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We generalize the mean-field theory for the spinless Bose-Hubbard model to account for the
different types of superfluid phases that can arise in the spin-1 case. In particular, our mean-field
theory can distinguish polar and ferromagnetic superfluids, Mott insulators which arise at integer
fillings at zero temperature, and normal Bose liquids into which the Mott insulators evolve at finite
temperatures. We find, in contrast to the spinless case, that several of the superfluid-Mott insulator
transitions are first-order at finite temperatures. Our systematic study yields rich phase diagrams
that include, first-order and second-order transitions, and a variety of tricritical points. We discuss
the possibility of realizing such phase diagrams in experimental systems.

PACS numbers: 05.30Jp, 67.40Db, 73.43Nq

I. INTRODUCTION

Experimental investigations of ultracold atoms in op-
tical lattices have opened up a new realm in the study
of quantum phase transitions (QPT)1,2. The super-
fluid (SF) to Mott-insulator (MI) transition has been ob-
served in spin-polarized 87Rb atoms trapped in a three-
dimensional, optical-lattice potential3, by changing the
strength of the onsite potential, as predicted theoretically
by studies of the spinless Bose-Hubbard model4,5. Fur-
thermore, technical advances in the trapping of atoms by
purely optical means6 have enhanced the interest in the
study of quantum magnetism in confined dilute atomic
gases. Alkali atoms with nuclear spin I = 3/2, such as
23Na, 39K, and 87Rb, have hyperfine spin F = 1. In
conventional magnetic traps, these spins are frozen, so
the atoms can be treated as spinless bosons; by contrast,
in purely optical traps, these spins are free, so the Bose
condensates, which form at low temperatures, can have a
spinor nature7,8 and the SF-MI transition can be modi-
fied9,10,11. In the spinless case, the SF-MI transitions are
controlled by the interaction U0 between bosons at the
same site. As U0 increases beyond a critical value, the SF
phase undergoes a continuous transition to an MI phase
in which the number of bosons at every site is an integer.
This transition is reflected in the development of a gap at
the transition. When the spin is nonzero such a gap also
develops at SF-MI transitions, but the properties of the
phases and the natures of these transitions are modified
by the spin degrees of freedom.

Theoretical work on this problem has dealt primar-
ily with the properties of spinor condensates by using
a continuum, effective, low-energy Hamiltonian. Such a
Hamiltonian suffices if one is interested in the natures of

the superfluid phases, which can be polar or ferromag-
netic, and in their excitations, which include vector or
quadrupolar spin waves and topological defects7,8. How-
ever, if we want to study the SF-MI transitions we must
use a lattice model such as the spin-one Bose-Hubbard
model. Some groups9,10,11 have initiated such an investi-
gation by obtaining the zero-temperature phase diagram
of this model in a mean-field approximation. The topol-
ogy of this phase diagram for the spin-1 Bose-Hubbard
model is similar to that of its spinless counterpart; but,
in the spin-1 model, the superfluid phases can be either
polar or ferromagnetic depending on whether the spin-
dependent interaction favors or disfavors the formation
of singlets. In the former case the SF-MI phase transi-
tion is continuous, if the density of bosons per site ρ is
an odd number, but first-order, if ρ is an even number.

We have two main goals in this paper: The first is
to give a global view of the zero-temperature, mean-
field-theory phase diagram of the spin-1 Bose Hubbard
model emphasizing issues of first-order coexistence that
have not been highlighted so far. The second is to
generalize this mean-field theory to finite temperatures
T > 0 and thus obtain the finite-temperature, mean-
field-theory phase diagram for this model.

The spin-1 Bose-Hubbard model is defined by the
Hamiltonian

H = −t
∑

<i,j>,σ

(a†i,σaj,σ + h.c) +
U0

2

∑

i

n̂i(n̂i − 1)

+
U2

2

∑

i

(~F 2
i − 2n̂i) −

∑

i

µin̂i, (1)

where the first is the kinetic energy associated with the
hopping of bosons between nearest-neighbor pairs of sites
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< i, j > with amplitude t, a†i,σ (ai,σ) is the boson creation

(annihilation) operator at site i with spin component σ

(which can assume the values 1, 0,−1), n̂iσ ≡ a†i,σai,σ;

n̂i ≡ ∑

σ ˆni,σ and ~Fi =
∑

σ,σ′ a
†
i,σ
~Fσ,σ′ai,σ′ are, respec-

tively, the total boson number and spin on site i, and
~Fσ,σ′ are the standard spin-one matrices; U0 is the on-
site Hubbard repulsion and U2 the energy for nonzero
spin configurations on a site. The origin of such a
spin-dependent term lies in the difference between the
scattering lengths a0 and a2, for S = 0 and S = 2
channels12, respectively; in terms of these lengths U0 =
4π~

