Ay

ON THE SYNTHESIS OF FINITE SEQUENTIAL.
MACHINES* L

By C. V. SRINIVASAN AND R. NARASIMHAN
(Tata Institute of Fundamenta] Research, Bombay)

Received December 10, 1958
(Communicated by Dr. R. K. Asundi, F.A.5¢.)

ABSTRACT

Starting from the studies of Kleene and Mealy on sequential machines,
in this paper is presented a formalism which, in a sense, unifies their treat-
ments. From the specification of the required machine behaviour in terms
of events and associated output states, a uniform procedure is given for
obtaining a transition table and from that a minimal machine, whenever
such a complete reduction is possible. The various steps of the synthesis
procedure are so stated that they can be easily programmed on a computer.

1. INTRODUCTION

IN recent years, sequential machines have been extensively studied under the
guise of merve nets,! switching networks? %4 and automata.’ For the pre-
sent purpose, we take as our point of departure the presentations of Kleene!
and Mealy* and make free use of the concepts introduced by them wherever
convenient. In several respects these two papers complement each other

and, together, go a long way towards the solution of the synthesis problem,
as we shall presently explain.

A sequential machine is described in terms of a finite set of input states,
a finite set of output states and a finite set of internal states. It is assumed
that the present output state (Oy) and the next internal state (Si.,) are uniquely
determined by the present internal state (S;) and the present input state (I¢).
Here, ¢ is the time parameter and it is understood that the machine is syn-

chronous, in that, changes in the states take place at discrete instants of
time 4 (=1, 2, 3,).

* Since we shall be concerned only with finite sequential machines in this paper, we shall
henceforth drop the attribute “finite °.

When the first draft of this was ready, we received a copy of the paper “‘Analysis of
Sequential Machines—I ” by D. D. Aufenkamp and F. E. Hohn. Aufenkamp and Hobn are
also concerned with the development of a formalism in terms of which the analysis of a sequential
machine can be readily mechanised. However, their approach is entirely different from ours. We
are grateful to Professor Hohn for making a copy of the paper available to us.

68

On the Synthesis of Finite Sequential Machines 69

The problem of analysis of a given sequential machine is one of a
complete description of its behaviour. This can be done by either of two
equivalent methods: :

(1) The first method makes use of a Transition table or a state diagram
which specifies exhaustively for each pair of present internal—present input
states, what the associated pair of next internal—present output states is.
This is the approach taken by Mealy.

(2) The second method makes use of the notion of events. Events are
input state sequences of finite length. For definiteness, assume that the
sequential machine starts with a distinguished internal state. Then its com-
plete behaviour is described by giving its output for each possible event.
This is the method followed by Kleene. In his paper, he has answered in
principle the basic question, what classes of events are representable by
sequential machines? The formalism, developed with this in view, allows
him to-suggest a solution to the synthesis problem, viz., how to construct a
sequen’ual machine to represent a given event? However, his solutlon to
this is mostly of academic interest.

Neither of these two methods by itself seems to be adequate enough to
answer satisfactorily the synthesis problem. In the synthesis of sequential
machines one has three major aspects to contend with, viz.,

(@) specification of the required behaviour,

(b) translation of the specification to a state diagram and the reduction
of equivalent internal states, and

(c) translation of the reduced state diagram to hardware.

Mealy, in extending the works of Huffman and Moore, confines his
consideration almost exclusively to aspects (b) and (c), j.e., given a transition
table or, equivalently, a state diagram, he develops procedures to reduce it
to its minimal form and to realise it in terms of circuitry. Kleene, on the
other hand, is concerned primarily with aspect (a) of the problem, i.e., the
development of adequate concepts to describe (and hence, equivalently, to
specify) the machine behaviour in terms of its input states and output states.

Thus, it would seem natural to look for a unified treatment which would
exploit equally methods 1 and 2 described earlier and, hence, treat adequately
all the 3 aspects of the synthesis problem. Clearly, a prerequisite for such
a unification is the availability of a simple procedure which will enable one
to go from a description of machine behaviour by method 2 to a description
of. its behaviour by method 1.

70 C. V. SRINIVASAN AND R. NARASIMHAN

In this paper we present a formalism which enables one to proceed from

a specification of the required machine behaviour in terms of events and

associated outputs to a transition table. From this initial transition table
a reduction table is formed which, together with a reduction algorithm, allows
one to arrive at the minimal equivalent machine whenever such a complete

reduction is uniquely possible. We do not consider in this paper aspect (c) |
of the synthesis problem which calls for the realization of the reduced machine .

in terms of hardware.

