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1. INTRODUCTION

ABSORBING biaxial crystals in general display a variety of remarkable optical
.phenomena in the vicinity of both the optic axes. For example, if an
extended source of unpolarised light is viewed through a plate of highly
pleochroic material cut normal to an optic axis, two dark brushes—the
Brewster’s brushes—are generally seen in the field of view; while if a polariser
be inserted in front of the plate, the so-called idiophanic rings are observed—
similar to the interference rings that can appear in the case of a transparent
crystal if an amnalyser be also present.

The theoretical investigations of Waldemar Voigt focussed attention on
the fact that certain of the features relating to the propagation of light in
the vicinity of an optic axis differ radically from those obtaining in trans-
parent media. Thus, whereas along any general direction in 2 transparent
crystal there are two particular linearly polarised vibrations that can be
propagated without change of form, this is no longer the case in absorbing
crystals. As a matter of fact, close to an optic axis and on either side of it,
there even exist two directions—the singular axes—with the following re-
markable properties: only a right-circular vibration can be propagated
without change‘ of form along one of these axes, and only a left-circular
vibration along the other.* In this paper it will be shown that the various
features of the propagation of light in absorbing media may also be con-
veniently regarded as due to the superposed effects of birefringence and
dichroism. Because of the simplicity of the method, it has also been possible
to make a more detailed investigation of the followi g interesting question :
what will happen when, for example, a right-circular vibration is incident
in the direction of a singular axis where only a left-circular vibration can be
propagated without change of form ? The results obtained in this connection
are at variance with those expected by Voigt (Section 6).

* A non-mathematical summary, in English, of the main results of Voigt’s investigations
may be found in Reference 1. [ Co
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The analysis of the propagation of light in absorbing biaxial media from
the standpoint of the electromagnetic theory has been discussed by several
authors. The comparatively simple case of orthorhombic crystals (where
the principal axes of the dielectric tensor and the complex conductivity tensor
necessarily coincide) is discussed in Drude’s treatise.® But the somewhat
oversimplified presentation there given omits entirely those theoretical and
experimental features with which we shall be particularly concerned. These
may be found described in more detailed treatments,®-® particularly those
of Voigt and Pockels. In view of the complexity of the phenomena involved,
it would appear that a consideration of the problem from a simpler though
less rigorous standpoint would certainly be useful. Such an approach is
provided in the present paper, and, as we shall show, the method adopted
leads to results that are practically identical with those of the electromagnetic

theory.
9. GENERAL FEATURES OF LIGHT PROPAGATION IN ABSORBING MEDIA
(@) The Index and Absorption Ellipsoids

In an absorbing biaxial medium not possessing optical activity, the two
waves propagated along any direction appreciably inclined to both the optic
axes may be regarded as practically plane polarised (though not rigorously
so, as in the transparent crystal). And as in a transparent crystal their
¢ yibration-directions > may then be considered to lie on the principal planes,
their velocities being determined by their vibration-directions thus: the
reciprocal of any radius of a so-called index ellipsoid gives the velocity for
vibrations parallel to that radius. In addition, the two waves have different
~ coefficients: of ‘extinction «; and «,, these being determined again by their
vibration-directions thus: the reciprocal of any radius of a so-called absorp-
tion ellipsoid gives the value of +/(2«v/c) for vibrations parallel to that
radius, v being the velocity for that vibration-direction.

By assuming that the above statements hold good even for directions
in the vicinity of an optic axis, it is indeed possible to explain some of the
phenomena observed there—and such a procedure is in fact followed in
Drude’s treatise. For example, the occurrence of Brewster’s brushes can
be explained along the following lines. In the neighbourhood of an optic
axis, a comparatively small change in the direction of propagation will in
general cause an appreciable change in the inclinations of the two principal
planes to the axial plane; this in turn will lead to a large variation in the
total absoi:ii'tion, since the absorption coefficients of the two waves will be
determined by the orientation of their vibration-directions.

A3 :
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(b) The Elliptical Polarisation of the Waves

The appearance of idiophanic interference rings with a polarizer alone
cannot however be explained on the assumption that the light incident along
any direction is split up into two linearly polarized beams with their vibra-
tions at right angles to one another; their states of polarization being ortho-
gonal, two such beams will be incapable of interference with one another
(unless brought to the same plane of vibration by an analyser).

The fact is that when we turn to directions of propagation in the vicinity
of an optic axis, we are no longer justified in neglecting a remarkable and
important consequence of the phenomenological theory: namely, that the
two waves propagated in any general direction in an absorbing biaxial medium
are in reality, elliptically polarized. Though the two elliptic vibrations have
their axes majores at right angles, and their ellipticities equal, they are
rendered non-orthogonal by the fact that they are of the same handedness;
and this last mentioned feature (together with the fact that the major axes
do not in general coincide with the principal planes) distinguishes the situa-
tion sharply from that obtaining in optically active (transparent) crystals.