2(a0 + 2a2)/3M and U2 = 4π~
2(a2 − a0)/3M , where

M is the mass of the atom7. For 23Na, a2 = 54.7aB and
a0 = 49.4aB, where aB is the Bohr radius, so U2 > 0,
whereas for 87Rb, a2 = (107±4)aB and a0 = (110±4)aB,
so U2 can be negative. The parabolic trapping potential
with strength VT is represented by the site-dependent
chemical potential µi = µ − VT |Ri|2, where Ri is the
distance of site i from the center of the trap and µ is a
uniform chemical potential that controls the mean den-
sity of the bosons. In this study we neglect the trap
potential (i.e., we set VT = 0) and focus on the effects of
the spin degrees of freedom.

The zero-temperature phase diagram of model (1) has
been obtained in the mean-field approximation by some
groups9,10,11. We have extended these studies signifi-
cantly. Before presenting the details of our work, we give
a qualitative overview of our new results.

Consider first the case U2 = 0: We might expect the
spin-1 and spinless Bose-Hubbard models to have same
phase diagram in this case since the ground-state en-
ergy does not depend on the spin. This is superficially
true at T = 0 in so far as the SF-MI phase bound-
aries for both these models overlap. However, as we will
show, the SF phase is highly degenerate in the spin-1
case; and for T > 0 the SF-MI transition becomes first-
order and, eventually, continuous again. Thus the finite-
temperature phase diagram has a rich topology with first-
order boundaries evolving into continuous ones at tricrit-
ical points.

If U2 6= 0 the onsite interaction between the bosons
becomes spin dependent. It turns out that we must dis-
tinguish between the cases U2 < 0 and U2 > 0. The
former yield a phase diagram that is very similar to the
one for U2 = 0; the major qualitative difference arises in
the nature of the SF phase that is now a ferromagnetic
superfluid.

There are many differences between the phase dia-
grams of the spin-1 model with U2 = 0 and U2 > 0.
If U2 > 0 the SF phase is a polar superfluid. Further-
more, even at T = 0, the SF-MI transitions are different
for odd and even densities. For odd densities, the T = 0
SF-MI transition is continuous as for U2 = 0; however,
for even densities, this SF-MI transition turns out to be
first-order because of the formation of singlets that also
stabilize the MI phase considerably.

At finite temperatures the MI phases evolve without

a singularity into a normal Bose liquid (NBL). These
are really not distinct phases but, as we will show, the
compressibility κ can be used effectively to delineate the
crossover between MI and NBL regions.

To present our results in detail we must introduce our
mean-field theory. We do this in Sec. II. Our results are
given in Sec. III. We end with a discussion in Sec. IV.

II. MEAN-FIELD THEORY

Mean-field theory has been very successful in obtaining
the phase diagram for the spinless Bose-Hubbard model.
There are three formulations of this mean-field theory:
one uses a model with infinite-range interactions, another
a Gutzwiller-type wave function, and a third5, which we
follow, a decoupling approximation. The unique fea-
ture of this decoupling scheme is that, unlike conven-
tional mean-field theories, it does not decouple the in-
teraction term to obtain an effective, one-particle prob-
lem but, instead, decouples the hopping term to obtain
an effective, one-site problem. This one-site problem
is then solved self-consistently. We generalize this de-
coupling procedure to the spin-1 case as follows5: In

the identity a†i,σaj,σ = (a†i,σ − 〈a†i,σ〉)(aj,σ − 〈aj,σ〉) +

〈a†i,σ〉aj,σ + a†i,σ〈aj,σ〉 − 〈a†i,σ〉〈aj,σ〉, where 〈O〉 denotes
the equilibrium value of an operator O, we neglect the
first term that is quadratic in deviations from the equi-
librium value. Thus

a†i,σaj,σ ≃ 〈a†i,σ〉aj,σ + a†i,σ〈aj,σ〉
−〈a†i,σ〉〈aj,σ〉; (2)

since we expect superfluid phases, it is natural to intro-
duce the superfluid order parameters

ψσ ≡ 〈a†i,σ〉 ≡ 〈ai,σ〉, (3)

for σ = 1, 0,−1. We consider equilibrium states with uni-
form phases, so we choose these order parameters to be
real. Given the decoupling approximation (2) the Hamil-
tonian (1) can be written as a sum over single-site, mean-
field Hamiltonians:

