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§ 1. INTRODUCTION

AN excellent though unsuspected example of a biaxial crystal possessing
both optical activity and pronounced pleochroism was brought to light—in
the shape of certain intensely coloured sectors of amethyst—during certain
optical studies on this material. Interference figures of a remarkable nature—
to be illustrated and discussed in a later paper—were exhibited by these areas,
Indeed, it was the peculiarity of the optical phenomena displayed, which first
invited the present investigation on the theory of light propagation in such
media—a theory which provides, as we shall see, a simple basis for their
explanation. Such a theory has also a more general interest: for instance,
the measurement of the rotatory power of a biaxial crystal along an optic
axial direction cannot be pursued into the absorbing regions of the spectrum
without taking cognizance of its results (§§8 and 9c).

It has been established that the behaviour of both transparent active
crystals (Pockels, 1906 Bruhat, 1930) and inactive absorbing crystals
(Pancharatnam, 1955 a, b; Jones, 1942) may be physically pictured and
quantitatively explained by a principle of the superposition of the °ele-
mentary properties > associated with the medium. Thus linear birefringence
has to be blended either with optical rotation (circular birefringence) or with
linear dichroism——-according as we are dealing with the former or latter class
of crystals. Following the same geometrical method as was adopted for
non-active absorbing crystals (Pancharatnam, 1955 a; hereafter referred to
as P-a) we shall discuss the propagation in an active absorbing crystal as due
to the superposed effects of linear birefringence, linear dichroism and optical
rotation. For any particular direction of propagation, the last-mentioned
properties are to be determined respectively, in the usual manner from the
corresponding surfaces which characterise the optical properties of the
medium; viz., the index- and absorption-ellipsoids (see P-a, §2 a and § 4 d),
and the surface of optical rotation. Were this not the case, the method of

superposition would hav
280

e little practical value since the directional variation
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of the properties of the medium—as revealed for example in convergent light

phenomena—is naturally the most interesting part of the optics of anisotropic
media.

It turns out that the two waves that can be propagated along any direc-
t10n not only possess different velocities and coefficients of absorption, but
are in different states of elliptical polarisation, the geometrical forms of which
bear no simple relation to one another (§ 4)—except in certain special cases
(§§7 and 8). The practical advantage of the method of superposition in
such a complex case can be properly appreciated only in a later paper, where
the principal results are experimentally confirmed. Sections 2-8 deal with
media possessing no circular dichroism—the latter being a property which
need not be exhibited in all the absorption bands (Lowry, 1935). The results
may, however, be expected to apply fairly accurately for all crystals where
linear dichroism is visible to the eye—since circular dichroism, even .when
present, is usually an extremely feeble effect. In §9 we shall formally include
the effects of circular dichroism, using again the principle of superposition.

For the case of absorbing crystals, the method of superposition was
first introduced by Jones (1942, 1948) while developing a comprehensive
‘matrix calculus treatment for general optical systems. Jones did not then
-pursue the method in sufficient detail as to give an overall picture of the
0ptlca1 properties of anisotropic absorbing media. He has, however,
'recently (Jones, 1956) attempted to correlate his method with the results
of the electromagnetic theory; it will be pointed out in a later paper that this
portion of his discussion contains an error as far as its applicability to opti-
calIy active med1a 1is concerned.

Pendmg a more direct theoretical explanatlon (see §6) as 10 why the
,method of superposition works even under the most diverse conditions
Z(Ramachandran and Ramaseshan, 1952; Ramachandran and Chandra-
sekharan, 1951), its justification in the present instance has to be based on
the equivalence of its results with those of the electromagnetic theory of light
propagation in active absorbing crystals. The electromagnetic theory will be
discussed in a later paper. 'We may mention that the theory has thus far been
solved only for uniaxial crystals (Forsterling, 1912, quoted in Szivessy, 1928).

-§2.  PHYSICAL DESCRIPTION OF THE METHOD OF ANALYSIS

Consider a crystal plate cut perpendicular to an arbitrary direction of
ptopagation Oz, which direction we may with advantage take as being nor-
‘mal to the plane of the paper (see Fig. 1 a). ~We first ' wish to find the states of
:polarisation of the two plane waves that can be propagated along this direction
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(with specific velocities and coefficients of absorption). The principle of the
method adopted may be described as follows. Suppose we are given the
state of polarisation P, and the phase, of the elliptic vibration incident on the
plane z in the medium. Then if the crystal possessed no linear dichroism,
the state of polarisation P’ and the phase of the elliptic vibration emerging
at the plane (z + dz) could be completely determined from the theory of

(@ ¢2)

Fic. 1. P—State of polarisation at plane z. P'—State of polarisation at (z + dz) if crystal
were transparent. P”—State of polarisation at (z + dz) with linear dichroism also present.
P;, P,—States propagated unchanged in absorbing active crystal (i.e., states for which P =P,
B, B'—States propagated unchanged in transparent active crystal (i.e., for which P =P,
OX}, OY—States propagated unchanged with linear dichroism glone present.

propagation in tramsparent active crystals. Since the crystal possesses
linear dichroism, we regard the actual vibration emerging at the plane (z + di)
as obtained by further subjecting the vibration P’ to the following operation
of linear dichroism: the vibration P’ is first resolved into its components
along the principal planes of linear dichroism OXj and OYy; the amplitudes
of these components are then multiplied by the reducing factors (1 — k;d2)
and (1 — kydz) respectively, where k, and k, are the principal absorption
coefficients if only dichroism were present. (OXj and OYy are parallel to
the major and minor axes of the elliptic section of the absorption ellipsoid
made by the xy plane)) The operation of dichroism not only causes a dimi-
nution in the intensity; because of the differential absorption of the two

components the vibration at the plane (z + dz) is now altered to the state of
polarisation P”.