In the context of the elliptical polarisation of the waves, the index and
absorption ellipsoids—strictly speaking—retain significance only in terms
of the dielectric and conductivity-like tensors by means of which they are
defined. Nevertheless, as we shall show, the existence of the two non-
orthogonal elliptically polarised waves may be conveniently treated as due
to the superposed effects of birefringence and dichroism—just as the propa-
gation of two orthogonal elliptically polarised waves near to an optic axis
in an optically active transparent medium, may (by Gouy’s hypothesis®®)
be conveniently treated as due to the superposed effects of birefringence
and rotation. :

3. THE SUPERPOSITION OF BIREFRINGENCE AND DICHROISM

Consider a plate cut perpendicular to an arbitrary direction z which is
also taken as being normal to the plane of the paper. Let 0X, and OY,
(Fig. 1) be the trace of the principal planes of refraction—defined as usual,
either in terms of the index ellipsoid or the optic binormals. Similarly let
OX;, and OYy be the trace of the principal planes of absorption—which we
shall define analogously, either as containing the major and minor diameters
of the elliptical section of the absorption ellipsoid made by the plane of the
paper, or as the internal and external bisectors of the angle subtended om
the z-direction by the two absorption-binormals (normals to the circular
sections of the absorption ellipsoid).
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Fig. 1

P, and P,—States of polarisation propagated unchanged.
0X;, and QY ~Trace of the principal planes of absorption.
0X, and OY,—Trace of the principal plares of refraction.

Consider an arbitrary elliptic vibration P (which, for the sake of con-
creteness, may be temporarily identified with the one marked Py in the figure)
In the absence of absorption the arbitrary elliptic vibration P will be resolved
into two vibrations (along the principal planes of refraction, OX, and OY,)
between which an infinitesimal phase difference 8dz will be introduced corres-
ponding to a passage dz. Since, however, anisotropic absorption is also
present, we perform, in addition, the infinitesimal operation of linear
dichroism; the elliptic vibration—as modified by the infinitesimal operation
of birefringence—is resolved into two linear vibrations (this time, along the
principal planes of absorption, OXj and OYy), the amplitudes of which
are then reduced by the multiplying factors (1 — kydz) and (1 — kodz) res-
pectively. The differential absorption of the two components will cause
the state of the elliptic vibration to ‘ move towards * the state of polarisation
of the less absorbed component OXy (a phrase which acquires a more vivid
meaning in the Poincaré sphere representation). Those states of polarisa-
tion alone can be propagated without change of form, which under the
successive infinitesimal operations of birefringence and dichroism (applied
in cither order) remain unaltered in form: and orientation—and to these
states of polarisation alone can definite velocities of propagation and
coefficients of absorption be assigned.

Several particular cases may first be noted. Along the optic axial
directions where the birefringence vanishes, the two waves (propagated with
different coefficients of absorption) are linearly polarised along the principal
planes of absorption. Similarly, the waves propagated along directions
appreciably inclined to the optic axes will be practically plane polarised along
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the principal planes of refraction, since the absolute values of the dichroism
(ky—k) is usually such that it is very small compared with the birefringence
(8,— 8&,) along such directions. Also, where the principal planes of absorp-
tion and refraction coincide (as for example along the axial plane in ortho-
rhombic crystals) the waves will be rigorously linearly polarised along the
common principal planes.

The more general case, where the solution is not so apparent, is dis-
cussed analytically in Section 7, but the main results will first be proved
more briefly and elegantly by the use of the Poincaré sphere. For this
purpose, the form of the arbitrary elliptic vibration P—as distinct from its
intensity and absolute phase—must first be specified by means of certain
parameters. The principal planes of absorption and refraction form the
two natural co-ordinate systems to which the vibration P may be referred.
The ratio tan ¢ of the amplitudes of the components of the vibration P along
OY, and OX, does not by itself completely specify the form of the elliptic
vibration (since the phase difference @, between these components has also
to be given). Similarly the ratio tan ¢ of the amplitudes of the components
of P along OYy and OXj does not by itself completely specify the form of
P (since the phase difference 0y between these components has also to be
given). But ¢ and ¢ together form two convenient symmetrical parameters
completely specifying the form of the elliptic vibration P (¢, #)—provided
we separately give the sense of description of the ellipse. It may also be
noted that apart from an intensity factor, cos 2¢ and cos 2i¢ are the two
values of the second Stokes parameter M of the vibration P (¢, ) when it is

referred successively to co-ordinate systems along the principal planes of
~ refraction and absorption respectively.

As indicated in the figure, it turns out that there are two particular
elliptic vibrations described in the same sense, Py (ég, ¥q) and Py (¢p, #3), that
can be propagated without change of form under the superposed effects of
birefringence and dichroism. The form of the vibration Py can be obtained
from that of P, merely by rotating the latter by 90° in its own plane—which
means that ¢p and 3, are complementary to ¢, and i, respectively.

4. Use oF THE POINCARE SPHERE FOR SUPERPOSITION
(d) The General Method _

The Poincaré sphere,%? which has proved very useful for the analysis
of the propagation of polarised light in ‘ramsparent media, turns out also to
be of great use in our present discussion on absorbing crystals.




The Propagation of Light in Absorbing Biaxial Crystals—I 91

As is well known, a one-to-one correspondence can be set up between
all the points on the surface of a sphere (the Poincaré sphere) and all the
possible forms of elliptic vibrations that can be conceived (circular and linear
vibrations being regarded as particular cases of elliptic vibrations). In
particular the arbitrary elliptic vibration P referred to in the previous section
is represented by a corresponding point P on the Poincaré sphere, while a
linear vibration along OXj, will be represented by some other point Xz,. The
infinitesimal operation of anisotropic absorption described in the last. section
will obviously alter the form of the elliptic vibration P in such a manner
that onec may say it gets more polarised in the direction of OXj, since this is
the less absorbed component. This infinitesimal alteration in the state of
the clliptic vibration P corresponds (on the Poincaré sphere) to an infinite-
simal movement of the point P directly towards Xy, i.e., along the direction
of the shortest arc joining them. :

Similarly the infinitesimal alteration in the state of the (initial) elliptic
vibration P due to the operation of birefringence alone, corresponds to an
infinitesimal movement ds, of the representative point P. If the elliptic
vibration is to be propagated without change of form, this movement ds,
should be equal and opposite to the displacement of P due to dichroism
alone; and the problem of finding the states of polarisation that can be
propagated without change of form is therefore reduced to the simple geo-
metrical problem of finding the points P on the Poincaré sphere which
satisfy the above requirement.