The formalism is developed such that the various steps in the synthesis .

procedure can be readily mechanised or programmed on a computer. This
is an essential aspect of the problem in practice, since, without some such
mechanical assistance, the synthesis of large, complex sequential machines,
will be almost impossible.

2. CONVENTIONS

Following the customary practice, we shall assume that the input, output
and internal state organs of the machine are binary state devices, and refer
to them as flip-flops. Thus, let the sequential machine have » input flip-
flops and m output flip-flops. Then there are 2™ possible input states and
2™ possible output states. Call the former set I and index its members
(I, Iy, - ..., Igny); call the latter set @ and index its members (¢y, ¢1, b2,

.s Patn_y).

A k-sequence is a sequence of input states of length k. For a given k,
every k sequence can be written as a k-tuple whose components read from
left to right constitute the input states in that k-sequence. The 1-sequences
are the individual input states.

For each fixed , the k-tuples are ordered accord_mg to the lexicographic
ordering of their components. Thus, for each &, the first k-tuple is
(T, Ly -- .., Ip) and the last (Iony, Ly, ..., Iny). There are 2" 1-tuples,
22 2-tuples and in gemeral, 25" k-tuples.

The integer N is a given parameter for the problem. N is the maximum
length of an input sequence identified by the sequential machine as an event.
Hence N is a measure of the finiteness of the memory of the machine.

The set of input sequences of lengths &, for k =1, N, has

NN
n

I (N) = 2m 4 2%+2Nn=(2"52 _—- 1))

members. ”'Call this set & and index its members with natural numbers
(starting from 1). In each set of k-tuples, the indexing follows the ordering

On_the Synthesis of Finite Sequential Machines 71

detined earlier. The k-tuples themselves are ordered according to their
lengths, starting with the 1-tuples and ending with the N-tuples.

‘3. THE SPECIFICATION PROBLEM

(@) Aspect—It is assumed that the sequential machine always starts
from a distinguished initial internal state denoted by S,. The required
behaviour of the machine is now specified by the assignment of
outputs from the set @ to the elements i of &. Thus, if bq is assigned to 7, it
means that starting from the initial internal state Sy, the input sequence i
terminates with the machine in the output state bq.

In addition to the above assignments, certain end conditions will have
to be prescribed. This is necessary because it was assumed that the
sequential machine could identify k-sequences only for £ < N. Hence, for
completeness, its behaviour for k-sequences with k> N should be specified.
(As we shall see, in practice, it is sufficient to specify for k = N -+ 1 in addi-
tion to k<< N.) This is done, most naturally, by giving explicit rules which
identify k-sequences, for & > N, with the elements i of 7 in a unique manner.

Several cases will have to be distinguished according as the assignment
of outputs is complete or partial.

Case 1.—An output is assigned to every element i of &. This is the case
of the “exhaustive’ specification and admits of a complete reduction to a
minimal machine uniquely.

Case 2.—Outputs are assigned to some elements of & and it is specified
that the assignment of outputs to the remaining elements of & are not of
consequence (and, hence, can be done arbitrarily). The unassigned sequences
are the so-called “ Don’t-care ” sequences, and, clearly, any particular solu-
tion will depend upon the way outputs are assigned to the °Don’t-care’
sequences. Each such completion of assignment will reduce case 2 to an
instance of case 1.

Case 3.—Outputs are assigned to some elements of & and, in addition,
auxiliary constraints are prescribed as holding between the elements of g
These constraints may be of the following type:

(a) The elements i and k of & are indistinguishable or equivalent. By
this is meant the following: The same output is assigned to i and % and,
in addition, the subsequent behaviour of the machine is identical in the
2 cases. Under these circumstances, it would be natural to say that i/ and k
refer to the same event,

712 C. V. SRINIVASAN AND R. NARASIMHAN

‘ (b) Certain input sequences are forbidden, i.e., either they do not occur
as inputs to the machine or, if they do, the machine stops, say.

(¢) Other specialised constraints, if any.

Clearly cases 1, 2 and 3 are not independent. In particular, the
exhaustive specification of case 1 contains implicitly all the information
required to partition the elements of & into equivalence classes as described
in case 3(a). In fact, what we shall be concerned with in the rest of the
paper is the determination of a wumiform procedure to accomplish just this.
Also it must be pointed out that where indistinguishability relations [as in
3 ()] are known to exist, the end conditions cannot be presciibed arbitrarily,
but must bc obviously consistent (see § 7 below).

