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Abstract. Schiffer variation of complex structure on a Riemann surface X, is achieved by
punching out a parametric disc D from X, and replacing it by another Jordan domain whose
boundary curve is a holomorphic image of aD. This change of structure depends on a complex
parameter ¢ which determines the holomorphic mapping function around aD.

It is very natural to look for conditions under which these e-parameters provide local
coordinates for Teichmilller space T (X,), (or reduced Teichmiiller space T* (X,)). For
compact X, this problem was first solved by Patt [8] using a complicated analysis of periods
and Ahlfors’ [2] t-coordinates.

Using Gardiner’s [6], [7] technique, (independently discovered by the present author), of
interpreting Schiffer variation as a quasi conformal deformation’of structure, we greatly
simplify and generalize Patt’s result. Theorems 1 and 2 below take care of all the finite-
dimensional Teichmiiller spaces. In Theorem 3 we are able to analyse the situation for infinite
dimensional T (X,) also. Variational formulae for the dependence of classical moduli
parameters on the ¢'s follow painlessly.
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1. Introduction

We are interested in making explicit variations of complex-structure on a Riemann
surface X, so that the variation parameters provide complex-analytic and real-analytic
coordinates (respectively) on the Teichmiiller space T (X,) and reduced Teichmiller
space T* (X,). Such variations, obtained by changing the complex structure on disjoint
discs in X,, were introduced by Schiffer, see [9].

In two interesting papers Gardiner [6], [7], showed that Schiffer’s variation can be
achieved by quasiconformal (g.c.) deformation, and that Schiffer’s variational formulae
are equivalent to q.c. variational fi ormulae involving appropriate Beltrami differentials.
The technique is applied in the present article to give a very general and simple solution

to the coordinatisation problem for moduli space mentioned at the beginning.

Instead of using periods and Ahlfors® t-coordinates as in Patt [8], we use Bers
coordinates for our analysis. We prove that if Schiffer variations are carried out
independently in d suitably-chosen disjoint discs on X, with arbitrarily specified
boundaries and/or almost-arbitrarily specified centres, then the e-parameters provide
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local complex-analytic coordinates for T (X o) around X . See Theorem 1. Here d is the
(finite) complex dimension of T (X ).

Even when X, is not of finite conformal type, but the reduced space T* (X,) is a
d-dimensional real-analytic manifold, we can use the real parts of the ¢'s as local real-
analytic coordinates for T* (X,), (Theorem 2). -

In §5 we have a theorem for infinite dimensional Teichmiiller spaces using a
countable family of discs for variation of structure on X,. That such an analysis is

possible testifies again to the power of interpreting Schiffer variation as q.c.
deformation.

2. Preliminaries

Let X, be an arbitrary Riemann surface and ¢ a (holomorphic) local parameter around a
point p € X,. Without loss of generality we assume that t (p) = 0 and that the image of t
contains a disc of radius greater than one around 0. We call the open domain D
=t~ !{A)a parametric unit disc on X, with centre p, (where A is the open unit discin C).

We denote the boundary of D by 6D = f = {x€ X,: |t(x)| = 1}. Note that, owing to
the profusion of conformal Riemann mappings, the Jordan curve f on X, can be chosen
with a great degree of arbitrariness.

A new Riemann surface, X*, will be defined by making the following ‘Schiffer
variation’ of complex structure on the disc D. Indeed, ’

t* (1) = t+%, eeC (1)

is a holomorphic function in an annular neighbourhood of § and maps § to a Jordan
curve B* in the t*-plane for small . The Jordan domain with boundary f* is denoted
D*; D* is of course a bounded simply-connected region of the t*-plane. ‘

X* is obtained now by removing D from X, and filling in the hole with D* (bar
denotes closure)—the boundary identification being given by (1). So x on f is identified
with t* (¢ (x)) on B*. On D* we use t* as a holomorphic coordinate, and on X* — D*

= X, — D we use the original coordinates from X,. Note that on dD* = f* c X* we

may use either ¢ or * as holomorphic coordinates. Clearly X ¥ becomes a well-defined
Riemann surface topologically equivalent (but in general not conformally equivalent)
to X,. Obviously, if X is topologically marked (by a choice of generators for 7, (X))
so is X¥. . '