(b) The Operations of Dichroism and Birefringence

Referring to Fig. 2, let X and Yy, give the orientations of the principal
planes of absorption. (The arbitrary elliptic vibration P has not been indi-
cated on the sphere, but for the sake of concreteness, may be temporarily
identified with the particular state P, in the figure.) If the elliptic vibration
P is resolved into two orthogonal linear vibrations in the states X and Yy,
then the amplitudes Fy and Gy of these components will bc? proportional
to cos ¢ and sin i, where 2¢ is the angular distance of the point P from Xj
on the Poincaré sphere. (For a proof of this statement, see reference 7.)
Hence Gi/Fic == tan . If the amplitudes of these components are reduced
by the multiplying factors 7% and ¢+, the angular distance of P from X
will change from 2¢ to 2/ where:

Gy e 12 e,
tan l/,J’ = F:: e"jé;z = tan l/! et )2 (1)

Since the phases of the Xy, and Yy components of P are to be leff; }maltered
in this opcration, the movement of P will be entirely on the meridional arc |
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Xy, Y) and (X,, Y, )—Principal planes of absorption and refraction, respectively.

P, and Py —States of polarisation propagated unchanged.
X, X = 2X; XX = 2Xy; XX = 2X,; P X’ = 26.

Y PX;.. This follows from the fact that the Xy and Yy components of all
elliptic vibrations on this arc have the same phase difference 0y (where 0y is
the angle indicated in Fig. 2); for, if an additional phase difference — 0y
be introduced between these components, any such elliptic vibration will
be reduced to a linear vibration on the equatorial arc XY, Yy (by a well
known property of the Poincaré sphere).

The infinitesimal operation of linear dichroism (corresponding to a
passage dz) will, apart from reducing the intensity, cause the initial state of
polarisation P to move along the arc PXj towards the state Xj (the less
absorbed component), through an arc dsi = — 2dy. From (1) we have

tan ¢ -+ d (tan ) = [1 — (ky — ky) dz] tan ¢

or ‘
2sec?Pydp = — 2(ky — ky) dz.tan
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which leads to the simple relation

dsy, = (k sin 2¢) dz ()
where
k denotes (ky — ki)

Let X, and Y, represent the orientations of the principal planes of
refraction, the former corresponding to the slower wave in the absence of
absorption; let § denote the phase difference (8; — 3,) introduced per unit
distance (in the absence of dichroism). The infinitesimal operation of bire-
fring:nce (corresponding to a passage dz) consists in rotating the sphere
clockwise about the equatorial diameter X, Y, through the infinitesimal
angle 8dz. This operation will cause the initial state of polarization P to
move along the arc of a small circle with X as pole through an arc ds,, where

dsy = (3 sin 2¢) dz 3

(¢) The States of Polarisation Propagated Unchanged

In order that the simultaneous superposition of linear dichroism and
birefringence should cause no change in the state of P, the movements ds
and ds, must be equal in magnitude and opposite in direction. Since arc
dsy is along PXj while arc ds, is perpendicular to PX, we must have firstly,
X, PXjo == m[2, or ' .
cos 2X = cos 2¢ cos 2 4)

and secondly
$ sin 2¢ = k sin 2¢s 5)

together with the condition that P will be a right- or left-elliptic vibration
according as X (the angle between the Xy and X, axes) is positive (0 to =/2)
or negative (0 to —r(2).

In general there are two positions P which simultaneously satisfy these
conditions—the relations (4) and (5) being unchanged when we alter 2¢ and
2 to m — 2¢ and = — 24 respectively. Thus in the figure the state P, whose
distances from the points Yz and Y, are 2¢ and 2¢, is also vpropagated un-
changed. The states Pg and P, have the same latitudes, their longitudes
differing by .

Hence we arrive at the result, also obtained from the electromagnetic
theory, that the states of polarisation propagate.d u.ncha-nged aang any
" general direction are two similarly rotati}lg _ellipuc vibrations which have
their major axes crossed and their ellipticities equal,
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In order to construct these two elliptic vibrations (see Fig. 1) we must
first determine the orientations of one of the principal diameters—for
example the orientation of OX' which is the major axis of Pg and also the
minor axis of Pp. Let the inclination of OX' be X, (anti-clockwise) with res-
pect to OX, and X, (clockwise) with respect to OXj.. The direction of OX'
may be determined by the relation '

sin 4X, &%

Sin 4%, — &° ©
Next the ratio tan 6 of the minor to the major axis of the elliptic vibrations
may be obtained from

sin® 20 = tan 2X; tan 2X, (7

—a relation which gives the ellipticity (tan 6 = cosec*20 -- 4/cosec226— 1)
in terms of the orientation of the axes of the elliptic vibrations. Tt may be
noted that equations (6) and (7) remain unaltered when we change X, and X,
to (72 + Xy) and (/2 - X,) respectively.

