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Time-dependent Fourier grid Hamiltonian method for modelling
real-time quantum dynamics: Theoretical models and applications
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Abstract. A local grid method for modelling real-time quantum dynamical events is
formulated. The formulation is straightforward for 1-D systems. For more than one
dimension, appeal has to be made to mean-field approximation of the appropriate kind.
The simplest mean-field model results in time-dependent Hartree-Fourier grid method. The
relationship of the proposed method with some other methods available in the literature is
examined. A few examples of numerical applications dealing with (i) the dynamics of
dissociation and ionization processes in diatoms and atoms respectively and (ii) tunnelling
dynamics in the intramolecular H-atom transfer phenomenon are presented.
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1. Intreduction

With the spectacular advent of experimental ultra-fast laser spectroscopy, the
theoretical problem of minutely explaining and understanding the temporal evolution
of states of a microsystem under precisely defined conditions has become a hotly
pursued area of research in chemical physics (Noid et al 1981; Ratner and Gerber 1986;
Bandrauk 1988; Phillips et al 1992; Kudla and Schatz 1993). Theoretical development
which has been fast and varied may be broadly classified into the following types:
(a) the classical trajectory method; (b) the method of semiclassical dynamics; (c)
quantum coupled channel method; (d) time-dependent quantum mechanical methods.
Let us clarify at the very outset that our purpose here will be to concentrate on a
method of the type (d). Since we intend to deal frequently with very strong external
or internal perturbations, we shall not be concerned with any quantum mechanical
method of perturbative origin. Our interest will be confined to quantum mechanical
methods that are potentially exact. '

Exact time-dependent quantum mechanical methods have been rather slow to
develop. Initially, the time-dependent problems used to be solved by expanding the
evolving states of interest in a basis set, diagonalizing the Hamiltonian matrix, and
finally using these eigenvalues and eigenvectors for propagating the state in time. A
serious impediment to the success of this strategy has been the limitation imposed

by the size and types of basis sets that can be used (Newberger and Noid 1983). As

an alternative, basis-set-free or grid methods for solving time-dependent Schrédinger
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equation have been proposed and profitably utilized. The utility of grid methods is
dependent on the ability to determine the eigenvalues and eigenvectors on the same
grid on which the propagation in time is carried out (McCullough and Wyatt 1969,
1971). A new strategy that has become quite popular has recently been proposed by
Kosloff (Kosloff and Tal-Ezer 1986; Kosloff 1988). Central to Kosloff’s strategy is
the idea that both y and H can be represented as vectors whose components measure
the values of the functions on an appropriate (pre-set) grid of points in the coordinate
space. The time-dependent Schrodinger equation is then solved by the application
of a pseudospectral or fast Fourier transform (FFT) method for the spatial derivatives
while adopting either an explicit differencing scheme or exponentiation for time
propagation (Feit and Fleck 1983). Recently, a matrix representation of H in this
vector space has been proposed by Marston and Balint-Kurti (1989) and Balint-Kurti
et al (1991) leading to what has now become known as the Fourier grid Hamiltonian
(FGH) method for calculating the bound-state eigenfunctions and eigenvalues with
high accuracy. The FGH method is a special case of the discrete variable representa-
tion (DVR) method (Light et al 1985; Whitnell and Light 1989) but is much simpler
to implement. A complex scaled FGH method too has been proposed and used with
success (Chu 1990). Convergence with respect to the number of grid points, which is
essentially arbitrary, is quite fast, thus giving it an edge over the FFT-based methods.
In what follows, we explore the possibility of constructing time-dependent generaliza-
tion of the FGH method in one (Adhikari and Bhattacharyya 1992; Adhikari er al
1992) as well as many dimensions (Adhikari et al 1993; Dutta et al 1993) and apply
them to suitable model problems.

2. The time-dependent FGH methods

2.1 TDFGH method in one dimension

We start with the time- dependent Schrédinger equation for a system described by
an (1 + 1) —d Hamiltonian H(x,t) (h=1,e=1, m= 1)

; oY (x,1)
ot

= Hy (x,t)
=[Ho+ V(x,01y(x2) |
=[T+ V() + V(x0T0(x0. | M

In (1) H has been partitioned into a time- independent Hamlltoman H o(= T+ Vo (x))
and a time-dependent potential V(x t). It is straightforword to invoke the FGH recipe

(Marston and Balint-Kurti 1989) for calculating the eigenfunctions and eigenvalues
of H,