4. THE ASSIGNMENT OF INTERNAL STATES

The specification of the required machine behaviour having been given,
the crux of the remaining problem in synthesis is the assignment of internal
states with their transitions such that the resultant machine is minimal.
Minimality implies that no machine with a smaller number of internal states
will be able to satisfy all the specified requirements of behaviour. This
problem is best handled in 2 distinct steps, as follows:

Step 1.—First, a uniform procedure is given for assigning internal states
to input sequences, i.e., to elements i of J.

Step 2.—Next, a transition table is formed and a uniform procedure is
given for finding the equivalence among the internal states. This results in
a table with a minimum number of internal states satisfying the specification.

To begin with, we shall restrict our attention to case 1, i.e., that of the
“ exhaustive’ specification, and develop the details of steps 1 and 2 for this
case. Later, we shall show how these details can be suitably modified so as
to reduce cases 2 and 3 to case 1.

5. Casg 1: ‘EXHAUSTIVE’ SPECIFICATION

Step 1: Assignment of internal states.—It is assumed here that an output
from the set @ has been specified to each element i of . Now, to each I a
distinct internal state Si,; is assigned, starting with S, for the 1-tuple i == 0.
S, is the distinguished initial internal state. Thus, Table I, the assignment
table, is formed as shown in Fig. 1.

Since the set has

TF(N) = %f(zini";l)

members, Table I will have that many rows.

e T

On the 3'SyntheSi§ of - Finite - Sequential Machines 73

No. Inputsequences OQutput states Internal states
(elements i of) St

1 l=0 ¢ao S].
2 i=1 b, S,
3 122 9613 SS
J(N) i= (N)—l baTin)1 Sgm)

FiG. 1 Table I: The Assignment Table.

Step 2: Construction of the transition table—Using Table I, we wish
now to construct Table II, the transition table. The transition table, as
shown in Fig. 2, is in the form of a matrix with 2" columns and & (N) + 1
rows. The columns are named I, I,, I;n, and correspond to the mput
states with. the same names. Slnularly, the rows are named Sy, S;,, Sg
and correspond to the internal states with the same names. Let the cell
located at the intersection of row S; and column I; be named (S;, I;). Each
cell (S, I;) contains two entries—one on the left, called the S-entry, which is
the name of an internal state, and one on the right, called a ¢- entry, which
is the name of an output state.

The physical sxgmﬁcance of the matrix is as follows: The names of the
rows refer to the present internal states and those of the columns to the pre-
sent input states. The S- and ¢-entries in the cell (S;, I;) give the next internal
state—present output state pair associated with the present internal state S;
and the present input state I;.

Each row of Table I contains the names of one internal state and one
output- state. Each such pair S-¢is entered as an S-¢ entry in one cell of
Table II. To bugln with, in the first row (named S;), the S-¢ pair corres-
pondmg to the 1- mple Jj (in Table T) is entered in the cell (Sy, I;). This is
doné forj =0, 1, , 20— 1. Any other cell (Sg, I;) with & > 1 and
j=0,1, o 2 — 1 15 now. filled in as follows: In Table I consider the
input sequence i (k) which has been assigned the internal state Si. Form
the extended sequence by adding I; to the extreme right of i (k). Let this
input sequence be denoted by - z(k)I Now, fill in the cell (Sk, I;), the S-¢

74 ~C. V. SRINIVASAN AND R. NARASIMHAN

pair in Table I corresponding to the sequence i (k) I;. In case i(k) is itself
an N-tuple, i (k) I; will be a (N + 1)-tuple and, hence, there will be no row
corresponding to it in Table I. However, by applying the proper end condi-
tion to i (k) L, it will be identified with one of the rows of Table I uniquely.
The S-¢ pair of that row is now used to fill in the cell (S, I;).

S
s\\ 1, I, I, Co Iny
t N\
AN
Sin b Sua ¢ Sia
So
Sy
STim)

—

Fic. 2. Table Il: The Transition Table.

- The form of Table II shows that it is a transition table. The proof that
the transition table so obtained does in fact satisfy the specification given
follows directly from the explicit rule of construction of the input sequences
which correspond to the internal states which are row names of Table II.

Step 2 (b): Construction of the reduction table—Referring to Table I1, the
internal states which are the names of rows, are assigned superscripts accord-

ing to the following rules. For definiteness, we shall use the Greek letters

(in their alphabetical order) for this purpose.

S; and S; have the same superscript if, and only if, the ¢-entries in
those two rows, along corresponding columns, are identical.