From now onlet X, = U/G, G a torsion-free Fuchsian group operating on the upper
half-lane, U, or on the unit disc A, (whichever is convenient). We recall briefly relevant
points regarding the Teichmiiller space T (X,) = T (G) and reduced Teichmiiller space
T*(X)=T*(G). | |

For this purpose let x denote the holomorphic cotangent bundle of X,. A Beltrami
differential u on X, isa L section of the bundle k ® k! over X, soitis represented in
local parameters on X, by ' ' '

p= 1l < .
z ‘
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We call the complex Banach space of Beltrami differentials L (X,) = L*(G)
= L*(k ®x~*). The open unit ball in L= (X,)is denoted M (X,) = M(G) and is called
the Banach manifold of proper Beltrami differentials.

Any peM(X,) defines a ‘Riemannian metric’ A|dz + udZ], whose conformal class
gives X, a conformal (= complex) structure. Indeed, local homeomorphic solutions of
the Beltrami equation w = - 0w, with the coefficient , provide holomorphic local
coordinates for the new complex structure. Xo with this complex structure is denoted
X, '

Now, if ¢: X, — Yisaq.c. homeomorphism onto another Riemann surface Y, then
the complex dilatation of ¢, denoted (u(o)(= d¢p/0p), forms a proper Beltrami
differential on X,. Indeed ¢ becomes biholomorphic from X, to Y.

We define u, ve M(X ) to be equivalent ( ~)if there is a biholomorphism between X,
and X, homotopic to the identity where throughout the homotopy the ideal boundary
of X, remains pointwise fixed. We define p and v to be weakly equivalent (#) if the
condition for this homotopy on the ideal boundary is dropped. We set

T(Xo) = M(Xo)/~ and T* (Xo) = M (Xo)/#.

Both spaces parametrize marked Riemann surfaces which are quasiconformally
homeomorphic to X,. We denote the natural projections from M(X o) to T (X,) and

T*(X,) by ® and ®* respectively. T (X) itself of course projects onto the (usually
- smaller) space T* (X o). ’

" If X, is of finite type (g,k), (i.e. a compact genus g surface with k deleted (or

distinguished) points), then T'(Xo) = T * (X,) inherits a (unique) complex structure of a

(3g — 3 + k)-dimensional complex mainfold making @ a holomorphic submersion. If

X, is not of finite type but G = 7,(X,) is finitely generated, then the Schottky double

X, of X, is of finite type (g', k'), and T* (X ,) embeds (‘by doubling’) as a real analytic

manifold of real dimension (3g' —3+k)inT (X o)—thelatter beinga complex manifold
~ of the same number of complex dimensions. These are the only situations where T(X,)
or T* (X,) are finite-dimensional (Earle [4]).

Let Q(X,) denote the integrable holomorphic quadratic differentials on X, i.e. the

holomorphic sections ¥ of k @k over X, such that the L'-norm is finite:

Wil = H ¥ (z)|dxdy < 0. | 2

Xo

Of course Q(Xo) < L (x ®x), and this latter Banach space has the usual duality-
pairing with L= (k @x~ ') = L® (Xo) by

Wop) = ﬂwdzﬁdz, Ye Lt (@), pel®® @K™ 3)

e ‘
In case X, is of type (g, k), @(Xo)is a complex vector space of dimension equal to the
complex dimension of T'(Xo), (Riemann-Roch). In any case T (X,)is wellknowntobea
complex Banach manifold and T * (X,) areal Banach manifold with ® and ®* analytic
submersions. We require the following classical ‘Teichmiiller’s Lemma’ and a variant:
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LemMa 1. The kernel of the differential of ® at p =0 is
N(Xo) = Q(Xo)* = {ve L*(Xo): (¥, v)> =0, for all ¥ € Q(X,)}.

Thus the holomorphic tangent space to T (Xo) at X, is Q(Xo)* = L2 (X 0)/N(Xo)-
The embedding of T *(X,)in T (X,) is by extending ue M (X,) to u™te M(X,) using
the obvious reflection.

LEMMA 2. The kernel of the differential of ®* at y = 0 is
N*(X,) = {ve L™ (Xo): {y,v**) =0, forall Y eQ(Xo)}.

