/cm in rea systems). In the vicinity of the threshold
field, fluctuations of the random potential become impor-
tant. For weak fields, however (much smaller than e;),
the effects of disorder are minimal, and the rigid model is
adequate to describe most of the properties. We can
demonstrate®> that at zero temperature, our model is
equivalent to the dynamics of the FLR model in the rigid
approximation. Thus our model describes hysteretic be-
havior in CDW's in the weak pinning, low-field (much
smaller than the thresholdfield) limit.

The existence of many metastable states, some of them
differing in large regions, can naturally give rise to many
hysteretic and phase memory effects. It would be useful
if one could study the hysteretic properties of the full
FLR model (which includes fluctuations of the random
potential) both at zero and nonzero temperatures (includ-
ing thermal fluctuations) so as to make a detailed com-
parison with the many experiments showing various
forms of hysteretic behavior.

Notwithstanding all these cautionary remarks, we
would like to claim that our model does have certain
qualitative features which are of interest in real CDW
systems. We fedl that the prediction of a scaling behavior

for the area of the hysteresis loop as function of the am-
plitude (for low amplitudes) is an important prediction of
the model. This can be easily verified by performing ex-
periments on deformable CDW systems such as TaS;.
The exact value of the exponent (namely a=1) may not
be seen in experiments, since as we have mentioned, we
must be extremely cautious in applying our quantitative
results to real CDW systems.

V. COMMENTS

In this paper we have attempted to describe the none-
quilibrium statistical mechanics of spin systems driven by
an external periodic field across a first-order phase
boundary. In particular we have analyzed the hysteretic
response of the N-component (®>®)* theory. This theory
exhibits both magnetic-field-driven and thermally driven
first-order phase transitions. Accordingly we study both
magnetic and thermal hysteresis. The dynamics of the
order parameter is specified by a purely relaxational
Langevin equation. Our results are in qualitative agree-
ment with experimental data on magnetic hysteresis in
ferroelectrics® ™2 and on thermal hysteresis in CDW sys-
tems.'3 Our most important prediction is the existence of
a scaling behavior of the area of the hysteresis loop at low
frequencies and low amplitudes, and high frequencies.
We find that the area of the magnetic hysteresis loop
scales as Hg, where a=0.6 for low frequencies and am-
plitudes. The exponent a is independent of the parame-
tersr, u, v, and fl. This scaling behavior is similar to the
scaling behavior exhibited by the (#2)* theory. On the
other hand, the area of the thermal hysteresis loop scales
as r§° for low values of the amplitude r, and frequency.
Thus thermal hysteresis belongs to adifferent universality
class than magnetic hysteresis. The high-frequency be-
havior in the two cases is the same—the area scales as
(amplitude)’Q . The precise values of the exponents are
model dependent—as yet we have not attempted a de-
tailed classification of the various dynamical models. The
existence of a scaling behavior of the area is, we believe,
shared by these various models and will persist when
more realistic models are constructed.

The time scales and the frequencies quoted in the text
are measured in units of a microscopic relaxation time
T'"!. The dynamic model is not completely defined until
one specifies the nature of the microscopic dissipation. In
our study we have taken the kinetic coefficient to be a
constant independent of the wave vector (since the dy-
namics is nonconserved) and frequency, and the parame-
ters of the driving field. In insulating ferromagnetic (fer-
roelectric) systems, the microscopic dissipation is pri-
marily due to spin (dipole) -lattice relaxations. This re-
laxation time is of the order of 10~% s in ferromagnets
and is smaller in ferroelectrics and can be measured by
the width of the ferromagnetic (ferroelectric) resonance
line. The reason for the smallness of the relaxation time
in ferroelectrics is that the molecules constituting the fer-
roelectric are strongly coupled to the lattice. I should
therefore depend sensitively on driving field. This depen-
dence has not been incorporated in our analysis and may
not be relevant at low frequencies and amplitudes.



Therefore the theory should be applied with caution
when comparing its quantitative predictions with the be-
havior of displacive ferroelectrics. Ferroelectric systems
are highly anisotropic in general—having a strong lattice
anisotropy. Moreover, long-range dipolar interactions,
responsible for the formation of ferroelectric domains,
are the dominant interaction between the molecules of
the ferroelectric sample. These additional terms break
the rotational invariance of the Hamiltonian and are
relevant for the scaling behavior. These interactions,
however, should not alter the qualitative predictions of
the theory.