The. relations stated in the previous paragraph will now be proved with
the aid of the Poincaré sphere (Fig. 2). The direction OX’ is given by the
point X' on the equator having the same longitude as P. Then since the
triangles X,PX’ and X3 PX' are both right-angled, we have

cos 2¢ = cos 2X, cos 20 z
cos 24 = cos 2X; cos 20 J (8)

Multiplying these equations and con}paring with (4),
cos (2X, -+ 2X,) = cos 2X; cos 2X, cos*20
which on simplification gives the relation (7).
To prove (6) we consider the right-angled triangles X, PX, and X, PX':

5 tan 2¢5  tan 2X,

C0S Xk = tan X = tan 2
Hence ‘

tan? 2 = tan 2X, tan 2X

tan® 2¢ = tan 2X, tan 2X
or,

tan® 2 _ tan 2X, ' ‘
tan? 24 ~ tan 2X, €))
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From relations (8) we also have

cos® 2 _ cos® 2X,
cos? 24 7 cos? 2K, (10)

Multiplying (9) and (10) and comparing with (5) we get the required rela-
tion (6).

(d) Comparison with the Electromagnetic Theory

The relation (7) giving the ellipticity in terms of the orientation of the
axes of the elliptic vibration, is identical with that deduced from the electro-
magnetic theory (Pockels, loc. cit., p. 399, eq. 54); while the relation (6)
giving the orientation of the axes of the elliptic vibrations has to be com-
pared with the following similar relation (Pockels, loc. cit., p. 397, eq. 53):

Sin 4X1 — p2 . I\ -

sin 4%, — (6
where

p=7%(ay—a)and o =% (by — by

The tensor components a,, @,, etc., may be easily shown to have the
following geometrical meanings. The major and minor semi-axes of the
elliptical scction of the index ellipsoid made by the plane of the paper have
lengths 1/4/a; and 1/+/a, respectively, while the major and minor semi-axes
of the elliptical section of the absorption ellipsoid have lengths 1/4/5, and
1/4/b, tespectively. Relations (6) and (6") will be identical if

52/k2 = p?o” (11)

As pointed out in Section 2, the waves propagated along directions
appreciably inclined to the optic axes may be considered as linearly polarised ;
and for such directions of propagation, if 1/4/b be the length of any radius
of the absorption ellipsoid, then b = 2«v®[c, where « is the extinction co-
efficient and v the velocity for that vibration-direction. In consonance
with this it would be natural to use the following relation for the hypothetical
extinction coefficients «; and «, in the absence of birefringence:

Zeitm® Zalm’ — p, (12)

where v, is 2 mean velocity. 'We then have

T 2nc o
v Ky — Kq) = e —
0 (f\ 2 l) AO vm3

2

k=

>!
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Relation (11) will be obviously satisfied if we analogously set

2ec p _ 2mc Gy — ay

6= 2 tmE N 203 (13)

Since the velocoties v, and v, in the absence of absorption are equal to Vay
and +/a, respectively, relation (13) will be exactly satisfied if we define the
mean velocity vy by

U = % (V1 + V2) V10 (14)
5. THE ABSORPTION COEFFICIENTS AND REFRACTIVE INDICES OF THE WAVES

It is well known that in the case of a transparent crystal, it is simpler

~ to specify the velocities of the waves as functions of the vibration directions

than as functions of the directions of propagation: the former leads to the
simple index-ellipsoid representation, the latter to the comparatively more
complex wave surface of two sheets. We shall show that for absorbing
crystals too, if we choose to express the velocities and absorption coefficients
as functions of the states of polarisation (¢, ¢) of the waves, the resulting
expressions (as deduced both by the method of superposition and by the
electromagnetic theory) may be put in a very simple form.

‘When an elliptic vibration of unit intensity in any state of polarisation
travels a distance dz, the diminution in its intensity may be calculated directly
from the reduction of intensity involved in the infinitesimal operation of
dichroism corresponding to the passage dz—since the operation of birefring-
ence produces no reduction in intensity. If, in addition, the elliptic vibration
be in a state of polarisation Py that can be propagated without change
of form, this reduction in intensity may be equated to 2k, dz where kq is
the coefficient of absorption for that wave. The amplitudes of the Xz and
Y3, components of the elliptic vibration Pg will be cos i and sin iy respec-
tively ; hence the reduction in intensity of these components will obviously
be 2k, cos? ¢, dz and 2k, sin® g dz respectively. Therefore,

ko = ki cos¥fiy + ks, sin®fy
Similarly l
kp = ky sin® g + ki COS* g : (15)
So that g '
: (ko — kv) = (k1 — k3) cos 2

Here 24 being the arc PXj on the Poincare sphere may be evaluated by
the relations (4) and (5) of Section 4¢, which determine the states of polarisa-
tion of the waves, )
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Expressions for the refractive indices of the waves (in terms of the state
of polarisation of one of them) are equally simple, being given by:

Ng = Ny s ¢g + 7y 5iN? dg
np = 1y sin? ¢g + 7y cOS* ¢q (16)
(ng — np) = (ny — ns) s 2¢q '

The proofs of these relations do not have the same simplicity as those
of (15), and will be given only at the end of Section 7, since recourse must
be taken to the analytically derived equations obtained there.

(6) THE PROPAGATION OF LIGHT ALONG THE AXES OF CIRCULAR
POLARISATION

(@) The Singular Axes

The electromagnetic theory predicts that close to an optic axis and on
either side of it, there exist two directions along each of which only one state
of polarisation (and not two) can be propagated unchanged: only a right-
circularly polarised wave can be propagated along one of these axes, and
only a left-circularly polarised wave along the other. These directions have
been termed the Windungsachsen; Voigt has also referred to them as
singular axes and we shall follow this simpler nomenclature. At these two
axes of circular polarisation the inclinations of the principal planes of absorp-
tion with respect to the corresponding principal planes of refraction are -+45°
and —45° respectively. Further, along these two directions the pure bi-
refringence term & is equal to the dichroic term k.