The real-analytic tangent space to T * (X ) at X is L”(Xo)/N *(X o) Q(X,)is the (real)
direct sum of two copies of Q*(X,), where Q*(X,) comprises those integrable
holomorphic quadratic differentials on X, which are real on the ideal boundary of X,.
Clearly, L®(X)/N* (X,) is the real dual space of 0% (X,). In fact, p in L*(X,) acts on
0% (X,) as the linear functional

L) = Re{ﬂw dxdy }

X,

For Lemma 1 see Ahlfors [1], and for Lemma 2 see Earle [4,p. 60].

Suppose T(X,) is finite dimensional and {u;,...,ps; is a C-basis for
L®(X,)/N(X,). Then clearly, by Lemma 1, the map froma neighbourhood of the origin
in C? to T(X,) which sends

(tgy -, )P @(Tapy + oo+ Talld) “4)

is (the inverse of) a holomorphic coordinate system for a neighbourhood of X, in
T (X,). The (ty, . . . , T4)arecalled ‘Bers coordinates’. An analogous statement holds for

‘real-analytic coordinates in a finite-dimensional T'* (X,) using Lemma 2.

3. Two main theorems

On a marked Riemann surface X, we carry out independent Schiffer variations in
n( > 1) disjoint parametric unit discs Dy, . . ., D, centred atpy, ..., P, with parameter
t, in Dy. 8D, = B, is mapped to B as in (1) by:

&
) =t+—
L
The new marked Riemann surface is

Xr=X: , inT(Xo).

.....

The double X* of X* is an element of T*(X,) ¢ T (X,). Here & denotes (gy, . . . , &)-
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TueoreM 1. For Schiffer variation on n disjoint discs as above the map S:
§
(81, cer en)HX:‘ (5)

is holomorphic from a neighbourhood of 0in C" into T (Xo)-
Ifd = complex dimension of T'(X,)is finite, then, given any d points {py, - . -, pa}

on X, it is possible to choose parametric unit discs with centres {p, . . . , P} lying in
arbitrarily small neighbourhoods of the original points so that the variation parameters
(4, - - - » &) are holomorphic coordinates for T (X,) around Xo.

Indeed, if we specify d disjoint parametric unit discs on X, with boundaries
{By, ..., Ba}sitis possible to choose local parameters for these very discs so that the
corresponding ¢'s again provide holomorphic lpcal coordinates on T (Xy).

The variation parameters corresponding to parametric discs centred at any
{ps, .. . ,pa} are local coordinates if and only if any ¥ in Q(X ) that vanishes at each py
vanishes identically.

Remark. It is noteworthy that the last statement, which is a corollary of the proof,
depends only on the points py and not on the local parameters.

TueoreM 2. For Schiffer variations in any n disjoint discs on X, the map S*:

Sﬂ
(813""£n)HX:: (8=(811 ""1871))9 (6) ‘

from a neighbourhood of 0 in C” into T*(Xo) (s T(X,)) is real-analytic.

If d = real dimension of T * (X,) is finite, then it is possible to choose d disjoint
parametric unit discs on X s0 that the real parts of (¢q, - - - » £) provide real-analytic
local coordinates for a neighbourhood of X, in T* (X,). ‘

Once again the centres of the discs can be required to lie in arbitrarily small open
regions, and/or the boundaries {B1, ..., Bay of the variation-discs can be prescribed
beforehand. :

The real-parts of the variation parameters for the t,-discs Dy, centered at py,
k=1,...,d provide local coordinates if and only if any ¥ in 0% (X,) whese local
expressions Yy (tx) de? satisfy Re(y,(0)) =0, (eachk=1,...,4d) identically vanishes.
This time the condition depends not only on the centres of the discs but also on the local
parameters.

Proof of Theorem 1
We only need to show S holomorphic with respect to each ¢; separately, so we may
restrict attention to variation in one disc D with parameter t. As in Gardiner [6], we
produce an explicit g.c. homeomorphism ¢, : Xo — X7F. In fact, let

t* =g, (t)=t+eton|t| <1

It is easy to check that ¢, maps D onto D* with the correct boundary identification, and
@, is a C* diffeomorphism for |¢| < 1. (Note, ¢, maps the radius vector to exp (i)

Sinnd
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proportionally upon the radius vector to t*[exp(if)]). Thus:

_(t+etonD
®e = ) Identity on X, —D U

is clearly a marking-preserving q.c. homeomorphism of X, onto X}.
The complex dilatation of ¢, is u(p,)e M (X,) where

df
8&7 on D,
med =\ o on X,—D, (@l = lel < 1. ®)