H =
∑

i

HMF
i , (4)

where

HMF
i =

U0

2
n̂i(n̂i − 1) +

U2

2
(~F 2

i − 2n̂i) − µn̂i

−ψσ(a†i,σ + ai,σ) +
∑

σ

|ψσ|2. (5)

We set the energy scale by choosing zt = 1, where z is the
number of nearest neighbors. At least one of the order
parameters ψσ is nonzero in a superfluid phase. In order
to calculate ψσ in our mean-field theory, we first obtain
the matrix elements of the mean-field Hamiltonian HMF

i
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in the onsite, occupation-number basis {|n−1, n0, n1 >}
truncated at a finite value nmax of the total number of
bosons per site n =

∑

σ nσ. In most of our studies we
use nmax = 4 for which the mean-field Hamiltonian is a
36 × 36 matrix13. We diagonalize this matrix to obtain
its eigenvalues Eα and eigenvectors | ϕα〉:

HMF
i |ϕα〉 = Eα|ϕα〉; (6)

we suppress the site index i on these eigenvalues and
eigenvectors since all the phases we consider are spatially
uniform.

We now obtain the variational the free energy

F(µ,U0, U2, T ;ψσ) = −T lnZ(µ,U0, U2, T ;ψσ), (7)

where Z(µ,U0, U2, T ;ψσ) is the partition function

Z(µ,U0, U2, T ;ψσ) =
∑

α

e−Eα/T , (8)

with the Boltzmann constant kB chosen to be 1. The
variational free energy F must be minimized with re-
spect to the order parameters ψσ, i.e., we must solve the
equations ∂F/∂ψσ = 0 for σ = 1, 0,−1. These equations
can be recast as self-consistency conditions for ψσ; so-
lutions of these self-consistency conditions correspond to
extrema of F . In case there is more than one solution,
we must pick the one that yields the global minimum of
F . [At a first-order phase boundary F has two, equally
deep, global minima.] The values of ψσ and F at the
global minimum yield the equilibrium order parameters
ψeq

σ and free energy Feq. In our mean-field theory, the
superfluid density is

ρs =
∑

σ

| ψeq
σ |2 . (9)

The magnetic properties of the superfluid phases of this
model are obtained from 7

〈~F 〉 =

∑

σ,σ′ ψeq
σ
~Fσ,σ′ψeq

σ′

∑

σ |ψeq
σ |2 ; (10)

the explicit forms of the spin-1 matrices now yield

〈~F 〉 =
√

2
(ψ1ψ0 + ψ−1ψ0)

∑

σ |ψσ|2
x̂+

(ψ2
1 − ψ2

−1)
∑

σ |ψσ|2
ẑ,

〈~F 〉2 = 2
(ψ1ψ0 + ψ−1ψ0)

2

(
∑

σ |ψσ|2)2
+

(ψ2
1 − ψ2

−1)
2

(
∑

σ |ψσ|2)2
, (11)

where x̂ and ẑ are unit vectors in spin space and we
suppress the superscript eq for notational convenience; all
ψσ used here and henceforth are actually ψeq

σ . Superfluid

states with 〈~F 〉 = 0 and 〈~F 〉2 = 1 are referred to as polar
and ferromagnetic, respectively. The polar state8 has an
order-parameter manifold (U(1) × S2)/Z2, where U(1)
denotes the phase angle θ, S2 refers to the directions n̂

on the surface of a unit sphere (on which orientations
are specified by the angles (α, β) of the spin quantization

axis), and Z2 arises because of the symmetry of this state
under the simultaneous transformations θ → θ + π and
n̂ → −n̂. Thus the superfluid order parameters can be
written as





ψ1

ψ0

ψ−1



 =
√
ρse

ıθ





− 1√
2
e−ıα sinβ

cosβ
1√
2
eıα sinβ.



 . (12)

Similarly, since the ferromagnetic superfluid state has
an order-parameter manifold8 with the symmetry group
SO(3),





ψ1

ψ0

ψ−1



 =
√
ρse

ı(θ−τ)





e−ıα cos2 β
2√

2 cos β
2 sin β

2

eıα sin2 β
2 .