The remarkable property of these axes follows very simply from the
standpoint of the method of superposition by the use of the Poincaré sphere.
Let us suppose for example that the principal plane of absorption OXj makes
an angle of —45° with respect to the corresponding principal plane of refraction
OX,. In Fig. 3, the diameter XgY} will then be at right angles to X, Y, as
shown. If we consider a state of polarisation initially coincident with the
pole Cy, it can be seen that its movement dsy (due to an infinitesimal clock-
wise rotation dz, about X, Y,) will be oppositely directed to the movement
ds;. towards the less absorbed component X ; and the movements will be -
equal in magnitude if 6 = k. Thus a left-circular vibration can be propa-
gated unchanged along such-a direction. Further, there can be no other
state which can also be propagated unchanged, since the 2 elliptic vibrations
propagated unchanged along any direction must have the same sense of
. description and the same ellipticity. Similarly, where OXj, makes an angle
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' C,——Righfcircu!ar vibration ;’ncide,nt‘ in the direction of a singular axis (where oniy the
left-circular vibration C; can be propagated unchanged).
Q—The state of vibration at a depth z (specified by the arc s).

of + 45° with respect to OX,, and where in addition § = k, only a right-
circular vibration can be propagated unchanged. The refractive index of
the circularly polarised wave that can be propagated unchanged along a
singular axis is % (n, + n,) and its absorption coefficient 1} (key |- key) as
may be seen by setting ¢ = ¢ = «/4 in relation (18) and (19).

Before proceeding to discuss in more detail the propagation of light
along the singular axes, we consider it relevant to point out that the func-
tions with which we are concerned show no discontinuity at the singular
axes. Thus both the elliptic vibrations propagated without change of form

- along any general direction, gradually degenerate into two (identical) circular
vibrations as we approach a singular axis from any side whatsoever. [This
can be seen by making X - 45 and 5§ =% ip relations (4) and (5) of Sec-
tion 4¢.] The refractive indices and absorption coefficients of these two

waves, being determined by their states of polarisation (by relations 15 and
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16 of Section 5) tend towards the common values % (1, + 7,) and % (ky + ko)
respectively, as we approach a singular axis. (See also reference 8.)

(b) Effects with Incident Circularly Polarised Light

In this section we shall inquire as to what will happen when, for example
right circularly polarised light C, is incident in the direction of a singular
axis where only a left circular vibration C; can be propagated unchanged
(Fig. 3). Our results in this connection are at variance with those expected
by Voigt. 1t was supposed by Voigt® * that if a plate cut normal to an optic
axis is viewed in convergent circularly polarised light, then along the singular
axis where the incident vibration can be propagated unchanged, more light
would get through than in the neighbourhood of the other singular axis
where only the oppositely directed circular vibration can be propagated
unchanged; and that the latter direction should in consequence appear
darker than the former.* On performing an actual experiment, he observed a
dark and a bright spot in the field of view, one on either side of the optic
axis and this was considered by him as confirming his view. According to
our analysis, however, it is the singular axis where the incident vibration
can be propagated unchanged that should appear darker than the other
singular axis (where only the oppositely directed circular vibration can be
propagated unchanged).

We shall apply directly the method of superposition, according to which,
given the state of vibration at a particular plane in the medium, the state of
the vibration at a further distance dz is obtained by superposing the effects
of pure birefringence and pure dichroism corresponding to that passage.
The state of vibration should then get prog1es31ve1y altered as we proceed
into the medium.

Referring to Fig. 3, if the state of polarisation be initially coincident
with the pole C,, its movement ds, (due to a clockwise rotation 3dz about
X+Y,) is in the same direction as its movement dsj towards the less absorbed
component Xp; and the sum of these movements will give the alteration
in the state of vibration corresponding to a passage dz. Continuing this
procedure, it can be seen that as we proceed into the medium, the stdte of
‘polarisation progressively moves along the arc C,XyxCj. At a particular
depth the vibration would be linearly polarised along the principal plane

*In a later paper 8, Voigt has suggested that if we could get a plate exactiy normal to a singulzxf
axis, and have circularly polarised light of the proper sense incident precisely along this normal,
the light would be totally reflected—the reflection being partial in practical cases. This idea receives
no support from the results of the present investigation. :
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of absorption OXy. After this stage the movement dsy due to dichroism
opposes the movement ds, due to birefringence; but the latter being greater
in magnitude, the state of polarisation continues to alter as we proceed
further into the medium, tending towards the state C; that can be propagated
without change of form.

Thus if we consider the state of polarisation at successive depths within
the medium, we see that the incident right-circular vibration will first get
modified to an elliptic vibration (with major axis always at 45° to the principal
planes of refraction), which in turn gets reduced to a linear vibration; as
we proceed further the linear vibration opens out into a left-handed elliptic
vibration, which gradually tends towards the state of a left-circular vibration
that can be propagated unchanged. Nevertheless, as may be seen physically,
this last state is never attained at any finite depth; for as the state of polarisa-
tion comes close to that of a left-circular vibration, the modification of the
state corresponding to an additional passage dz becomes correspondingly
reduced.