Since u(e,) evidently depends holomorphically on ¢ and
S(e) =X,y =Pu(e))

we see that S is holomorphic.
Suppose now that independent variations are carried out in n disjoint parametric
discs Dy, ..., D,. We see then:

X; ..... e, =@y + ... + &nity) : &)
where,

dt,/dt D,
k={ JdtwonDi (10)

0 on XO"'Dk

Therefore, by definition of the Bers coordinates, (g, . . . , &) Will be holomorphic
coordinates for T (X,) precisely when the {u, . . ., 4} given by (10) form a C-basis for
L*(Xo)/N(Xo) = Q(Xo)* '

The special form of our Beltrami differentials in (10) shows that , as an element of
Q(X,)*, is the linear functional

L) = —2iny,0), S (11)

where =y, (t,)dt? in the parametric t,-disc D,. This is simply because, by the mean
value theorem,

<Y m) = jj Yty de A dt, = —2in #’k (0).
] <1 '

Suppose we make a change of parameter for Dy from 2, to t,, t; being centred at a new
point g, within D,. Of course, the t, to t, transformation is a M&bius automorphism of
the unit disc that throws 0 to t,(g,). The linear functional I, in Q(X o)*, correspondmg to
Schiffer variation with centre g, and f-disc D, is of course

L) = ~2imf, (0).

Here ¢ = ,(f)di? in the T, local coordinate. But then the equality Y (t)dti
= {(t,)dt# shows that

L) =alila), | : SR (12)
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upto some non-zero constant 4. Since non-zero multiples do not affect linear
independence conditions, it is enough to find g, in the given neighbourhoods of px such
that the corresponding evaluations at g, are d C-linearly independent functionals on
Q(Xo).

This is easy to do as follows.

Claim. For any t,-disc Dy, and any neighbourhood A, of the centre of D,, the linear
functionals I,() = ¥(a), a€ A, ¥ € Q(Xo), span Q(Xo)*
Proof. If Y, = 0 on A, then itself is identically zero. Now set
Sk = {la:aEAk}, k = 1, ey d.

These are subsets of Q(Xo)* such that each one spans all of Q(Xo)*. All we have to dois
to choose d linearly independent vectors {gy, - . . , o4}, with o, €S, But this is always
possible because of the following:

Fact from linear algebra. Let Sy, ..., S, be subsets of any vector space V such that
each S, spans a subspace of dimension at least n. Then there is a set {oy, ..., o, ofn
linearly independent vectors in V, g, being from S, foreach k=1,...,n ‘

Proof. A trivial induction on n.

We have evidently completed the proof of all assertions in Theorem 1. From the
proof it is clear that both the restrictions on the positions of the centres and the fixing of
the boundaries may be imposed simultaneously.

Remark. Notice that no choice of discs can make the ¢'s global coordinates for T (Xo ).
This is because otherwise our formula (9) would give a global holomorphic cross-
section for the projection ®, and Earle [5] has shown that this is impossible if d > 1.

However, since T (X ) is arc-connected we see by a compactness argument that one
can pass from any complex structure to any other by a finite series of successively
applied Schiffer variations carried out in suitably chosen sets of d discs.

Proof of Theorem 2
This theorem is interesting precisely when X is not of finite type but its fundamental
group is finitely generated.

Clearly, the g.c. map ¢,: Xo — X* extends by reflection to a q.c. map $e: Xo— X*
and the Beltrami coefficient u(®.)eM (X,) is the extension by reflection of
p(@,) € M(X,). Thus, - '

X¥=0%(ule)) (13)
and clearly therefore, the Schiffer map S*: N¢ighbourhood of 0in C" — T * (X ), is real-
analytic. N ‘ ‘ : '

To prove that the real parts of (&g, . - - » €4) BIVE real-analytic coordinates on T *(Xo)

around X, we are again reduced to showing that for suitable choice of discs
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{Dy,..., Dy} on X the Beltrami differentials p, of (10) form a R-basis for
L*(Xo)/N* (Xo). :

As in the proof of Theorem 1, using Lemma 2 now instead of Lemma 1, we identify
the y, as real linear functionals [, on 0* (X ), where

L(¥) = Re (. (0)). (14)

where ¥ in Q% (X,) has the local expression ¥, (t;)dt7 in the t;-disc Dy (with centre py).
This time a change of local parameter, even preserving the centre, can effecta non-trivial
change in the corresponding functional. Indeed, I, gets replaced by

* (¢) = an Re [exp (i0)y, (0)], some real 6, (15)

where a is a non-zero real constant. (Again a can be ignored for purposes of R-linear
independence.) Note that any real 8 is achievable by suitable change of parameter.