In general, however, we shall show that there will be two particular
forms of the initial elliptic vibration P for which the vibration P” at the plane
(z + d2) will be in the same state of polarisation as the vibration at the plane
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z, being therefore altered only in intensity and phase.* These will therefore
be the required states of polarisation Pg and Pp of the two waves that can be
propagated along the z direction with specific velocities and coefficients of
absorption (Fig. 1 b).

§ 3. GEOMETRICAL FORMULATION OF THE PROBLEM

(@) The Poincaré sphere—The problem of finding these states of polarisa-
tion Pg and Pp permits of an elegant - solution if we take recourse to the
Poincaré sphere (see Fig. 2)—as was done for inactive absorbing crystals
(P-a). The state of polarisation of any particular elliptic vibration described
in the xy plane is represented by a specific point on the surface of this sphere.

¢y

FiGc. 2. Representation on the Poincaré sphere of the states described under Fig. 1 a. State
P’ is obtained from P by a clockwise rotation Adz of the sphere about BB . State P is obtained
by. displacing P’ towards the less absorbed component X;, through a distance k dzsin PXj.

* The sequence in which the two infinitesimal operations are applied is immaterial (if we
neglect second order quantities). To prove this, consider the passage of light through a packet
made up of infinitesimal lamelle of two types, the odd members being transparent and the even -
members absorbing; the effect will not be modified (except to an infinitesimal extent) if the first -
transparent lamella is removed and placed last, ‘ o )

A3
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The definition of the mapping allows the form of the ellipse represented by
any point to be directly visualised in terms of the longitude 2 A and the latti-

tude 2 w of the point; for A is the azimuth of the major axis and w the angle
of ellipticity. ‘

Thus two linear vibrations along OXj and OYy will be represented res-
pectively by two diametrically opposite points Xz and Yi on the eguator
of the sphere, Fig. 2 being drawn such that the diameter XYk is normal to
the plane of the paper. The states of elliptic polarisation of the slower and
faster waves that can be propagated in the Oz direction in the absence of linear
dichroism will be respectively represented by two diametrically opposite
points B and B’. From the theory for transparent active crystals we may
regard the oppositely polarised states B and B’ as known, as also the * elliptic
birefringence’ 4 in the absence of linear dichroism, i.e., the phase retardation

which the slower wave B suffers relative to the other per unit distance
traversed.

The relevant results from the theory of propagation in iransparent active
crystals may be briefly recalled. The states B and B’ have respectively the
same longitudes as the opposite points X, and Y, on the equator which re-
present the principal planes of linear birefringence OX, and OY, (drawn
in Fig. 1). Denoting by 2 w, and ( —2 w;) the latitudes of B and B” we have

— 2
tan 2 Wy = — -8‘—‘ } (1)
4% = 52 4 (2p)2

where p is the optical rotatory power for the direction of propagation con-
sidered, and & the linear birefringence, as determined from the index—ellip-
soid. The mean of the refractive indices of the waves is the same as in the
absence of optical activity (Szivessy, 1928; see also §9 b below); ie., if 4,
and 4, be the absolute phase retardations suffered per unit distance by the

slower and faster waves, 8, and 8, being the corresponding values in the
absence of optical activity, then

A1+Az=31+32 (2)

- (b) Choice of co-ordinate axes in the Poincaré sphere.—The state - of
polarisation of the arbitrary elliptic vibration at the plane z (referred
to in the previous section) will be represented by a general point P on
the Poincaré sphere. 'We wish to find the . condition - that the state P
should be propagated unchanged.  Hence the point P may be most conveni-
ently specified by giving the cosines of the respective angular distances 2 i, -
2 ¢, 2 £, which it makes with the reference points Xg, B, and a third point C
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on the sphere: these points form a right-handed system, the point C being
at an angular distance of = from Xz and B. (Since the squares of three
direction cosines are not independent it is sufficient to specify cos 2 and
cos 2 ¢ and give merely the sign of cos2 §) The specification of the state
of polarisation P by © direction cosines ’ is closely analogous to its specifica-
tion by Stokes’ parameters (Fano, 1949; Ramachandran, 1952; Pancha-
ratnam, 1956 5). It must, however, be noted that our reference system does
not form a rectangular co-ordinate system; the angular distance 2X’ of
Xy from B is in general different from =, and we have

cos2X =cos2 w,co82X = (§/d)cos2X 3)

where 2 X is the acute angle between OX, and OXp, and w, the ellipticity of
the slower vibration B in the absence of dichroism, as given by (1).

(¢) Operations of elliptic birefringence and linear dichroism.—The state
of polarisation P'—which would be described at the plane (z 4 dz) if the
crystal were a transparent active one—is obtained from P by an infinitesimal
rotation of the sphere about the diameter BB’ through a clockwise angle 4dz

(Pockels, loc. cit.). The infinitesimal movement PI—;’- is therefore perpendi-
cular to the arc BP and has a magnitude dsgz which is equal to Adzsin2 ¢
(see Fig. 2). To obtain the actual state of polarisation P” at the plane
(z + dz), we subject the vibration in the state P’ to the infinitesimal opera-
tion of linear dichroism—whereupon we may expect it to move directly to-
wards the state of polarisation Xy, of the less absorbed component, and away
from Y. It has been proved in a previous paper (Pancharatnam, 1955 g,

§ 4 b) that the infinitesimal movement PP is actually directed along the arc
PXy and has a magnitude dsi equal to kdz sin 24, where k denotes the
“linear dichroism * (k, — k).