A uniform procedure for assigning the superscripts may be given.
First partition the set of internal states (which are row names) according to
their ¢-entries in the Oth column and assign superscripts. Next, re-partition
these subsets according to their ¢-entries in the Ist column and assign fresh
superscripts to the subsets newly formed and so on till the last column is

e

R
-

On the Synthesis of Finite Sequential Machines 735

reached. The internal states which belong to the same subset, after the com-
pletion of this operation, will have been assigned the same superscript.

In the modified Table II the row names are internal states with super-
scripts. From this modified Table II, the reduction table, Table III, is con-
structed, as shown in Fig. 3. The reduction table is in the form of a matrix,
with the rows corresponding to the next internal states (written down in order,
starting with S,, together with their superscripts) and the columns corres-
ponding to the input states written in order from left to right. In the cells
are written down those internal states (with their superscripts) which associated
with the input state which is their column name give rise to the next internal
state which is their row name.

AN
\\ I, I, I, Lo Ln.,
Se+1 AN

AN

S, S, S,

S, *
SyY
SPN)

Fi6. 3. Table II1: The Reduction Table.

This can be done with the help of the modified Table II as follows:
write down in cell (S;, 1;) of Table III all the row names of Table II whose
S-entry in the column named I; is S;.

In the reduction process, we wish to merge all internal states which are
equivalent to one another, into a single state. Thus when the reduction
process is complete, we shall be left with a machine with a minimum number
of internal states satisfying the specification.

Clearly, the states (Sq,, Sa,», Sa,) are equivalent if, and only if, they
satisfy the 2 conditions: |

(1) For every fixed input state I;, the pair (Sq, — I;) results in the same
output state for all a@;, i=1, 2,, n. | .

(2) For every fixed input state I;, the pairs (Sq, — I;) result in the next
internal states Sp, $uch that, either all the Sp, are the same, or are equivalent.

76 ~C. V. SRINIVASAN AND R. NARASIMHAN

~ From the way the superscripts have been assigned it is evident that, to
begin with, in Table III, all internal states satisfying condition 1 will have
the same superscripts. However, in general, such states with the same super-
scripts will not satisfy condition 2. The iteration procedure outlined below
will enable us to modify the superscripts systematically, thus, completmg the
reduction process.

In Table III, let the columns be ordered from left to right and in each
column, the cells from top to bottom. - We shall say a row has superscript a
if the rowname is a next internal state with superscript e.

~ The modification in the superscripts is done by the addition to them of
indices i which are natural numbers. Thus, a re-partitioning of the set with
superscript ¢; is doné by introducing the superscript o;y;. Similarly for B,
y, etc. The superscripts are ordered according to the following scheme:

Oy Qgy Qg e on oo nnn ﬁ, ﬁl’ Bz,3 Vs Y1s -

As each new superscript is 1ntroduced it is added at once to thls list of super-
scripts at its proper place."

The following iteration scheme is now. used:. -

(A) Find the first cell in column 0 containing an internal state with super-
script «. Let its row have the superscript . Find the next cell in the same
column with an internal state also with the superscript ¢ but whose row has
a superscript different from w, say ;. Change all the superscripts
« in that cell, and in all the succeedmg cells in the same column whose rows
have superscripts wj, to o;4; (Where o up to a; are already in the list of super-
scripts). Make corresponding changes in the superscripts of these internal
states wherever they occur in Table III (including the names of rows). If
no such next cell is found, of course, no modification is to be done. Repeat,
now, the process with column 1, then with column 2 and so on up to column
2 - 1. |

Let A be called a minor cycle.

,(B) The minor cycle is Tepeated using o, in place of a and, when this
is done, with the next superscript in the list in place of the previous one and
so on till the entire list -of superscripts is exhausted. Let A and B together
be called a major cycle. 4

(C) ‘The.major oycle is iterated till no modification. of superscrlpts takes
place in one complete major cycle.

THe reduction process is now complete and the internal states “having
the same superscripts are eqmvalent and hence can be merged.

On the Synthesis of Finite Sequential Machines 77

The proof that this iteration procedure terminates and does result in
complete reduction of the equivalent states is straightforward and we shall
not go into the details here. In fact, the procedure given above is essentially
a systematization of Mealy’s Rule I [pp. 1056 of (4)].