To prove Theorem 2 it is clearly sufficient to demonstrate the existence of gy in the
given neighbourhoods A, of pi, and reals 6,, such that the linear functionals

T () = Re[exp (i) Yulg ), k=1,..., d,

form a linearly independent set in (Q* (Xo))*.
But, as before, the sets

Si = {1,,0€(Q* (Xo))* :15.6(¥) = Re [exp(i6) ¥i(9)], g€ 4w O €R} (16)

span all of (Q* (X,))* because y/, = O on 4, again impiies ¥ = 0. So the same ‘Fact from
linear algebra’ used in the previous proof does the needful.
All the assertions are now evident.

A question: Can one choose [4 (d + 1)] discs on X, so that using d real and imaginary
parts of the corresponding complex &'s we get real analytic coordinates for T (X,)?

4. Variational formulae

From our analysis Patt’s variational formulae follow painlessly. As usual define the
period mappings, 7;;: T (X,) = C, by

nij(X u) = Jwi:
bJ

‘where (ay, - . -, a4 by, . . ., by) is the canonical homology basis on the compact genus
g(> 2) marked Riemann surface X, €T (X,), and (oy, - . ., w,) is the canonical dual
basis of holomorphic 1-forms.

Applying the bilinear relations simply for differentials of the first kind, following
Ahlfors [2], we can deduce Rauch’s variational formula, ((17) below), for m;;, in the
tangent direction p at X, € T (X,) for any smooth p. But then, by Teichmiiller’s Lemma
(Lemma 1), the formula (17) must hold for arbitrary bounded measurable Beltrami
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di.ffere.:ntials p. This is because, by the Ahlfors-Weill section formula, any tangent
direction has a very smooth (in fact real-analytic) Beltrami differential as representative.

73 (X ) — 15 (X o) = 3[{&(@@“,‘)#]4‘ 0(&% (7
Xo
ie.

dx,,“ij (do® () = {w; Qwj, 4 >

We would like to understand the change in 7;; with Schiffer variation of complex
structure. Let o; = w;(t)dt in the t-disc D, then we know u(ep,) as in (8), so:

(X5 - (Xo)=¢ ~”a)i(t) w;(t)dt A df + O(%)

D
= —2inew; (0);(0) + O(€?). (18)

This last result was deduced in Patt [8], (his equation (29)), as one of his central results;
he uses differentials of the third kind and a complicated analysis. See Gardiner [6,
p- 379] for a similar proof of a somewhat different variation for =;;.

5. Schiffer variations in infinite-dimensional moduli spaces

Consider now X, such that T (X,) and/or T* (X,) is infinite dimensional. Choose
countably many disjoint parametric unit discs (Dy, D3, . . . yon X with corresponding
Schiffer variations (g1, €2, - - - ) = & Clearly, as long as

gel?= unit ball in the Banach space [® of bounded complex sequences

we get our .C. map @;: X, — X¥ with (@l < llelle. T hus we meaningfully define
the Schiffer variation maps

S:12- T (X), and
§*:19-T* (Xo) 5 T (X0) ‘ (19)

just as before, (S* by doubling X?). ‘
Now, T(X,)isa Banach manifold—an open subset (via the Bers embedding) of the

complex Banach space B(G), (X, =U/G, G Fuchsian),
B(G) = {peHol(U):ll¢ll = 4l @)y llo < 0 (20)
and ¢ induces a quadratic form on Xo}

Also, B(G) is known to be the dual of the separable Banach space

AG) = Q(Xo) = {y eHol(U): j‘jh,b[ < 00, Y induces a quadratic

v/G

(21)

form on Xo},
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via the usual Weil-Petersson pairing, namely (y, @) = jjtl/(z)cp(z) y*dxdy.