§4. STATES OF POLARISATION OF THE WAVES

We wish to find those states P (2 ¢, 2 ¢, 2 £) for which the state of polar-
isation P” obtained after passage through a thickness dz is identical with P.

—> —_—
The condition for this is obviously PP’ = — P'P”, and this is equivalent
to three conditions: (@) the magnitudes of the infinitesimal displacements
due to elliptic birefringence and linear dichroism should be equal, ie., dsg

= dsi; (b) the displacements P—I’;’ and P'_i’” should be collinear, ie., from
what has been said above, £ZXiPB = % =; (c) the diplacements should be
opp ositely directed—which means that P is restricted to the hemisphere for
which 2 £ lies between O and 4=. Expressed mathematically the states P
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which are propagated unchanged are those for which 2 ¢ and 2 ¢ satisfy the
relations:

Asin2¢ = ksin2 @

cos2dcos2y = cos2 X’ ®)
together with the condition that cos 2 £ should be positive. A

Let Pg (2 $a, 24q) represent a state for which 2 ¢ is less than 4w, and
which remains invariant under the operations of elliptic birefringence and
linear dichroism (see Fig. 3). It is then geometrically evident that the state P,
which makes the same angular distances with the opposite points Yy and B,
will also remain invariant under these operations; this may also be seen from
the fact that equations (4) and (5) are unaltered when 2 ¢ and 2 4 are changed
to their supplements. These states are consequently propagated without
change of form. It can be shown that in general there are only two such
states, and no more [see equations (6) and (7) below]. From the figure it is
seen that these states Py and Py are represented by two general points on the
Poincaré sphere whose longitudes do not in general differ by = and whose
latitudes are unequal. 'We thus arrive at the result that in a medium possess-
ing optical activity, linear birefringence and linear dichroism, #he wo polarised
waves that can be propagated without change of form along any direction are
in elliptical states of polarisation whose geometrical forms bear no simple rela-
tion to one another—i.e., the major axes of the elliptic vibrations are in general
not crossed, their ellipticities are not numerically equal, and they may or may
not be described in the same sense. Two polarised states such as Pq and
Pp—not being represented by opposite points on the Poincaré sphere—areg
non-orthogonally polarised, and are capable of mutual interference (when
coherent) to an extent determined by their similarity factor > cos? 1 PPy,
(Pancharatnam, 1956 @). It is seen from the figure that the great circular arc
PqPp is bisected by C, and hence the (common) third ¢ direction cosine’
cos 2 £, of the two states acquires an importance as the factor expressing the
degree of non-orthogonality of the two states of polarisation.

For the sake of completeness we shall give explicit expressions for the
¢ direction cosines * of the points P, and Pp representing the states of polar-
isation of the two waves. By introducing in (5) the value of cos? 2 ¥ obtained
from (4) we obtain a quadratic in %2 cos2? 2 ¥ the positive root of this quad-

ratic (which alone will give a real solution for cos 2¢) is then found to be
given by B “

k*cos?2 ¢ = § {(k* — 4% + /F = ZoF ¥ A cos?2y'} (6)
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Similarly, eliminating cos®2 ¢ between (4) and (5)

A2cos22 ¢ = 1{(42 — k¥ 4+ /(42 — k2% + 44%k2 cos? 2y} N
It may be recalled that in these equations cos 2 X’ is given by (3).
Ct

Fic. 3. P, and Py represent the states which remain invariant under the operations of elliptic
birefringence and linear dichroism described under Fig. 2. The angular distances 2y, and 2¢,
of the slower state P, from X, and B, are also the angular distances of the faster state Py from Yy,
and B'.

Equation (6) gives two values of cos 2 ¢ which differ only in sign, while
equation (7) gives two values of cos 2 ¢ which again differ only in sign. The
corresponding pairs (2 g, 2 ¢4) and (2 ¢y, 2 p) are identified without ambi-
guity from the condition given by (5) that cos 2 ¢ and cos 2 i have the same
sign if 2 X’ lies between 0 and /2, while they have opposite signs if 2 X’ lies
between 4= and .

The third © direction cosine’ cos 2 ¢ is always positive and is the same
for both the states P, and Pp; it is obtained from the first two by the follow-
ing relation which we shall not prove here. '

sin 2¢ sin 2y

cos2 & = SN2y

8
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§5. ABSORPTION COEFFICIENTS OF THE WAVES

The absorption coefficients, kg and kp, of the waves in states Py and Py
may be evaluated exactly as in the case of non-active crystals (Pancharatnam,
1955 a). The diminution of intensity 2k,dz which a vibration of unit inten-
sity in the state P, suffers on travelling a distance dz arises entirely from the
operation of dichroism; this operation diminishes the intensities of the X
and Yy components of the original vibration by 2 k;dz cos? by and 2 k,dz
sin?¢{,. Hence we obtain, on addition,

ko =13 (ky + Ko — 3k cos 2 g } o
ko =4 (k1 + ko) + 3K cos 24q
so that
kv — kg = k cos 2y (10)

The absorption coefficients have thus been conveniently expressed as functions
of the states of polarisation; they may also be otherwise expressed by using
the explicit value of & cos 2 ¢, as obtained from (6). It may be recalled
(P-a, equation 12) that for any one direction of propagation, k, and %, are
proportional to b, and b,—where 1/4/b, and 1/4/b, are the lengths of the cor-
responding principal radii of the absorption ellipsoid.