 , (13)

where α, β, and τ are Euler angles.
We consider only spatially uniform superfluids in equi-

librium, so it suffices to use real order parameters. Thus,
for the polar superfluid we have the following possibili-
ties: (i) ψ1 = ψ−1 > 0 and ψ0 = 0 with θ = α = β = π/2
or θ = −α = β = π/2; and (ii) ψ1 = ψ−1 = 0 and ψ0 > 0
with β = 0 or π, θ = 0 or π, and 0 ≤ α ≤ 2π. Similarly
for the ferromagnetic superfluid ψ1 = ψ−1, β = π/2,

α = 0, 0 ≤ θ = τ ≤ 2π, and ψ0 =
√

2ψ1.
The equilibrium density ρ and compressibility κ can

be obtained from

ρ = −∂F
eq

∂µ
=

1

Z

∑

α

e−Eα/T 〈φα | n̂ | φα〉, (14)

where Eα and | φα〉 are Eα and | ϕα〉 at the global mini-
mum of F and

κ =
∂ρ

∂µ
. (15)

The three quantities ρs, 〈~F 〉2, and κ together deter-
mine the thermodynamic phase of model (1) for any
point in the parameter space {µ,U0, U2, T } as given in
the Table I. Strictly speaking there is no distinction be-
tween the Mott insulator (MI) and the normal Bose liq-
uid (NBL); the former exists at T = 0 and has κ = 0; it
evolves without any singularity into the NBL at T > 0;
at low T , the compressibility κ is exponentially small in
the NBL so one can think of it as an MI phase; at high
T , where κ is substantially different from 0, it is best to
think of this phase as a normal Bose liquid. It is con-
venient, therefore, to define a crossover boundary above
which κ is substantial; we use the criterion κ = κX = 0.02
to obtain the MI-NBL crossover boundary shown in some
of our phase diagrams. We must remember of course that
this is not a strict phase boundary and it depends on the
value we choose for the crossover compressibility κX .

III. RESULTS

We are now in a position to present the results of our
mean-field theory. It is necessary to distinguish between
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FIG. 1: (a) Phase diagrams in the (µ − U0) plane for U2 = 0: Solid lines indicate the T = 0 continuous phase boundaries
between SF and MI phases; these phase boundaries evolve into first-order boundaries at finite (but low) temperatures as shown
by the representative dashed lines for T = 0.05; at higher temperatures these first-order boundaries become continuous again
at lines of tricritical points. Pseudo-grayscale plots at T = 0 of the variational ground-state energy E0 for (b) U2 = 0, (c)
U2/U0 = 0.03, and (d) U2/U0 = −0.03, respectively; the four degenerate minima in (c) and (d) show that the SF phase is polar
in the former and ferromagnetic in the latter; in case (b), i.e., U2 = 0, the SF phase is infinitely degenerate (see text).
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FIG. 2: Representative plots of (a) ρs and (b) ρ versus µ for U0 = 4, 5, 6, U2 = 0 at T = 0. Similar plots at T = 0.05 are given
in (c) and (d). In the MI phases ρs = 0 and ρ is an integer [= 1 in (b) for U0 = 6] for T = 0; for 0 . T the MI phase evolves
without a singularity (see text) into the normal Bose liquid (NBL) in which ρ is exponentially close to an integer [= 1 in (d) for
U0 = 5, 6]. As the temperature increases from zero, the MI phases grow at the expense of SF phase and the SF-MI transition
becomes first order [see Fig.(1].

three qualitatively different regimes: (1) U2/U0 = 0; (2)
U2/U0 > 0 (we use U2/U0 = 0.03 since this is appropriate
for 23Na); and (3) U2/U0 < 0, as in 87Rb (for specificity
we use U2/U0 = −0.03).

We first consider U2/U0 = 0, which can be achieved
when the scattering lengths are equal, i.e., a0 = a2. In
this case the onsite interaction between bosons is spin in-
dependent. This leads to an infinitely degenerate super-
fluid state: Specifically, for a given value of the superfluid
density ρs, the three order parameters ψσ, σ = −1, 0, 1,
can have any magnitudes that satisfy Eq. (9); e.g., if
we make the specific choice ψ−1 = ψ1, then the pseudo-
grayscale plot of Fig. 1 (b) shows that the minima of the
variational mean-field energy at T = 0 lie on the ellipse
2ψ2

1 + ψ2
0 = ρs. This degeneracy makes the superfluid

phase of the spin-1 Bose-Hubbard model different from

its spin-0 counterpart even if U2 = 0; and it implies that
an infinite number of SF phases coexist at U2 = 0. How-
ever, the zero-temperature phase diagram of Fig. 1 (a) is
the same as that of the spinless Bose-Hubbard model5;
and, in particular, lobes of the MI phase are separated
from the SF phase by the SF-MI boundaries that are all
continuous at T = 0; the density ρ is fixed at integral
values in each MI lobe.