6. CASE 2: SPECIFICATION WITH ‘ DON'T-CARE’ SEQUENCES

Here, outputs are specified for some elements i of & and the remaining
elements of & are specified as ‘ dont’-care’ input sequences. Table I is now
constructed, as before, assigning a distinct internal state S;,; to each input
sequence 7. The ¢-entries for the ‘ don’t-care’ sequences are written in as D.

Thus, when Table II is constructed from Table I, some of the cells will
contain D as their é-entries. Before forming the modified Table II, each
entry marked D will have to be replaced by a particular ¢i. Superscripts
are now assigned to the rownames and the reduction process completed as
before. Clearly, every such replacement of the D’s by the ¢’s will result in
a reduced machine satisfying the given specification.

The problem of great interest, in practice, is how to assign the ¢x’s to
the D’s so that the reduced machine has a minimum number of internal
states. Clearly, not much can be said about this in detail, since the solution
for any specific case will depend on the way the D’s are distributed among
the cells of Table II. However, in general, the aim should be to assign the
$i’s so as to minimise the number of distinct superscripts in the modified

Table II.
7. CaSE 3: SPECIFICATION WITH ‘INPUT EQUIVALENCES’

In this case, outputs are specified to certain elements ot & and, in addition,
certain input sequences are specified as equivalent or indistinguishable (in
the sense described in § 3), and certain other input sequences are forbidden.
There may or may not be ‘don’t-care’ sequences, besides. |

It is to be pointed out here that if sequences i and k are equivalent, then
for all j, 0 < j< 2" — 1, the extended sequences il; and kI; will have to be

equivalent.

In forming Table I, the outputs are written in wherever they are specified
and they are marked D for the ¢ don’t-care’ sequences, if any. Distinct
internal states are now assigned, in order, starting from S, for the input
sequence i = 0. All the input sequences specified as equivalent are assigned
the same internal state. The forbidden sequences are assigned the internal
state F. Thus, if sequence i has been assigned the internal state S and if

78 C. V. SRINIVASAN AND R. NARASIMHAN

J is the next sequence (in Table T) which is not equivalent to any I for / < I
then j is assigned the internal state Sp.,. '

Let M be the total number of distinct internal states assigned in making
up Table I. Table II is now formed with (M +-.2) rows and 2" columns.
The columns refer to the input states, as usual, while the rows are named to
correspond to the internal states, without any repetition. The first row is
named Sy, the ith row, for 2<<i<<M + 1 is named S;; and the last row
is named F.

The cells in the row S, are filled in as before. The cell (Sg, I;), for
1<k<M is filled in as follows: Let i(k) be the smallest input sequence
in Table I which has been assigned the internal state Sx. Form the input
sequence i (k) I; by adding I; on the extreme right of i (k). Now, fill in the
cell (S, Ij), the S — ¢ pair corresponding to the sequence i (k) I; in Table 1.
In case i (k) I; happens to be a (N + 1)-tuple, it has to be reduced to a 1-tuple,
for I <N, with the help of the given end conditions before applying the
above rule.

All the cells in the last row named F have F as their S-entry and ¢y as
their ¢-entry, where ¢y is the output specified for any forbidden sequence.
(Note that all forbidden sequences are equivalent.)

It is a straightforward process to verify that the transition table so con-
structed is complete and consistent, in the sense that every input sequence
i occurring in Table I can be built out of Table II starting with S, and that
it will terminate in the same internal state S (i) as that specified for i in Table I.

Case 3 is now reduced to case 1 and the rest of the reduction process will
go through as outlined in § 6 if there are ‘ don’t-care ’ sequences, or else as
in §5.

8. CONCLUDING REMARKS

In this paper we have been mainly concerned with the synthesis of
sequential machines given their required behaviour in terms of events and
associated outputs. The emphasis has been on obtaining a uniform proce-
dure, the details of which can be programmed on a computer with ease.
Although the formalism developed here is complete as far as it goes, it should
be pointed out that several problems remain open. Here, we shall refer to
only two which bear directly on the contents of this paper.

The first is concerned with the problem of specification. Although it
follows from Kleene’s results that everything that any finite automaton does
can be completely described in terms of events and outputs, this does not,
in practice, seem to be of much help. Presumably, there are ‘behaviours

On the Synthesis of Finite Sequential Machines 79

which are intuitively meaningful but which one does not know how to express
in terms of events and outputs. It should be useful to have a uniform pro-

cedure for doing this, if not in every case, at least, in a suitably well-defined
large class of cases.