It is advantageous to anticipate here a small correction to the expres-
sion (9) and (10) given later by the electromagnetic theory; if the extinction
coefficients of the waves be denoted by «, and «p, then the relations (9) derived
by the method of superposition have to be replaced by

2Kava;3/C = %‘(bl + bz) - ’%‘ (b2 - bl) cos 25&(1 } (11)
2kpvp’[c = % (b + b)) + % (B2 — by) cos 2{y,

Because the velocities v, and vy of the waves have been dragged into these
new expressions for the absorption coeflicients, an exact application of (11)
for directions near an optic axis is fraught with difficulty. Luckily for us,
however, the error involved in using (9) will be negligible for such directions,

iﬁ;ce We may set vq 2vp ~ vy, where v,y is 2 mean velocity (see P-a, equation

§6. REFRACTIVE INDICES OF THE 'WAVES

We s'haII next derive expressions for the refractive indices of the waves
or, what is virtually the same thing, the respective phase retardations 4, and
4y wh-zch these waves suffer per unit distance of propagation. Our argu-
ment i Sqmewhat involved but.at the same time illuminating; for it very
clearly indicates that the principle of superposition may be derived by regard-
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ing the propagation in the medium as due to the forward scattering from
induced doublets (¢f. Jenkins and White, 1937; Kauzmann, 1957).

Let us consider the propagat1on through a distance dz of a vibration
of wunit intensity in the state of polarisation P,. The effect of dichroism con-
sists in diminishing the X}, and Y components (whose respective amplitudes
are cos g and sin ¢g) by fractions k,dz and k,dz respectively. Alternatively
the infinitesimal operation of dichroism is equivalent to the operation [which
we denote by (a)] of adding to the original vibration the fractions (— kydz)
“and (—k.dz) of its X, and Y components. In the succeeding operation
of elliptic birefringence the vibration thus obtained is resolved into its compo-
nents in states B and B’, the phases of these components being then retarded
by amounts 4,dz and 4,dz respectively (where 4; and 4, are the respective
phase retardations per unit distance suffered by the two waves in the absence
of dichroism). The operation of elliptic birefringence is therefore similarly
equivalent to the operation [which we denote by (b)] of further adding on the
fractions (— id,dz) and (— id,dz) of the B and B’ components of the original
vibration itself (neglecting second order quantities). The occurrence of the
imaginary (— i) means that the added vibrations have a phase lag of 4 = with
respect to the corresponding B and B’ components of the original vibration ;
the °amplitudes’ of the latter components (that is, the square roots of their
intensities) are cos ¢4 and sin ¢4 respectively.

But the original vibration in the state P4 is propagated without change
of polarisation through the thickness dz under the combined effects of di-
chroism and elliptic birefringence. Hence—insofar as its final contribution
is concerned—the effect of dichroism described in (a) becomes equivalent to
the addition of two infinitesimal vibrations in the same state of polarisation Pg
as the original vibration: these vibrations are really the resolved components in
the state P, of the corresponding vibrations described in (a); they will there-
fore have amplitudes k,dz cos¥i, and k.dz sin? ¢,; but they will be exactly
opposed in phase to the original vibration, since only then will they diminish
the intensity by 2 kqdz as given by (9). It follows that the operation of ellip-
tic birefringence (b)—because of its complete formal similarity with (a)—must
be effectively equivalent to the addition of two infinitesimal vibrations (whose
amplitudes are 4, dz cos? ¢, and 4, dz sin? ¢,) which are in the same state of
polarisation as the original vibration, but lag behind in phase by {#. The
phase retardation per unit distance 4, suffered by the wave is then equal to
(A4 cos? ¢pg + 4,sin2 ¢,). Or,

Adg =%(3; + 8,) + %4 cos 24,

12
= (8, + 8,) — 34 cos 24, (12
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- where we have used the fact that the mean refractive index in 2 transparent
inactive crystal is the same as when optical activity is also present (Egq. 2).
The birefringence is obtained from (12):

dg — Ay = 4 cos 24, - (13)

When the refractive indices and the birefringence are not required as func-

tions of the states of polarisation, we may introduce in (12) and (13) the explicit
value of 4 cos 24, as obtained from (.

Since the arguments given above are somewhat involved it is worthwhile
to indicate how the expression (13) for the birefringence (which alone is of
much practical importance) may be directly derived. On travelling a dis-
tance dz, the alteration of the state of polarisation of any vibration (e.g.,
from X}, to Xy"), may be evaluated by the method of superposition (as due
“to linear birefringence alone, in the example quoted). More properly, this

alteration is connected with the relative phase retardation (dg — 43) dz
between the two waves (in states P, and Py) into which the original vibration
will be decomposed; in fact the relative phase retardation must be equal to
_the area of the infinitesimal quadrilateral Py’ Xy Py' Xy (Pancharatnam, 1956 a,
-equation 5 b), where P, and Py, are points opposite to Py and Pp. The area
in question may be shown to be equal to 4dz cos 244, thus proving (13).