It is easy to deduce an explicit expression for the state of polarisation P
that should be expected (according to the above line of argument) at any
depth z inside the medium. The state P may be specified by giving the length
s of the arc C;P. Then the state s - ds at the depth z - dz will be given by

ds = (8 + k cos s)’dz (17)

according to relations (2) and (3) of Section 4 p. Since & = k, we have on
integration,
tan s = kz (18)

This relation shows that the transformation from a right-circular vibration
(s=0), to a linear vibration at 45° to the principal planes of refraction
(s = 7/2), occurs within a smaller depth than if the cryétal had been trans-
parent; whereas the corresponding alteration from the linear vibration to
a left circular vibration (which for a transparent crystal would have occurred

at a finite depth) requires here an infinite passa he “ retardi
: ge, due to the ‘retarding’
effect of the dichroism. arding

o We shall ngxt calculate the intensity I of the vibration P at 2 distance z
inside ?}:{e medium. The diminution of intensity — dI, corresponding to
an additional passage dz is given by |

- dIz/Iz = 2kde ) (19)

wheref, it. must be noted %, is not a constant but a function of the state of
polarisation and hence also of the depth z.  'We will have for kz an expression

w
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analogous to (15), Section 3:
ky = ky cos?® s + ky sin®
= 1 (ky + ko) — 3k cos 2 (20)

Thus k, is always less than the coefficient of absorption % (k, + k) of
the left-circularly polarised wave that can be propagated without change of
form along the same direction. (This is more directly seen by the fact that
the state of polarisation is always nearer to the less absorbed component Xp
than is a left-circular vibration.) Hence when the sense of description of a
circular vibration incident in the direction of a singular axis is opposed to that
which can be propagated unchanged along that direction, the emergent intensity
should in fact be greater than when the sense of description of the incident
vibration is reversed. An expression for the ratio of the emergent intensities
in the two cases will now be deduced. Since, from our point of view, the
incident disturbance can propagate into the medium in both cases (though
in one case with a progressive change in the state of polarisation) we have
no particular reason to assume that the reflection losses would be different
in the two cases.

Substituting the value of k. given by (20) in (19) we get
— dI,/I, = (ky, + ky) dz — k sin s dz

Expressing sin s in terms of z by using relation (18), and integrating, we have
—if I, be the emergent intensity and I, the intensity entering the medium,

log (Iy/l) = (ky + ko) z — log (1 + k°2%) 21)
On the other hand if I, be the emergent intensity when the incident circular-
vibration is of the sense which can be propagated unchanged,

log (Le/Tp) = (ks + ko) 2 22

From (21) and (22) we have the following simple relation for the ratio of the
intensities emerging in the two cases:

I/L, = 1 + k22

a ratio which is always greater than unity.

Though our results regarding the properties of the singular axes are at
variance with those expected by Voigt, it must not therefore be concluded
that the method of superposition leads to results differing from the electro-
magnetic theory—since it is possible to regard the former merely as a mathe-
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matical artifice: for (as has been pointed out in Section 8), by reversing the
entire scheme of arguments, the propagation of two elliptically polarised
waves with different absorption coeflicients and velocities (as given by the
electromagnetic theory) may for mathematical convenience be rigorously

~ treated by the method of superposition; the convenience of this artifice
being particularly manifest when we wish to find the limiting effects as the
two elliptically polarised waves gradually tend towards the state of two
(identical) circularly polarised waves with equal velocities and absorption
coefficients.

7. ANALYTICAL DISCUSSION OF SUPERPOSITION

Referring to Fig. 1, let us suppose that we are given the equation of the
elliptic vibration described at any particular plane z in the medium. If the
initial state of polarisation is to be propagated without change of form, then
the equation of the vibration at the plane z + dz can be obtained not only
by the method of superposition but also from the usual equation for the
propagation of a damped wave. By equating these two expressions we can
determine not only the states of polarisation that can be propagated without
change of form but also their velocities and extinction coefficients.

Let OX and OY be two arbitrary rectangular axes taken in the plane
of the figure, the inclinations of OXj and OX, with respect to the positive
x-axis being ¢; and a, respectively. Let the components of the arbitrary
elliptic vibration P along the axes OX, OY, have the following equations
(using complex notation and indicating the complex quantities by bars):

X = Fei(“f—el)zjfe‘i“’t
} ' ‘(23)

p = Gel@t-62 = geivt
so that : ‘
| _G 9

g
f
where g/ f is the ratio of the complex amplitudes, G/F the ratio of the real
amplitudes and 6 the difference of phase (0, — 6,) between the x and y
components. (It may be noted that G/F and 6 will have—on the Poincaré
sphere—geometrical interpretations essentially similar to those that have
been described in Section 4 ¢ for Gy /Fx and 0.)

Let the complex amplitudes become £, &', after the infinitesimal ope-
ration of dichroism alone, and 7”, g", after both the infinitesimal operations
‘ of dichroism and birefringence corresponding to a passage dz. But if the

. initial state of polarisation (7, g) is to be propagated without change of form,
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and with a specific extinction coefficient « and refractive index », then its
state (7, g") after propagating a distance dz should also be given by:

Freet = fif (g:t-— 2 7dz)

rn o __F ‘ .271"_
Fr=F (1—i 5 nd) z
= __ 2m o

g =g (1 ——zvxondz) S

where 7 is the complex refractive index (n — ix) of the elliptically polarised
wave. We shall now, by the method of superposition, proceed to determine
expressions for the final state (F”, 8") in terms of the initial state (£, &), and
then substitute these expressions in (24).

The Operation of Dichroism.—The elliptic vibration P, given by (23),
is first referred to the axes OXy, OYy along the principal planes of absorp-
tion; the complex amplitudes (fi, &x) of the components along these direc-
tions can be obtained from the amplitudes (7, &) by the usual transforma-
tion scheme for the rotation of co-ordinate axes through an angle a;. These
amplitudes Fx , &k are then multiplied by (1 — 27/ Aq- kydz) and (1 — 27[Ae-
x,dz) respectively, to give the amplitudes 7i', Zx' of the Xk, Yk
components after the operation of dichroism. Finally the elliptic vibration
Fi'» &1’ thus obtained is referred back to the axes OX, OY; the complex
amplitudes 7', & of the components along these directions are obtained from
the amplitudes fx’, &x’ by the usual transformation scheme for the rotation
of the co-ordinate axes through an angle — o.