Striking differences between the spin-1 and spinless
cases appear at finite temperatures. We demonstrate this
in Figs. 1(a) and 2; the former compares phase diagrams
at T = 0 and T = 0.05 and the latter presents plots,
both at T = 0 and T = 0.05, of the superfluid density ρs

and the density ρ as functions of the chemical potential
µ for three different values of the onsite interaction U0

(= 4, 5, 6). [In both spinless and spin-1 cases, if U2 = 0,
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Phases ρs 〈~F 〉2 κ

Polar Superfluid (PSF) > 0 0 > 0

Ferro Sperfluid (FSF) > 0 1 > 0

Mott Insulator (MI) 0 — 0

Normal Bose Liquid (NBL) 0 — > 0

TABLE I: The superfluid density ρs, 〈~F 〉2, and the compress-
ibility κ in the different phases of the spin-1 Bose-Hubbard
model. The MI and NBL are really the same phase (see text).
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(a)
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FIG. 3: Plots of the variational free energy F (ground-state
energy E0 for T = 0) as a function of ψ for different values
of µ in the vicinity of the SF-MI transition for U2 = 0 and
with ψ−1 = ψ0 = ψ1 ≡ ψ (see text). The minima at ψ = 0
and ψ 6= 0 correspond, respectively, to MI and SF phases.
(a) The two minima at ψ 6= 0 merge into one minimum at
ψ = 0 to yield the mean-field continuous SF-MI transition at
T = 0 as we increase µ from 1.5 (bottom curve) to 2.3 (top
curve) in steps of 0.2. Similar plots of F are given in (b) and
(c). For 0 . T , F develops three degenerate minima at the
SF-MI boundary, indicating clearly the coexistence of SF and
MI phases at a first-order boundary. This boundary can be
crossed either (b) by changing µ (from 0.7 to 1.5 in steps of
0.2) at fixed T = 0.05 or (c) by changing T (0 to 0.1 in steps
of 0.01) at fixed µ = 2.

the tip of the first lobe5,11 lies at U0c(ρ = 1) ≃ 5.8 for
T = 0.] Figure 1 (a) shows that U0c(ρ) decreases as the
T increases, i.e., the MI lobes grow at the expense of
the SF phase. Figure 2 shows that ρs goes to zero con-
tinuously at the SF-MI transition, if T = 0, but with a
jump if T = 0.05. Thus the SF-MI transition becomes a
first-order transition at finite T and the zero-temperature
SF-MI boundaries [Fig. 1 (a)]are really lines of tricritical
points; as the temperature is increased further, the first-
order transition again becomes continuous at another tri-
critical point.

The first-order, SF-MI coexistence boundary is associ-
ated with the three-degenerate-minima structure in the
variational-free-energy plots shown in Fig. 3. To obtain
these plots we use ψ−1 = ψ0 = ψ1 ≡ ψ that is one of
the admissible solutions in the infinitely degenerate SF
phase for the case U2 = 0; the infinite degeneracy of this
phase, illustrated for T = 0 in Fig. 1 (b), persists in our
mean-field theory even if T > 0. Figure 3 shows plots
of the variational free energy F (ground-state energy E0

for T = 0) as a function of ψ for different values of µ
in the vicinity of the SF-MI transition; the minima at
ψ = 0 and ψ 6= 0 correspond, respectively, to MI and SF
phases. At T = 0 the SF-MI transition is continuous:
this is reflected in the plots of E0 in Fig. 3 (a), where, as
we go from the SF to the MI phase by changing µ, two
global minima with ψ 6= 0 merge to yield one minimum
at ψ = 0; precisely at the mean-field critical point we
have a quartic minimum. For 0 . T , F develops three
degenerate minima at the SF-MI boundary, indicating
clearly the coexistence of SF and MI phases at a first-
order boundary. This boundary can be crossed either by
changing µ at fixed T [Fig. 3 (b)] or by changing T at
fixed µ [Fig. 3 (c)]. At sufficiently high temperatures
this three-minima structure of F goes away at a tricrit-
ical point at which the three minima coalesce to yield a
sixth-order minimum. Beyond this tricritical point the
SF-MI transition is continuous (second-order).