Hol¢2(x)) =e14%(x)>, i=1,2,...,n

where n, is the number of discrete grid points on the x-coordinate axis used for

representing |7 (x) ). It is to be noted that the continuous range of coordinate values

of x has been replaced in the FGH method by a uniform grid of discrete values
x; =1iAx, where Ax is the uniform spacing between the grid points. The basic bras
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and kets of this discretized coordinate space give the value of the wave function at
the designated grid points (Marston and Balint-Kurti 1989)

{xil@y = p(x;)=w; (say). ‘ : (2)

" The normalization condition for ¢ on this regular grid is given by

§ 3% (x)lx)Ax=1, - 3)

i=1

while the identity operator I, in this representation is given by
. DBx
= Z |x; > Ax{x;, - 4)
i=1 .

and the orthonormality condition on the grid reads
Ax{x;|x;0 = 6y ’ (5

The w,’s of (2) are obtained via the standard variational recipe. We note at this point
that the same representation can be used for representing the time-dependent state
function W(x,t) of (1) on the same grid leading to a time-dependent Fourier grid
Hamiltonian method (TDFGH). The only change to be made for this is to make the
grid amplitudes (w;) time-dependent,

W0 = ¥ x> Axo0) | ©

and invoke the Dlrac—Frenkel variational principle (Dirac 1930; Frenkel 1934). We
then have,

a .
<5¢(x,t) H~i5i\lll(x,t)>=0- (7
Since w;(t)s are to be treated as variational parameters, (7) immeciiately gives
.0
ZZAxéwi(zﬁ)<x H—za xj>Aanj(t)=O. (8)
P

Treating the variations dw;(f) as arbitrary and independent, we have from (8) the
following stationary conditions:

T Ax{ ol Hlxyo,(0) — ixilegy Axy ()] =0, )

where i=1,2,...,n, and ;= 0w;/0t.
Using orthonormality conditions on the grid, we have

<xi|xj>Ax = 5ija
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which simplifies (9) to

Y Ax{<xlHIxpo )} —id® =0, i=12...n, (10)

The evolution equation for the grid amplitudes now becomes

i
b
|
i
i

a')i(t)=%ZAx{(xilHlxj)}wj(t), i=1,2,...,n,

- %ZAx{(xilHolxj>+<xi|V(x,t)lxj>}a)j(t). | (1)

Using the FGH recipe for calculating the matrix elements on a grid of odd number
of points we have

(Ho)yy= <xi|H0|xj>

ns 2 cos(2nl(i—j
__...1._{ 5 cos(2nl(i — j)/n,) T+ V(xi)5ij}s 12 #
Ax (i=1 n,
- where
hz
T, =—(Ak)?, Ak=2m/m,Ax, and 2m=n,— 1.
2m0 '

The matrix elements of the perturbation V(x,t) can be similarly evaluated as soon
as its form is specified. For example, if V(x, t) = o x cos(wt) we have {x;|V(x,t)|x;) =
£o(x;)8;;c0s(wt). Similar expressions can be worked out for perturbing potentials of
a different form. Equation (11) can be numerically integrated provided reasonable
initial values {w;(t=0)} are specified. If we assume V(x,t)=0 at t=0, the grid
amplitudes for the FGH eigenstate of H, can provide the initial values of w(t)s. It
may be noted that the same set of TDFGH equations were deduced earlier by us
(Adhikari et al 1992) without involving the Dirac—Frenkel variational principle. The @
present derivation connects the TDFGH method with the philosophy of time-
dependent variational principle in general and paves the way for its easy multi-

- dimensional generalizations.

22 TDFGH method in two dimensions

For a system with two coupled spatial degrees of freedom, one is forced to invoke
some kind of mean-field approximation. For coupled oscillators, the simplest time-
dependent mean-field approximation is the time-dependent Hartree approximation
(Makri and Miller 1987; Alimi and Gerber 1990; Coalson 1990; Messina and Coalson
1990). In the context of FGH representation, the corresponding scheme may be called
Hartree-time-dependent-Fourier grid Hamiltonian approximation. The model may
e be described as follows.

15 , Let the system be described by a 2-d Hamiltonian (H) where "fg

CH=T,+V®+T,+ V@) +AV(x, 1)
=hd+hS + AV (x,y,t) = Ho + AV (x, ), 1). (13)
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Let us assume that 4 =0 to start with, and the perturbation is switched on at ¢t =0.
At t =0, the system is therefore described by a non-interacting 2-d Hamiltonian H,