§ 7. CERTAIN SPECIAL CASES

A noteworthy simplification in both uniaxial and biaxial crystals, is that
along directions which are nowhere in the vicinity of an optic axis—and
where, correspondingly, the linear birefringence & becomes appreciable—the
waves propagated may for most purposes be regarded as linearly polarised
along the principal planes of linear birefringence: the reason is that for such
directions the ratios (p/8) and (k/4) occurring in (1) and (4) usually differ but
little from zero. The refractive indices and absorption coefficients of the
waves are then obtained from the index and absorption-ellipsoids by the usunal
constructions (see P-a, Eq. 12) since we may set 4 ~ 3, cos2¢g ~1
and cos2 ¢, ~ cos2X, in (12) and (11).

(@) Uniaxial crystals.—In uniaxial crystals both the birefringence 8 and
the linear dichroism k are determined from uniaxial ellipsoids; consequently,
the ratio (k/8) is virtually constant for all directions of propagation, and—
in accordance with what has been said in the previous paragraph—this ratio
will differ negligibly from zero for qiJ directions. The states of polarisation
of the two waves are then the same as in a transparent active crystal (Eq. 1),
since we may set sin ¢ ~ Qfrom (4). The refractive indices of the waves, being
functions of the states of polarisation (Eq. 12), are also determined as ina
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transparent crystal. The waves, however, possess absorption coefficients which
‘are obtained by setting cos 2¢q =~ =+ cos2 w; in (9), or more accurately,
in (11)—the upper sign being chosen if both the index and absorption ellip-
soids are of the same sign. The last substitution follows from the fact that
in a uniaxial crystal the principal planes of linear birefringence and linear di-
chroism coincide, so that B will have the same longitude either as Xy or Y.

(b) Biaxial crystals: directions not too near an optic axis—It is known
‘that in both transparent active crystals as well as inactive absorbing crystals
the square of the ellipticity of the waves may be neglected for directions not
too near an optic axis. For such directions of propagation in an active ab-
sorbing crystal we shall show that the states of polarisation of the waves are
related to each other in the following simple manner. The major axes of
the elliptic vibrations may be taken to coincide with the principal planes of
linear birefringence; and the respective ellipticities wq and wp of the slower
‘and faster waves will be given by

wa = € e } (14)

wp = € — wy

Here w, and (— w,) represent as before the ellipticities of the slower and faster
waves in the absence of dichroism alone as given by (1); and e is the common
ellipticity of the two waves in the absence of optical activity alone. Neglect-
ing-their squares in comparison with unity, , and e will be given by

wy = —p[3; e = (k/2 8) sin 2X (15)

-where X is the acute angle that OXj, makes with reference to OX, (measured
~with the usual sign convention).

Fic. 4. For directions not in the vicinity of an optic axis each wave has an ellipticity which
is the sum of the corresponding ellipticities which would obtain in the transparent active crystal
-and the jnactive absorbing crystal.
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For proving these relations we first remark that the directions under
consideration are defined by the circumstance that the linear birefringence 3
is sufficiently large (compared to both the rotatory power and the linear di-
chroism) to allow us to neglect the squares of (p/8) and (k/8) in comparison
with unity. We may then also set 4 equal to 8 according to (1). It follows
that in Figs. 2 and 3, the arcs BX, and P, B (= 2 ¢4) may both be treated as
infinitesimal, since their squares may be neglected, according to (1) and (4).
The situation is illustrated in Fig. 4 which shows that P, and Py, have respec-
tively the same longitudes as X, and Y, (to our present order of approxime-
tion). Also the latitude 2 w, of Py is equal to the sum of the directed arcs
X,B and BP, (counted positive if they point to the upper hemisphere). The
directed arc X,B is however equal to 2 w,. Hence for establishing the pro-
position of the previous paragraph it remains to show that the directed arc
BP, must be equal to 2 . This is proved from the following consideration.
If in accordance with our approximation we set 2 X’ ~ 2 [X] and 4 ~ |3] in
(4) and (5), those equations become formally identical with those holding for
the case of a non-active absorbing crystal (for which case however B coin-
cides with X,); hence the infinitesimal arc 2 ¢, of the present case corres-
ponds to twice the numerical ellipticity of the waves in the non-active absorb-
ing crystal. Moreover, the sign of the directed arc BP, being opposite to
that of 2 X, will be the same as that of e. This proves the first relation in (14)
and a similar proof holds for the second relation. .

[The approximate expression given in (15) for the ellipticity e of the
waves in a non-active absorbing crystal had not been derived in the author’s
previous paper on the subject (P-a). It is, however, immediately obtained
either from Eq. (4) of the present paper or from the corresponding equation of
the previous paper by setting sin 2 ¢ =~ 2]e] and sin 24 ~sin' 2 |X|]

The refractive indices and absorption coefficients of the waves may be
determined by the usual index- and absorption-ellipsoid constructions, as
though the waves were linearly polarised. Thisis becausecos 2 ¢g ~ 1 and
2¢g ~ [2X] in (12) and (11).