If we go through the straightforward but lengthy algebraic substitutions
involved in the procedure described in the last paragraph, it can be shown
that the amplitudes 7', &’ of the X,y components after the operation of
dichroism are related to the corresponding initial amplitudes f, g by relations
which may be put in a form analogous to (24):

Fr=F 1= (et o) e ]

or

and 249

- | (25)
g =g [1= 7 (ot fom)ee ]
where, if a, be the orientation of the positive OXj axis,
Ky = Ky COS% @y + K2 sin® oy l
Kgg = Ky SIN? ay + Ky COS? 0y (26)
K = } (g — ) siD 201 -

Ad




104 S. PANCHARATNAM

If an ellipse be drawn with its principal semi-axes of lengths 1/+/;
and 1/4/x, lying along OXj and OYy, then 1/4/xy and 1/4/xy, are the lengths
of the radii vectors intercepted by the OX and OY directions, the equation
of the ellipse being ‘

K11 X% + kg9 Y2 + 2y xy =1

The Operation of Birefringence.—The mathematical procedure involved
in the infinitesimal operation of birefringence is essentially the same as in
the operation of dichroism. The elliptic vibration f’, ' obtained after
the operation of dichroism is first referred to the axes OX,, OY, along the
principal planes of refraction; the complex amplitudes fr' &' of the compo- .
nents along these directions are then multiplied by exp (— i2a/}y.n.dz)
and exp (— i2a/X).nydz) respectively—where ny, and n, are the refractive
indices in the absence of absorption. On referring the final vibration
(+", &") back to the axes OX, OY we. will have the complex amplitudes
(f’,8") of the x,y components, related to the corresponding amplitudes
'y & (before the birefringence operation) by equations essentially similar
to (25), though put in the form of (24):

fr=r [1 *ii—: (’111+ 57, . n12)d2 ]

f
§'=g [l—i%q—: (nzz—l-% ~n12)dz]

Here ny, 1y and n,, are to be regarded as defined by the relations (ana-
logous to (26): ,

Ny = 1y €082 ay + n, s5in? a,

27

Flgo = ny Siﬂz L7 + Ry COS2 Qg (28)
nis = % (n; — ny) sin 20,

where a, gives the angle made by the positive OX, axis with the x-axis.

_ Since we shall omit terms involving dz*, the value of (g'/f") to be substi-
tuted in (27) need not include even the terms of the first order in dz, i.e., we
may write (g/f ) for (g'/f ) in (27). We then obtain as the equation connecting
the final state of polarisation 7, 3" (after both the infinitesimal operation of

birefringence and dichroism corresponding to a passage dz), with the initial
state f, g: ,

1= i § e e )
&= {1 =% [amTa+ } i ) @)
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The Final Equations for Wave Propagation—We now introduce the
values of 7", 8" given by (29), into equation (7). Conciseness will obvi-
ously be attamed if we first introduce the complex quantities:

Mgy = Nyy — Ky
Flyy = Mpg — UKo
Mg = Hyp — 1Ky

where the npi and xpy have already been defined in relations (26) and (28).
'We then obtain as our final equations:

]
l
St
=
il
=t
o

(30)

=i

— Hgg = = " Hyo

T ~}oqi

=1

There will be two pairs of values (14, 84/f ) and (fip, &b/fjp) Which simulta-
‘neously satisfy (30); and—since g/f and 7 are both in general complex—
this means that there should be two elliptically polarized waves that can
be propagated, each with a specific velocity and coefficient of extinction.
Eliminating 7 between the two equations of (30) by subtracting, we get the
following quadratic in g/f determmlng the states of polarisation propagated
without change of form:

.Z: g - ﬁll _ ﬁ22

e Rl (3D

LET

‘The two roots of this equation are obviously connected by the relation
(ga/fa) — (fv/gb), from which it follows that the two elliptically polarised
vibrations have their major axes at right angles and their ellipticities equal,
but are described in the same sense (see, e.g., McLaurin®).

Eliminating g/f between the two equations (30) by multiplying the two,
we get the following quadratic in 7 determining the complex refractive
indices of the waves:

(1 — Tiyy) (A — Tigg) = Ty “. | (32)

From this we get the expressions for the sum and difference of the complex
refractive indices:

(fig — Tip)? = (fiyy — Tigg)® + 471y, | (33)

and g + ) =iy + g (34
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Velocities and Absorption Coefficients of the Waves.—The expressions' for
the velocities and absorption coefficients given in Section 4 may be derived

from the equations (30) which give the complex refractive 7 in terms of the

corresponding state of -polarisation glf. If we choose axes of co-ordinates

along OX,, OY, then n;, =0, a3 =0 and a; = 2X. The first of the two
relations in (30) gives:

(1 — i) = (1, — ieyy) - % 0+ (— i)
Equating real parts
n=n,+ (Gr/Fr) ya sin 6,
=y -+ (Gr/Fy) - 3 (, — ) sin 2K sin 0,
Referﬁng to Fig. 2, since 6, — PX.. Xj. we have
sin 2X sin 6, = sin 24 |
Hence on using eq. (5), Section 4 ¢, we have.