Calculations such as those summarized in the plots of
Fig. 3 help us to obtain the phase diagrams shown in
Figs. 4 (a) - (d) for U0 = 12 and U2 = 0. Let us begin
with the µ− T phase diagram shown in Fig. 4 (a). The
MI phases [lobes in Fig. 1 (a)] at T = 0 evolve with-
out any singularity into the normal Bose liquid (NBL)
for T > 0. As we have emphasized earlier, MI and NBL
phases are not distinct, but it is useful to think of a
smooth crossover from one to the other; we define these
crossover boundaries as the loci of points at which the
compressibility κ = κx = 0.02. The MI-NBL crossover
boundaries (lines with filled triangles) are also shown in
Figs. 4 (a) and (c). Islands of the SF phase appear in the
µ− T phase diagram; the first two of these are shown in
Fig. 4 (a), where one is marked SF and the other, near
the origin, is shown magnified in Figs. 4 (b) and (c). The
only difference between Figs. 4 (b) and (c) is that the
latter shows the MI-NBL crossover boundary (line with
triangles) and a line with stars, the locus of points in
the SF phase at which the variational free energy F goes
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FIG. 4: (a) Mean-field phase diagram in the µ − T plane for U0 = 12 and U2 = 0. Lines with open (filled) circles represent
first-order (continuous) SF-MI/NBL phase boundaries. First-order and continuous boundaries meet at tricritical points(TCP).
The T = 0 (T > 0) tricritical points are labeled TCP01, TCP02, etc. (TCP1, TCP2, etc. ). The line with triangles represents
the crossover boundary between MI and NBL regions of the MI/NBL phase. The lower left corner of the phase diagram in (a)
is enlarged in (b) and (c). The only difference between (b) and (c) is that the latter shows the MI-NBL crossover boundary
(line with triangles) and a line with stars, the locus of points in the SF phase at which the variational free energy F goes from a
curve with three minima to one with two minima; this line meets the SF-MI boundary at TCP1. (d) The density-temperature
(ρ− T ) version of part of the µ− T phase diagram of (a) (without the MI-NBL crossover line); tie lines are used to hatch the
two-phase regions in which SF and MI/NBL phases coexist (see text).

from a curve with three minima to one with two min-
ima. This line meets the SF-MI boundary at a tricriti-
cal point labeled TCP1. Higher islands of the SF phase
show analogous tricritical points labeled TCP2, TCP3,
etc.; the SF-MI phase boundaries meet the T = 0 axis at
the zero-temperature tricritical points TCP01, TCP02,
TCP03, etc. [Fig. 4 (a)]. Figure 4 (d) shows the density-
temperature (ρ−T ) version of part of the µ−T phase di-
agram of Fig. 4 (a) (without the MI-NBL crossover line);
the first-order parts of the SF-MI boundaries now appear
as regions of two-phase coexistence that are hatched with
tie lines; the two-phase regions corresponding to the two

lowermost SF-MI boundaries in Fig. 4 (a) are depicted;
they end at the tricritical points TCP1 and TCP2 out of
which emerge the continuous (second-order) SF-MI phase
boundaries. We use the label MI/NBL since there is no
strict distinction between MI and NBL phases for T > 0.
Note that, in such a ρ− T phase diagram, the MI/NBL
phases get pinched into exponentially small regions [e.g.,
in the vicinity of ρ = 1 in Fig. 4 (d)] as T → 0 and two
zero-temperature tricrtical points get mapped onto each
other [e.g., TCP01 and TCP02 in Fig. 4 (d)].

We now investigate the case U2 6= 0, so the onsite
interaction between bosons depends on the spin. This
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lifts some of the infinite degeneracy we encountered in
the case U2 = 0 as can be seen directly at T = 0 by
comparing the pseudo-grayscale plots of E0 in Figs. 1
(b), (c), and (d), for U2 = 0, U2 > 0, and U2 < 0,
respectively.

If U2 < 0 there are four degenerate minima of, each
corresponding to a ferromagnetic SF, with ψ−1 = ψ1

and ψ0 = ±
√

2ψ±1. The zero-temperature, mean-field,
phase diagram for this case is shown in Fig. 5; it has the
same topology as the phase diagram for the case U2 = 0
[Fig. 1 (a)]. We see that the MI phases have shrunk
marginally and the SF-MI transitions are still continuous.
The continuous nature of the T = 0, SF-MI transition is
illustrated by the continuous variation of ψ±1, ψ0, and

ρs as functions of µ in Fig. 6. The parameter 〈~F 〉2,
defined only in the SF phase, assumes the value 1, which
confirms that we have a ferromagnetic SF phase in this
case. The µ − T phase diagram for the case U2 < 0 has
the same topology as the U2 = 0 phase diagrams of Fig.
4. We do not show the µ− T phase diagram for U2 < 0
since, for the parameters we use, namely, U0 = 12 and
U2/U0 = −0.03, the phase boundaries are very close to
those in Fig. 4.