§8. PROPAGATION ALONG AN OPTIC AXIAL DIRECTION

In a biaxial crystal the linear dichroism does not in general vanish along
an optic axial direction, since the circular sections of the index ellipsoid need
not coincide with the circular sections of the absorption ellipsoid. In the
absence of linear dichroism, however, the waves will be circularly polarised,
so that 4 = 2 ||, and the state B coincides with C, if p is positive. The arc
2 X’ 1in Fig. 3 is then equal to a right angle, and from the condition that the
angle it subtends at P, should also be a right angle, it may be seen geometri-
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cally [or from Eq. (5)] that Py must lie either on the meridional arc C,C (2 ¢ =
=[2) or the equatorial arc CXp (2 ¢ = 3 m)—as illustrated in Figs. 5 and 6
respectively. Two main cases may therefore be distinguished.

‘ (@) Circular birefringence 2 p greater than linear dichroism k—The situa-
tion is illustrated in Fig. 5 for the case when p is positive (levorotation).

\_—

Fic. 5. Discussion of the elliptic states P; and Py propagated along an optic axial direction
when 2p > k.

Along the optic axis are propagated two elliptic vibrations exactly similar in
form and orientation but described in oppsoite senses (wg = —wyp). The sense
of description of the slower elliptic vibration is the same as that of the slower
circular vibration which would be propagated along the optic axis in the
absence of linear dichroism; the major axes of the two elliptic vibrations
are coincident and make an angle of 45° or —45° with reference to OXg
according as p is positive or negative. The numerical value of the ellipticity
lwq| of the vibrations may be obtained from (4) since 2¢g =37 — |2 wdl,
and 2 l/t = -} . .

| cos 2 wg = ki |2 p| (16)

The two waves have equal absorption coefficients, since 2y = 17 in

(10). But they possess different velocities of propagation, the phase retarda-
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tion which one wave suffers relative to the other per unit distance of propaga-
tion being obtained from (13) and (16): -

Ay — Ay = —2psin2wy = + VEGF =B (17)

(b) Circular birefringence 2 p less than the linear dichroism k.—Figure 6
illustrates this situation for the case when p is positive (the point P, denotes
the state of polarisation of the wave with the smaller absorption coefficient,
i.e., for which 2 is less than }=). The waves propagated along the optic
axis are linearly polarised, the angle between the linear vibrations being different
Jrom a right angle. The azimuths of the two vibrations with reference to
OX} will be both positive (0 to 3 ) or both negative (0 to — 1) according
as p is positive or negative. The numerical value of the azimuths of P, and
Pp (with reference to OXy) will be g and (3 = — ) ; and if @ be the acute
angle between the vibrations, then using (4) ‘

cos f = sin 2y = [2p| [ k ' (18)

The two linearly polarised waves have the same velocity since 2 ¢ = m[2
in (13). They are, however, propagated with different absorption coefficients
as given by (10) and (18):

ko — ko = kcos g = + +/kT — (2p)® (19)
§9. MEDIA POSSESSING CIRCULAR DICHROISM

(@) The operation of circular dichroism.—Turning our attention now to
the general example of an optically active absorbing crystal, we have naturally
to suppose that even in the absence of optical rotation, linear birefringence
and linear dichroism (i.e., if we set p = 0, 01 =8 = dppand k; = ky = k)
the waves propagated in the z-direction will be circularly polarised with a
difference ¢ between their coefficients of absorption (left minus right), the
mean of their absorption coefficients being ky,.  We therefore extend the dis-
cussion of §2 in the following manner: the vibration at the plane (z 4 dz)
will now be given by further subjecting the vibration P” (obtained after the
operation of elliptic birefringence and linear dichroism) to the infinitesimal
operation of circular dichroism; that is, the vibration P” must be resolved
into its right- and left-circular components, and the intensities of these com-
ponents multiplied by (1 — ¢ d%) and (1 + o dz) respectively (the phases being
unaltered). It may be easily shown—using the results of a previous paper
(Pancharatnam, 1956 4, § 6)—that, on the Poincaré sphere, the effect of the
infinitesimal operation of circular dichroism' will be exactly similar to that
of the infinitesimal operation of linear dichroism (considered in P-a, §4 b),
since exactly the same argument is applicable to both cases; that is, the state
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" will move directly towards the less absorbed circular state C, through an
infinitesimal arc odz sin CP".

| Cf’
'Fic. 6. Discussion of linearly polarised stateslPa and P, propagated along an axial direction
when 2p < k. ’

(b) . The superposition of linear and circular dichroism.—A notable simpli-
fication of the analysis is effected by combining first the effects of the infini-
tesimal operations of linear and circular dichroism alone. [To fix our ideas
we may for example consider the propagation along an optic axial direc-
tion for a wave-length where the rotatory power becomes zero, the circular
dichroism being however near its maximum (Lowry, 1935)].

" Just as the infinitesimal operations of linear birefringence and optical
rotation (circular birefringence) may be compounded to-yield the infinitesimal
operation of elliptic birefringence as given by (1), we shall find that rhe super-
position of linear and circular dichroism results in elliptic dichroism. More
specifically, we shall show that vibrations in two oppositely polarlsed elliptic .
states D and D’ (with their major axes along OXj, and OYy respectively)
remain unaltered in form under the combined effects of the infinitesimal
operations of linear and circular dichroism (applied in either order); and if
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w, be the angle of ellipticity of the less absorbed state D, and K the difference
in the absorption coefficients of the vibrations in these two states D’ and D,

then,
tan 2w, = — -
TR } 0)

K=+ +/KTFo
Consider a vibration initially in one of the states of polarisation D or
D’ (see Fig. 7, where the diameter XYy is drawn in the plane of the paper).
Under the operation of linear dichroism its state will move towards X
through a distance kdz sin |2 wy|.  Similarly, under the operation of cir-
cular dichroism the state of the vibration will be displaced towards C, through
an infinitesimal distance odz cos 2 w,. These two movements are oppositely
directed whatever be the sign of o (since w, has the opposite sign) and they
will exactly cancel each other since tan 2 w, is given by (20). Thus vibrations
in the respective states D and D’ suffer no alteration in their state of polarisa-
tion. The intensities of vibrations in these states will, however, be dimi-
nished by specific reduction factors, and correspondingly the absorption

coeflicients for these two states will have a specific difference K which we
proceed to determine.