b where
H0=h2+h$. (14)
The ground state of the system at t = 0 can therefore be represented as a product of
the ground states of h? and h;’ which may be supposed to be known exactly following
the FGH recipefor determining bound states of 1-d Hamiltonians:
h1do(x, 1)) = €3 | dg(x, 1),
h1x3(y, 1)) = €9, 1x0 (3, 1)), (15)
where
|pg(x.t)) = ; @iy (t)1x; > Ax,
.4 n
¢ x30:0> = 3. @p@ly) Ay
_ =
’s being the time-dependent amplitudes of $3(x, 1) at the ith grid point on the x-axis
whlle w},'s Tepresent the corresponding quantities for xJ(y, t) on the y-axis. Up to this
point, the time dependence of wjy(t) or w},(f) has been implicitly assumed to be as
follows: ‘
% (1) = w3, (0)exp(— igg, t)
@ (t) = @ (0)exp(— ieg, ) (16)
As the perturbation V(x,y,t) is switched on w}, and w}, begin to evolve in time
non-trivially, the time evolution now being entlrely controlled by the nature of the
4 perturbing potential V(x, y, ). The ground state of H in the mean-field approximation
¥ can therefore be represented by
W% 3,0)) = |¢o(x 0%,
IPICACACERRININ (17)
i= 1 j=1

Now invoking once again the Dlrac—Frenkcl time-dependent variational principle
for W/o(x y,t)>, we have

at Yolx, y,8)> =0, ' (18)

—_f—

(Folx, y,0)|H

or

(8F0e, )72y, DK + KO+ AV (%, 3, 6) — zf—t 005, 0220, 1)

+ < G3(x, )3 (y, 1) [ B2 + HO + AV (x,y, 1) —

¢o(x )%, t)> =0
(19)
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where

5PY(x, 1) = Zéwo(t )|x,>Ax and 835(y, 1) = Zawm )|y, > Ay,

in the FGH representation that we are using. Assuming the variations 5q5°(x t) and
8%J(x, 1) to be independent and arbitrary, (19) leads us to two sets of equations, viz.

<i&%0
< $3(x, 1)

From (20) we can easily get

{n° +é°+z<>23(y, DIV (x, 3,015, 0) H B, )

< °(y,t) ¢°(x DX, )>, (22)

& = <X, I 1%3 (v, 1))
Now defining a y-averaged potential V(x, j,t) in the FGH representation as

Vx, 3,0 = (Eo 0, )V (%, 3, )| X5 (3, 2))

= Z Zcbr; @ V(x,7,,1)8,;Ay,

X 0
h +h + AV (x, y,t)mza—

HEREHA )> 0, (20)

h°+h°+AV(x,y,t)—i—a—
o ot

$3(x, 1)23(y, r)> =0. 1)

where

{h°+e + AV (53,0} 1) = i { <R, )12 3, 1)
+<x3(y, )fig(y, D130} (23)
If we now assume that
KRS DI, 8)> = 1 and <E(y, I3(,1)> =0,

_forany value of t making %J unique thereby, (23) easily leads ot an effective Schrodinger
equation in 1-D:

HE B0, 1)) = i163(x, 1), | (24)
where -
H =h)+ 8+ iV(x,7,1). (25)

In a similar manner, we can arrive at another effective 1-D Schrddinger equation,
starting with (21):

H125(y, 1) = 11£3(, 1)), | | | (26)
where
HT = h0+ 80 + AV (%, y,1), - 27

where V(x, y, t) represents x-averaged potential. Following the 1-D TDFGH recipe,

k3
e o B
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we can now easily convert (24) and (26) into equations representing evolution of the
grid amplitudes. Thus, using the fact that

33,0 = 3 aRi0l>Ax
200> = 2. @401y, Ay

in (24) and (26), and projecting on {x|(k=1,2,...,n,) and {y,l(m=1,2,...,n))
respectively, we have the Hartree-TDFGH equation in two-dimensions (x, y):

i, = 3 o HY xy a0, (k=12..n) @8)
icéﬂy=z<ymlH;"|yj>@?yAy’ (m=1,2,...,n). + (29)
: |

Instead of projecting on the basic bra-states {x,| and <y, | on the grids, we could
have made a further application of Dirac—Frenkel variational principle with H: and
HS' and arrived at (28) and (29) directly. However, the present method of derivation
keeps the connection with our previous derivation of TDFGH equation in 1-D
transparent. Equations (28) and (29) can be integrated numerically and apply equally
well to potentials with or without explicit time dependence, provided Fourier series
expansion of the potential is possible both in the spatial and time coordinates.
Although the derivation given above explicitly refers to a 2-D Hamiltonian, it is
perfectly general and can be applied with equal facility to the n-dimensional case.