0 2 4 6 8 10 12 14
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25

MI

 

 

U0

 = 1

 = 2
MI

Ferromagnetic SF

U2/U0 = - 0.03

FIG. 5: Mean-field phase diagram in the (µ − U0) plane for
U2/U0 = −0.03 and T = 0. This has the same topology as the
phase diagram for the case U2 = 0 [Fig. 1 (a) for T = 0] but
the MI lobes have shrunk marginally; the SF-MI transitions
are continuous.

If U2 > 0 there are four degenerate minima of the
variational free energy F shown, e.g., at T = 0 in the
pseudo-grayscale plot of Fig. 1. Each one of these min-
ima corresponds to a polar SF, with either ψ−1 = ψ1 6= 0
and ψ0 = 0 or vice versa as shown in the plots of ψ±1 and

ψ0, versus µ in Fig. 7 for U2/U0 = 0.03. The parameter
〈F 〉, defined only in the SF phase, assumes the value 0,
which also confirms that we have a polar SF phase. The
zero-temperature, mean-field, phase diagram for this case
is shown in Fig. 8. If the density ρ is equal to an odd
integer (ρ = 1 is shown in Fig. 8), this phase diagram
has the same form as its counterpart for U2 = 0 [Fig. 1
(a)]. We see that the MI lobes expand marginally, and
the SF-MI transitions are still continuous. However, if
the density ρ is equal to an even number (ρ = 2 is shown
in Fig. 8), the SF-MI transition becomes first-order and
the MI phase is stable over a much wider region of param-
eter space than for the case U2 = 0: As we show in Fig.
9, for U2/U0 = 0.03, U0 = 7 and T = 0, ρs and ρ vary
continuously as functions of µ at the SF-MI transition
for ρ = 1 but discontinuously for ρ = 2; for comparison
we also include the analogous plots for U2 = 0. [We use
U0 = 7 here, rather than U0 = 12, to compress the range
of µ over which the SF-MI transitions occur.]
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0.75
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1.25

1.50

 

 

 
 1= -1     0

 s        <F>2

FIG. 6: Mean-field values of the superfluid order parameters
ψ1=ψ−1 and ψ0 and ρs plotted as functions of µ for U0 = 12,
U2/U0 = −0.03, and T = 0; ρs goes to zero continuously at

the SF-MI transitions. The parameter 〈~F 〉2, defined only in
the SF phase, assumes the value 1, which confirms that we
have a ferromagnetic SF phase in this case.

For ρ = 2 in the MI phase, there are exactly two bosons
localized per site and the total spin at every site can be
either S = 0 or S = 2. Since U2 > 0 there is an energy
difference between the S = 0 and S = 2 states, with a
lower energy for the singlet state. To go from the MI to
the SF phase, this singlet state has to be broken by sup-
plying an energy ∼ U2, which gives a rough estimate for
the latent heat of this first-order transition if 0 . T . This
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requirement of a latent heat leads to the greater stability
of the MI phases for even values of ρ relative to their
counterparts for odd values of ρ. Thus the ρ = 2 MI lobe
in Fig. 8 is substantially larger than the one for ρ = 1.
The µ− T phase diagram for the case U2 > 0, shown in
Fig. 10 (a), for U0 = 12 and U2/U0 = 0.03, has nearly the
same form as the U2 = 0 phase diagram of Fig. 4. The
principal qualitative difference between these phase dia-
grams is that, if U2 > 0, there are no zero-temperature,
tricritical points for the first-order boundaries associated
with the MI lobes for even values of ρ; e.g., the tricritical
point TCP03 in Fig. 4 has no counterpart in Fig. 10
(a). A quantitative comparison between these two phase
diagrams is made in Fig. 10 (b); this shows that the two
phase diagrams are nearly indistinguishable except for
the first-order boundaries that link the zero-temperature,
SF-MI transitions for even values of ρ with the tricriti-
cal points directly above them (e.g., TCP3). In Fig. 10
(b) the dashed line with open circles (open diamonds) is
the first-order boundary for U2/U0 = 0.03 (U2 = 0); the
region I between these lines lies in the MI (SF) phase
if U2/U0 = 0.03 (U2 = 0); the lines with filled triangles
show the MI-NBL crossover as in Fig. 4 (a). Phase di-
agrams such as Fig. 10 are obtained by calculating the
order parameters ψσ, and thence ρ and ρs, as functions
of µ at different temperatures. Representative plots are
shown in Fig. 11 for U2/U0 = 0.3, U0 = 7, and T = 0
and T = 0.05.
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FIG. 7: Mean-field values of the superfluid order parameters
ψ1 = ψ−1 and ψ0 plotted as functions of µ for U0 = 10,
U2/U0 = 0.03, and T = 0. The SF phase has either ψ−1 =
ψ1 6= 0 and ψ0 = 0 or vice versa, which confirms that we have
a polar SF in this case.
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FIG. 8: Mean-field phase diagram in the (µ − U0) plane for
U2/U0 = 0.03 and T = 0. The ρ = 1 MI lobe has the same
form as its counterpart for U2 = 0 [Fig. 1 (a)]. We see that
the MI lobes expand marginally, and the SF-MI transitions
are continuous (represented by a continuous line); but for
ρ = 2 the SF-MI transition becomes first-order (represented
by a dashed line) and the MI phase is stable over a much
wider region of parameter space than for the case U2 = 0.