Consider a linear vibration initially in the state C which lies on the equa-
tor at a latitude of — 90° with respect to Xy (see Fig. 7). Under the opera-
tions of linear and circular dichroism its state suffers the successive displace-
ments of kdz towards Xy and odz towards C,; in other words, it suffers a
displacement of /K% = o2 dz directly towards the state D. Since however
the initial vibration could equally well be considered as the sum of two vibra- .
tions (of equal intensity) in states D’ and D, it follows that vibrations in these
states suffer no relative phase retardation under the combined operations of
linear and circular dichroism; and that the difference in the absorption co-

efficients of these states is given by the relation (20) which we wished to prove
(see Pancharatnam, 1956, a, § 6).

Moreover, if the initial vibration in the state C be of unit intensity, the
diminution of intensity under the operation of elliptic dichroism will be
(Ky + Ky dz, where K dz and K,dz are the diminution in the intensities
of the component vibrations (each with an initial intensity of one-half) in
the states D and D’. This diminution of intensity may be equated to that
occurring under the combined operation of linear and circular dichroism.
Following the same argument as given above, it will be seen that the dimi-
nution of intensity arising from the operation of linear dichroism will be
(k1 + k») dz; while the diminution of intensity arising from the operation
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of circular dichroism—as described in §9 a—will be zero. Hence, if K;
and K, be the absorption coeflicients of the waves which would be propagated
in the absence of linear. birefringence and optical rotation, then

K1 + K2 - kl "I" k2 (21)

_ - X
RS

Fic. 7. Illustrating how linear dichroism and circuiar dichroism may be compounded by
a vectorial law to yield elliptic dichroism. P, and Py represent the states of the waves propagated
along a general direction in a uniaxial crystal possessing circular dichroism.

It has already been shown that the states which remain invariant under
the infinitesimal operations of linear and circular dichroism are determined
by the same vectorial law which holds for the composition of linear birefring-
ence and optical rotation. Moreover, as in the discussion of § 6, it is easily
seen that the infinitesimal operations of linear and circular dichroism are—
from the formal mathematical standpoint—completely similar to the corres-
ponding operations of linear birefringence and optical rotation (circular
birefringence) : the real constants K;, K, and o occurring in the former case
being replaced by imaginary constants i8;, 8, and 7p in the latter case. Asa
corollary it follows that since the states which remain invariant under the
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successive infinitesimal operations of linear birefringence and opiical rota-
tion suffer no absorption, the states which remain invariant under the succes-
sive infinitesimal operations of linear and circular dichroism can suffer 10

alteration in phase. So also, by proving relation (21) above, we have also
established the parallel relation given by Eq. (2).

(€) The superposition of elliptic birefringence and elliptic dichroism.—It
will now be clear that along any direction in an optically active absorbing
crystal, the effect of elliptic birefringence as given by (1) and (2), has to be
combined with the effect of elliptic dichroism [which would be present in the
absence of optical activity and linear birefringence, and is given by (20) and
(21)]. Correspondingly, it becomes more convenient to specify any point
on the Poincaré sphere by its °direction cosines * with respect to the new
reference points D, B and C, which form a right-handed set, and in which
only the arc BD differs from 3 (see Fig. 8); if we denote arc BD by 2 X', then

we will have instead of (3), the fo llowing expression for cos2 X’ obtained
from triangle BDC; :

cos2 y = Sin 2 w, sin 2 w, + €08 2 w, cos 2 w, cos 2 X.

The problem has now been reduced to a form exactly similar to that
considered in the previous sections. Hence the states of polarisation of the
waves (specified with reference to the new co-ordinate system) and the refrac-
tive indices and absorption coefficients of the waves are given again by the
rela*ions (4), (5), (9) and (12)—except that the symbol k representing the linear
dichroism has to be replaced by K (which represents the magnitude of elliptic

dichroism). Because of (21), it becomes unnecessary to replace (k; + k)
in (9) by (K; + K,).

We have thus formally obtained the solution for the propagation in
media possessing circular dichroism. For any particular direction of pro-
pagation the coefficient of circular dichroism o is to be determined from the
surface of circular dichrojsm. The media which possess circular dichroism
to a striking extent and which at first sight would seem best suited for an easy
qualitative test of the theory are certain of the so-called liquid crystals (Voigt,
1916); nevertheless in these liquid crystals, the large ‘circular dichroism’,
the enormous rotation of the plane of polarisation and other phenomena
indicate that the medium may not be homogeneous and that, on the con-
trary, it possesses a lamellar structure (HL. de Vries, 1951). Since a suitable
single crystal was not obtained for experimental study we shall not dwell

at any length on the specific results of the theory, but content ourselves with
mentioning a few of the results, "
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For directions which are nowhere in the vicinity of an optic axis the ratio
k/4 and p/8 will differ very slightly from zero, so that to a good degree of
approximation the propagation will be as in non-active absorbing crystals
(see § 7). Similarly, if the ratio of the circular to linear dichroism differ very

Fic. 8. Propagation in a crystal of the most general class (i.e., possessing circular dichroism
also). P, and P, represent the states propagated unchanged under the effects of elliptic birefrin-
gence A (axis BB') and elliptic dichroism K (axis DD’).
slightly from zero, as may often be the case in biaxial crystals, we may accord-
ing to (20) conveniently treat the crystal as though circular dichroism were
absent.