7 =1 — (GyfFy) - % (n, — ny) sin 24

 Since (G,/F,)

=tan 4, we get as our final expression for the refractive
index, :

7 =1, Cos* ¢ + n, sin? ¢

Similarly we will have for the extinction coefficient,
k = k1 COS® ¢ + K, sin? 3
8. COMPARISON WITH THE ELECTROMAGNETIC THEORY

Let the sections of the index and absorption ellipsoids made by the
xy plane be given by the respective equations:

anX® + apy? + 2a,xy = 1 .

by x® + boyy? 4 25, Xy =1 } (33)
Let us introduce the quantitiés

Chic = ank + ibpy “’ . (36)

Then the equations

(30) giving the states of polarisation and the complex
refractive indices of

the two waves propagated along any direction have to

¥

|

e

st

e nrea fo Lo
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be compared with the following similar relations obtained from the electro-
magnetic theory:

(@ — ¢y = ?f " Cra ‘
g - G7

@~ ="
where the complex velocity v = v (1 + ix')

We may first remark that it would indeed be possible to define the quanti-
ties 7iyy, figy and figy (in terms of y, ¢pp and ¢po) in such a manner that the
results obtained by the method of superposition would be identical with
the results of the electromagnetic theory. But in order to retain the physical
content of the method of superposition it is necessary to regard the velocities
v, and », in the absence of absorption as being equal to +/a; and 4/a, respec-
tively (where 1/4/a, and 1/4/a, are the lengths of the principal radii of the
elliptical section of the index ellipsoid). And once this is done, at least some
of the results obtained by the method of superposition have necessarily
to be regarded as approximations. We shall however show that for direc-
tions near an optic axis where the birefringence is necessarily very small and
where alone the ellipticity of the waves play an important role, the error
involved is negligible. To this end we shall start by assuming the relations
(12) and (14) which give a connection between the extinction coeflicients
k, and K, on the one hand, and the lengths 1/4/b; and 1/4/b, of the principal
radii of the elliptical section of the absorption ellipsoid on the other. The
quantities ap occurring in equation (35) can obviously be expressed in terms
of a, and a, thus: '

a3y == @y COS? ay + ds sin® ay |
Qg == @y SIN? ag + @y COS® 0y (38)
alg = ‘% (al — ag) SiIl 2(1:2

Similar relations analogous to (26) hold for the bpz-

On examining the equations [(30) and 37)] obtained by the method of
superposition and by the electromagnetic theory, we notice that the two are
entirely similar in form, the only difference being the occurrence of the
quantities cpy instead of fipk and 22 instead of . Hence it follows that given
any equation obtained by the method of superposition, a corresponding
exact equation obtainable from the electromagnetic theory can be written
down, merely by changing the symbols occurring in the equation according
to the following scheme: | ”
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n Ay Ry <K ‘ Ky Ky
2k3
v? a as — —by —b,

Thus to obtain the states of polarisation (¢, ¥) that can be propagated with-
out change of form, we have to replace the ratio 8/k in eqn. (5) by the ratio
plo where p =% (a, — @) and o = % (b, — b;). This replacement will how-
ever leave the equation unaltered, as we have already shown in Section 4 (@)
that 8/k = pjo. It is also possible to show that the sense of description of
the two vibrations as obtained by the method of superposition is the same
as that obtained by the electromagnetic theory.

Expressions for the velocities and absorption coefficients according to

the electromagnetic theory may be similarly written down from the relations
(15) and (16):

22 = @, c0s® ¢ + a, sin? ¢ (39)
3
| 207 — by cos?yh + by sin’ ¢ ' (40)
'We hence obtain .
(va® — %) = (a3 — a,) cos 244

Or, if vm be the mean velocity introduced in Section 4 (d)

Vp® — 9,2

T = (1, — ny) COS 2¢g

On comparing this with the last equation in (16) we see that the approxima-
tion involved in using the method of superposition is to regard the expression
on the left-hand side of the above equation as being practically equal to the
difference in refractive indices (ng — np). This is justifiable along directions
where the birefringence is low, and in fact this same approximation is also
made when the propagation in. transparent optically active crystals is re-
garded from the standpoint of superposition (Pockels, loc. ciz., p. 312).

From Eqn. (40) we get

240 — 2p0p® = (by — by) cos 24
Or, using (12) ‘

3 = (xy — Ky) cO§ 2¢q

Um

On comparing this with the last equation in (15), we see that the approxima-
tion we have to make is to regard the expression on the left as being prac-
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tically equal to the difference in extinction coefficients (icq — xp)—an approxi-
mation that is again justifiable where the birefringence is low.

It may be similarly shown that the mean refractive index and the mean
extinction coefficient are also only negligibly in error. We shall not how-
ever give the proof here since the absolute values of the velocities and extinc-
tion coeflicients are not as important as their differences.

The author wishes to express his thanks to Professor Sir C. V.
Raman for his kind interest in this work.

9. SUMMARY

The optical behaviour of pleochroic biaxial crystals in the vicinity of
an optic axis can be elegantly interpreted as due to the effects of linear
birefringence and linear dichroism superposed continuously along the depth
of the material. This idea—followed up geometrically with the Poincare
sphere, and analytically by direct algebraic methods—explains the
elliptical polarisation of the two waves propagated in any general direction,
as due to the non-coincidence of the principal planes for the usual operation
of birefringence with those for the operation of dichroism. In particular,
it also explains the existence, on either side of an optic axis, of two singular
axes—along any one of which only one circular vibration with a definite
sense of description can be propagated unchanged: for these directions
the principal planes of absorption and refraction make angles of 45° with
cach other, the linear birefringence and dichroism being also equal in
magnitude.

A discussion is also given of the effects to be expected when 2 circula
vibration incident in the direction of a singular axis has a sense of descrip-
tion opposite to that which can be propagated unchanged; and it is shown
that—contrary to what Voigt expected—the emergent intensity will not be
either zero or negligible, but will in fact be greater than when the sense of
description of the incident vibration is reversed.
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