IV. CONCLUSIONS

We have carried out the most extensive study of
the phase diagram of the spin-1 Bose Hubbard model
so far by generalizing an intuitively appealing mean-
field theory that has been used earlier for the spinless
case. Our study yields both zero-temperature and finite-
temperature phase diagrams for this model. Only T = 0
phase diagrams had been obtained so far9,10,11; so our
elucidation of the finite-temperature properties of this
model yields qualitatively new insights. We find, in
particular, that several of the SF-MI transitions in this
model are generically first order; at sufficiently high tem-
peratures they become continuous via tricritical points.
Tricritical points also abound at zero temperature since
some, but not all, of the finite-temperature, first-order
transitions become continuous as T → 0. The resulting
phase diagrams (Figs. 4 and 10) are very rich and should
provide a challenge for experimental studies, which we
hope our work will stimulate. Experiments can study
both the case U2 < 0, which can be realized possibly by
using 87Rb, and the case U2 > 0, which can be realized by
using 23Na. Thus, in principle, both the phase diagrams
of Figs. 4 and 10 could be obtained experimentally. Of
course this will require good experimental control of both
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FIG. 9: Plots of ρs and ρ as functions of µ for T = 0, U0 = 7,
and U2/U0 = 0.03 (filled circles) and U2 = 0 (open circles). In
the former case ρs changes continuously at the SF-MI tran-
sitions at the boundary of the ρ = 1 MI lobe (Fig. 8) but
jumps at the first-order SF-MI transitions associated with the
boundary of the ρ = 2 MI lobe. For U2 = 0 only the ρ = 1
lobe is encountered in this plot and the SF-MI transitions are
continuous; ρs shows a gentle minimum in the vicinity of the
ρ = 2 MI lobe.

the temperature and the density (or chemical potential)
of the bosons.

Our mean-field theory has been designed to investi-
gate the relative stabilities of SF and MI/NBL phases.
It has enough structure to unravel the differences be-
tween polar and ferromagnetic supefluids. However, our
mean-field theory does not account for order parameters
that can distinguish between different spin orderings in
the MI phase, e.g., spin-singlet and nematic MIs, which
have been investigated in the limit U0 → ∞ by some
groups14,15. The generalization of our mean-field theory
to include such types of structures in the MI phases of
model (1) lies beyond the scope of this study but is an
interesting challenge for further theoretical work.
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FIG. 10: (a) Mean-field phase diagram in the (µ − T ) plane for U0 = 12, U2/U0 = 0.03 showing first-order (open circles)
and continuous (filled circles) transitions between SF and MI/NBL phases and tricritical points (TCP). This phase diagram is
nearly the same as the U2 = 0 phase diagram [Fig. 4], but there are no zero-temperature, tricritical points for the first-order
boundaries associated with the MI lobes for even values of ρ: e.g., TCP03 in Fig. 4 has no counterpart here. (b) A quantitative
comparison between these two phase diagrams shows that the two phase diagrams are nearly indistinguishable except for the
first-order boundaries that link the zero-temperature, SF-MI transitions for even values of ρ with the tricritical points directly
above them (TCP3 here); lines with open circles (open diamonds) denote the first-order boundaries for U2/U0 = 0.03 (U2 = 0);
the region I between these lines lies in the MI (SF) phase if U2/U0 = 0.03 (U2 = 0); the lines with filled triangles show the
MI-NBL crossover boundary.
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FIG. 11: Representative plots of ρs and ρ versus µ for (a) T =
0 and (b) T = 0.05 for U0 = 7, U2/U0 = 0.03 showing jumps
at first-order SF-MI transitions; ρs changes continuously at
the T = 0, continuous SF-MI transition associated with the
ρ = 1 MI lobe.