For uniaxial crystals, since the principal planes of linear birefring-
ence and dichroism coincide, the points B and D lie on the same great circle
passing through the poles. It will then be seen from Fig. 7 that the elliptic
states P, and Pp propagated along any direction bear a simple geometrical
relationship to one another; they have the same numerical ellipticity (though
they are described in opposite senses); and the orientations of the major
axes of the two ellipses are obtained from the principal planes OXy and OYr,
by turning the latter directions through equal angles in opposite directions.
This result has been obtained by Forsterling (quoted in Szivessy, 1928) from

Ad '



300 S. PANCHARATNAM

the electromagnetic theory of propagation in uniaxial crystals. For direc-
tions not too close to the optic axis, the ellipticity of the waves will be the
same as in a transparent crystal—since the square of (k/4) may be neglecteq
in comparison with unity, so that the arc BP, is an infinitesimal of the first
order and lies along a parallel of latitude.

The states of polarisation of the waves propagated along a general direc-
tion in a biaxial crystal will bear no simple relation to one another (see
Fig. 8); but along the optic axial direction the forms and orientations of the
two elliptic vibrations will be simply related to one another—in the same

fashion as those propagated along a general direction in a uniaxial crystal
(see preceding paragraph).

§ 10. CONCLUDING REMARKS

It appears worthwhile to underline the essential difference between our
procedure for applying the superposition principle and that customarily
followed, e.g., in the case of transparent active crystals by using the Poincaré
sphere, or for any crystalline plate by using matrix calculus. The spirit of
our method of analysis has not been so much to replace the effects produced
by an absorbing crystalline plate (on light passing normally through it) by
a geometrical or analytical operation; it has been to determine the states
of polarisation of the two waves that can be propagated along each airection,
as well as their velocities and absorption coefficients. This is because the
characteristic interference phenomena exhibited by an absorbing crystalline
plate, with the incident light partially or completely polarised, is naturally
best understood as due to the interference and composition of the two non-
orthogonally polarised waves emerging from the crystal plate—or their
resolved components; in fact this method of analysis is useful for trans-
parent and absorbing crystals alike (see Pancharatnam, 1956 @, b; 1957 a, b).
Moreover, the two waves that can be propagated along any general direction
have a physical reality that may otherwise be lost sight of. For example,
each will in general have a different ray-direction. [The physical reason
for this is that the wave-velocities as given by (12) vary with direction, and
in any such medium the direction of propagation of an element of the wave-
front will not always coincide with the wave-normal, but may be derived from
it by a construction from the wave-surface.] One of the chief merits, then,
of the use of the Poincaré sphere is that the states of polarisation of the waves,
as well as their velocities and absorption coefficients are determined by ex-

tremely simple expressions [(4), (5), (9) and (12)] which remain essentially
the same whether the crystal is optically active or not.




Light Propagation in Absorbing Crystals Possessing Optical Activity 301

The peculiar interference figures exhibited by a sector of amethyst will be
explained in detail in a later paper by the application of the method of super-
position, so that an overall picture of the optics of such media in the vicinity
of an optic axis will emerge. The possibility of the existence of singular
axes, along which only one state of polarisation can be propagated without
change of form, will also be investigated. That the properties of the singular
axes as described by the method of superposition do not really flout the results
of the electromagnetic theory (both in the case of active and non-active
crystals) will be indicated in a later paper—which will present the electromag-
netic theory of light propagation in active absorbing crystals.

The author is highly thankful to Prof. Sir C. V. Raman for his continued
interest in the present investigation.

§11. SUMMARY

A light beam in an absorbing crystal may be looked upon as travelling
under the superposed effects of the various elementary properties * associ-
ated with the medium, viz., linear birefringence, linear dichroism, optical
rotation and circular dichroism. For any general direction of propagation,
this postulate yields completely (a) the states of polarisation of the two waves
(specified conveniently by two corresponding points on the Poincaré sphere),
and (b) their velocities and absorption coefficients (expressed conveniently
as functions of their states of polarisation). The treatment is closely parallel
to that for inactive absorbing crystals (Pancharatnam, 1955)—since for each
direction, linear and circular birefringence combine to give elliptic birefring-
ence, while linear and circular dichroism similarly combine to yield elliptic
dichroism.

The case of biaxial media with negligible or no circular dichroism 1s
dwelt upon at length. The waves along an optic axis are not circularly polar
ised: they may even be in two non-crthogonal linearly polarised states (if the
dichroism exceed twice the rotatory power). For directions in the near vicinity
of an optic axis the waves are in two elliptic states of unequal ellipticity with
their major axes not crossed. For other directions, however, the orientations
of the major axes—as also the velocities and absorption coefficients of the
waves—become substantially the same as for an inactive absorbing crystal;
but the ellipticity for each state now approximates to the sum of the corres-
ponding ellipticities obtaining in the inactive absorbing crystal and the active
transparent crystal—thus becoming negligible only when the inclination to
both the optic axes becomes notable.
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