In charge-density-wave systems the microscopic dissi-
pative mechanism is generally electron-phonon interac-
tions. This might in genera be temperature
dependent—this dependence has been neglected in our
analysis of thermal hysteresis. Furthermore, I" for CDW
systems might be q and o dependent?*2*—this is, in fact,
true for spin glass also owing to the distribution of bar-
rier heights. Let the state of the system be described by a
metastable configuration ¢, A distribution of barrier
heights implies a distribution of local threshold fields €,
(the global threshold field € is a maximum of these local
fields). When the external field exceeds a certain €,, the
phases will locally dip until it encounters a barrier whose
height is larger than e, For fields €, and €, these dip-
pages will occur over alarger and larger length and time
scales. Thus, for fields between ¢; and €, the friction T
will be g and @ dependent and in fact singular at low fre-
quencies. The value of €, depends on the particular

|

Zy= [TId®.exp |— [d*x[1V4, V,+NP(N " '®,®,)~H,®,]

where

u

P(N'“I’,,d)a)=—£-(N"¢a‘bﬂ}+ .

(N7 'o ®,)?
+—2—{N“¢a¢u)3 .

In the limit ¥ — 0, the value of the integral is given by
its saddle-point value. Since ®,~ O (N'/?),the measure
increases as an elementary volume in an N-dimensional
space. Transformingto O (1) variablesR and A, where

NR=®, D, (A2)

and A is the Lagrange multiplier enforcing this con-
straint, we obtain for the partition function (after in-
tegrating out of the @, variables)

Zy= [dR dhexp(—NH4[R,A]) ,
where H 4, the effective Hamiltonian, is given by
Hg[R,A)= [d’x[P(R¥ iAR + 1TrIn(—4V2—il)]

=4 [dx% H ()G (x,9) H (p) . (A3)

metastable configuration one started out with, since the
local environment around these configurations will be
different. Real CDW’s might thus be expected to exhibit
Barkhausen noise?® in their hysteresis behavior—though
finite temperature effects might smear out this feature.
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APPENDI X: PHASE DIAGRAM
OF THE O(N = «), (®2)> MODEL
IN THREE DIMENSIONS

In this appendix, we shall outline the calculation of the
phase diagram of the three-dimensional, O(N= =) sym-
metric, (d?)* model and present numerical details along a
cut across the parameter space. Details of the calculation
can be found in Refs. 16 and 17. Since our theory is
defined on a lattice, al space integrals have a lattice
cutoff equal to 1. The partition function of this model
can be written as

, (AD

G(x,y) is the bare propagator (—1V —ii) '8(x —y).
We can now perform a saddle-point analysis of the parti-
tion function. The saddle-point equations

dH dH; |
Sl 1 =g, —=% ==0 (A4)
dR | =z k=i’ dA g =z, hig?

are explicitly given by

p*=Wr +uz +vz?) (A5)
and

2
z=%fd3q[(2n'}3(}qz+u2)1+~:—::ﬁ; (A6)

(the saddle-point solution has been assumed to be
homogeneous—this is true when there are no competing
interactions). The free-energy density W in the saddle-
point approximation is
Wr,u,0, HF Llrz + %u22+%vz3~‘u,zz
Hz
+%fd3q(2-rr)_3in(-2‘~q2+p2)--;—2- .
[
(A7)



This theory exhibits a low-temperature, ordered phase
and a high-temperature, disordered phase. The zeros of
the difference of the free energies in the ferromagnetic
and the paramagnetic phases determine the phase bound-
ary between the two phases.

1. Ferromagnetic phase

The ferromagnetic phase is characterized by a nonzero
spontaneous magnetization. The magnetization is given
by

(A8)

The broken symmetry implies that u?>= 0. Therefore
z=[—ut(u?—4m)"?]/2v (A9)

and

W= [—ut(u?—4r)? /20 —1 /27 (A10)

The free energy in the ferromagnetic phase (at H =0) is

2 2 |
9 3

+ {;vz“ =i
47°

W=%rz-!—}azz (AIl)

2. Paramagnetic phase

This phase has zero spontaneous magnetization.
Therefore u?is not equal to zero:

z=(1/2r")[1—(2u)"*tan""(2u) " '"?] . (A12)

The free energy in the paramagnetic phase (at H=0) is
w,=( =P — Ly ¥—1n2 #127%)
+ [3ln(2u?+ 1)+ 1247

—6(2u?)¥tan” '(2u*) 2 =21/9 . (A13)

We consider those positive roots z of Eg. (A 12) for which
u#?>0. If more than one root exists, we choose the root
for which W, isthe least.

We are interested in the region of parameter space
where we expect a first-order phase boundary between
the ferromagnetic and paramagnetic phases. In this re-
gion u is negative and v is positive. The schematic phase
diagram in the r-u plane is as shown in Fig. 1 (for
v <v, =167%). When v <, the critical line intersects the
first-order line at the tricritical point, while when v > v,
the critical line terminates at a critical end point. This
observation is valid only in three dimensions. We calcu-
late the numerical values of r and u (for fixed v <v,) at
the first-order phase boundary (Table 1). Our calcula-
tions and numerical results are similar to those calculated
by Lawrie.'®
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