U/G
~ Now, from our knowledge of u(¢,) we can actually calculate the derivative at Oof S:

doS:1° = Q(Xo)* = L7 (Xo)/Q(Xo) ™
Indeed,
doS(Cl,Cz,.. .)=(C1d"‘t'1‘+C2*d£2'+ ....)mOd Q(Xo)‘L (22)
dt, de,

as is clear since S(g) = @ (u(@.)-
Consider the following bounded linear map

0:0(Xo)— I! | » (23)

given by integration over the discs D;:

OW) = (ﬂlll flﬁ, . ) | | (24)

D, D,

where Hll/ is of course J .d/k(tk)dtk A di, = —2iny, (0). Obviously, the operator

D, lt:lél
porm ||0]| < 1.

TueoreM 3. The map doS of (22) is precisely the dual of the map 6 of (24).
Consequently, the Schiffer variation map § provides local holomorphic coordinates to
T (X ) around X, if and only if 6 is an isomorphism of Banach spaces.

Proof. Let ¢ = (c1¢2, - - - Yel®. Then ¢ determines a Beltrami differential p, in
L=(X,) by

, _
dt

¢,—onD

ldtl 1

] dr, a @25
a c,‘a—t—: on D, . ) ‘

[}
RN N

LO eisewhere on X,.

Clearly p. (mod Q(X,)*) is exactly doS (c)-
Then d,S(c), as a linear functional on Q(Xo), is

<\//’#c> =0 ‘”‘d/"}‘CZ 'Ull/“{' ..

D, D,

= the pairing of the [”-sequence ¢ with the I*-sequence 8(y).
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This establishes the duality. The second statement now follows from the inverse
function theorem for Banach spaces. This duality, for arbitrary Teichmiiller spaces
T(G), is proved below. ‘

Notice that in the finite-dimensional case the injectivity of 6 (using d discs) was
necessary and sufficient for the Schiffer parameters for the discs Dx tO PI ovide
coordinates. Even for general T (X o) we see now that 6 is injective if and only if each Y in
Q(X,) that vanishes at all the centres of D, vanishes identically. This fits with the last
assertion of Theorem 1.

Theorem 3 and the Bers embedding

The duality of Theorem 3 connects up with the Weil-Petersson pairing and the Bers
embedding for arbitrary T(G), G a Fuchsian group with or without torsion. In this case
- the parametric discs D; should be chosen within a fundamental domain for G inU.
This general proof of §* = d,S is specially instructive sinceithingeson a well-known
reproducing formula which is ubiquitous in Teichmiiller theory, namely,

12 ([ ©On* |
2O 22 déEdn = 26
- || 2pecen=ot0 =
U
for any ¢ in B(G) and any z in U.
Indeed, let ®: M (G) - B(G) be Bers’ natural projection. Its derivative at O is a map
from L*(G) onto B(G) given by:

N

do®(u) = a H L (@) _dxdyeB(G), ' 27
z-9
U
(ais a nonzero constant). See Bers [3] for these standard facts. (Since B (G) = A(G)*isa
Banach space of holomorphic functions on U rather than on the lower half-plane the
formulae here are (very) slightly modified.) ;
The tangent vector at X oin T'(X o) corresponding to doS(¢) is then do @ (11.), where p. is

the Beltrami differentialin (25) lifted to U as a G-invariant (—1,1) form, (still called p,).
Thus,

doS(c) = o eB(G),‘ where ¢ is do @ (1)

Given any ¥ in 4(G) we are required to show that the Weil-Petersson pairing (¥, ¢) s

precisely
¢y ““ﬁ'*‘cz j‘jw+ cee = Y, e

D, D,

But notice that

W.0) = ﬂ\l/ OeE)n* dédn

u/G

= (b on* ).
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So the question is whether ¢n* and p, are equivalent linear functionals on A(G). By
Teichmiiller’s Lemma we know that this happens if and only if their difference is in the
kernel of the map do®. Thus we desire to check whether

do® (¢n?) = do® (i), (28)

But the right side is, by definition, ¢ itself. The formula (27) for do® says therefore that

(28) is indeed true (upto a fixed constant) because of the classic reproducing formula
(26). We are through.

We conclude by observing that Shields and Williams [10] have proved that Al)is
abstractly isomorphic to I*. This fact is of course very relevant to the choice of Schiffer
variation discs D; for coordinatisation of universal Teichmiiller space, T (1).
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