The second problem has to do with the design of complex sequential
machines. In practice, one tries to visualise a large machine as made up of
submachines, each functionally independent to a large extent, and thus
reduce the given problem to one of synthesising a large number of smaller
machines. In such cases, there may be feedback loops from the output of
one submachine to the input of another and problems analogous to those of
¢ stability > might arise. It might be useful to consider modifications or suitable
extensions of the formalism given here to include these cases.

That both these problems are of great practical importance is shown by
the fact that they play a central role in the specification and design of large-scale
digital computers. It is of interest to note that digital computers, although
seemingly well understood from the point of view of their description as
sequential machines, still fall outside the scope of all existing routine synthesis
procedures, for the most part.

9. ILLUSTRATIVE EXAMPLES

In this final section, we give two examples illustrating the concepts and
the methods introduced in the paper.

Example 1.—Synthesis of a sequential machine with one input flip-flop
and two output flip-flops and whose output is a function of utmost the three
previous inputs. The required behaviour is specified exhaustively by means
of the assignment table in Fig. 4. (The 2 input states are denoted as 0 and 1
and the 4 output states by 00, 01, 10 and 11 respectively.)

End condition—If LI, IxoliaIr is any sequence of length &, for
k >3, then, it is equivalent to the sequence Iy _oIp_.Ij.

From Fig. 4, one obtains the modified transition table as shown in Fig. 5.
The reduction table, at the end of complete reduction, is shown in Fig. 6.
Thus, the equivalent states are:

a: ‘(SO);

a1 (Sp);

ay: (Sy Ses Ss, Si0s S125 S14)5
B:(S2);

By: (S3, Sz, S1);

v (S5, Sg» Sia)-

80 C. V. SRINIVASAN AND R. NARASIMHAN

No. 54 o S
1 0 00 S
2 1 01 Sy
3 00 00 ga
4 01 01 4
5 10 01 S
6 11 10 Se
7 000 01 g7
8 001 11
9 010 00 S,
10 011 01 Syo
11 100 10 S1y
12 101 10 Sy
13 110 00 gm
14 111 01 14
» Fre. 4. The Assignment Table.
N
Ne T, 0
Sg \\
N\
Si+1 b Sia b
S, S, 00 S, 01
S, % S 00 S, 01
Szlg Sg 01 S 10
SSBJ Sq 01 SB 1 1
S.% S 00 S1o 01
Sg” Siy 10 Ses 10
Sqﬂl S7 01 8 11
Sg* Se 00 Sio 01
Sﬂ’Y S:u 10 Slg 10
Sy 13 00 S1a 01
S]_]_ﬁ"-' 7 01 8]. l
S1a* So 00 S10 01
S13” Su 10 Sys 10
S1a® Sis 00 S1s 01

Fig. 5. The Modified Transition Table.

In Fig. 7 is given the state diagram of the completely reduced machine. It is
easily seen that this diagram is not further reducible.

Example 2—We give here, in terms of our notation, the specification
for the reversible counter * considered by Huffman [pp. 276 of 2)].

On the Synthesis of Finite Sequential Muachines

N\ o
N L 0 1
s .\
LN\
N\

S,Bs “ 3351? s,,,Bl,‘ S5

S, Sas 8™, Sy

Fi6. 7. The State Diagram of the Minimal Machin-.
4 input states: I, I, I, I,
4 ouput states: ¢y, Py, P25 hs

8L

 Restraifts on - input” sequencesT "
(1) For any I, LI; = LI, = L.

82 C. V. SRINIVASAN AND R. NARASIMHAN

(2) I is forbidden.
Output assignments:
(1) I, has the output &,
(2) If i is any sequence with output ¢,
Then iI; has output ég,,, (Mod. 4).
i1, has output ¢4;., (Mod. 4).
il, has output ¢,

It is easily verified that, with the above, the assignment table can be com-
pletely filled in and the reduction process carried through.

REFERENCES
1. Kleene, S. C. Automata Studies, Pﬁnceton Univ. Press, 1956, pp. 3-41.
2. Huffman, D. A. Jour. Frank. Inst., 1954, 257, 161-90, 175-303.
3. Moore, E. F. Automata Studies, Princeton Univ. Press, 1956, pp. 129-53.
4. Mealy, G. H. .. Bell Syst. Tech. Jour., 1955, 34, 1045-79.
5. Burks, A. W. and Wang, Journal of Association for Computing Machinery, 1957,
Hao. pp. 193-218, 279-97.

701-59 Printed at the Bangalore Press, Bangalore City, by C. Vasudeva Rao, Superintendent
and Published by The Indian Academy of Sciences, Bangalore