Let us suppose that our system has n mutually orthogonal spatial degrees of
freedom such that the kinetic energy operator is diagonal in the corresponding
conjugate momentum representation. Let these spatial degrees of freedom be denoted
by ¢;,45,-..,q,- Then the trial n-dimensional Hartree-FGH wavefunction for the
ground state may be represented as

Wo@yseeGp-rq,)> =105, DP2(dy, 1) -+ 5(d,, D) (30)

where

$hd,,1) = X 0% (0)lg,> Ag; and ol = <q,|85(a,1)- (31)

Now following the same time-dependent variational strategy as adopted for the 2-D
problem, we arrive at a set of n effective 1-D Schrodinger equations,

. ~i . a ~i
Hl 0@, 0> =1—16'45 1), (32)
for i=1,2,...,n. The corresponding TDFGH equations to be solved are
ifs =3 (g, Hilg, 0%, | (33)

for k=1,2,...,n and r=1,2,...,n(q,), where n(g,) is the number of grid points on
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the kth coordinate axis (g,) and H% contains an effective potential averaged over all
the spatial degees of freedom except g. One can further generalize the trial function

~ and arrive at multi-configuration TDFGH equations which are, however, more

difficult to solve.

2.3 Comparative features of TDFGH method and other methods

The TDFGH methods proposed have some specially postive features. One important
point to note is that the method proposed is free from the problems associated with
basis set methods just as the fast Fourier transform method (Kosloff 1988) is, but,
unlike the FFT based method, it can work with an arbitrary number of grid points
and is much simpler to implement. This fact coupled with its equal applicability to
both time-independent and time-dependent potentials may eventually establish
TDFGH methods as superior to many other available methods for carrying out
quantum dynamical calculation, fof example the split operator method of Feit and
Fleck (1983) in conjunction with the fast Fourier transform method. It may be noted
that the use of the FGH representation in the formulation presented in the preceding
sections has the advantage of preserving the diagonality of the time-dependent effective
potential for the specific problem which naturally eliminates the requirement of
diagonalizing the Hamiltonian matrix at each time step. This need to diagonalize
the energy matrix at each time step is a serious impediment to the study of quantum
dynamics in strongly coupled systems. The TDFGH formulation, on the other hand,
requires only the diagonal terms of the effective Hamiltonian matrix to be advanced
in time in order to effect the time evolution of the discrete coordinate representative
of the wavefunction (i) on the specified grid under the action of H or H**. It would
be appropriate to mention here that the TDFGH formulation has an edge over the
standard time-dependent perturbative formulation of the problem concerned. Thus,
the perturbative formulation in a basis of the eigenstates of H, would lead to an
apparently simple formulation in the sense that only the matrix elements of the
time-dependent perturbing potential are required to compute the time-dependent
amplitudes. In our formulation, however, the need to perform the quadratures
repeatedly for constructing the nondiagonal time-dependent coupling potential matrix
no longer exists.

It is quite clear that the present formulation is closely connected with the fast
Fourier transform split operator methods (Feit et al 1982; Kosloff 1988). In fact, the
FGH formulation of the kinetic energy operator developed by Marston and
Balint-Kurti (1989) which we have used in our time-dependent formulation provides
an explicit, finite and analytic representation of the FFT procedure in which the three
operations implied by the transformation F~* TF have been condensed into a single
analytical expression of the matrix element represented as a finite sum over cosine
functions and is therefore much simpler to implement. Again, the long-time propagator
of Kosloff is applicable only to time-independent potentials while the short-time
propagator is meant for explicit time-dependent Hamiltonians; the TDFGH
formulation is global and applies with equal facility to both types of problems. But

‘a suitable integrator is needed for numerically integrating the equations giving the

grid point amplitudes as a function of time. Although the fourth-order Runge-Kutta
method will generally solve the problem in many cases, the Bulirsch—Stoer integrator
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(Stoer and Bulirsch 1980) is a better tool for strongly coupled systems (Adhikari et al
1993).

3. Applications of the TDFGH method

3.1 Dissociation of a diatom in a high intensity IR laser field

Since the system has a single vibrational mode, we can effectively represent it by an
appropriate Morse oscillator. Specifically, we consider here a Morse oscillator
representing O-H~ (Do =01747 au, x,=18330 au, f= 11930 a.u). The
unperturbed Hamiltonian is therefore given by

PZ
Hy,= . + Do {1 —exp(— B(x —x.))}?, (m=1632:0 au). (34)
m .
The laser-molecule interaction term V(x,t) is represented by
V(x,t) = pe-xegcoswt, hw =030eV, | (35)
where the dipole moment function u is given by
p = poexp(— (x2/ax2)). (36)

The value of a is so chosen as to reproduce the dipole moment of O-H™ in the
ground-state vibrational level (v=0), po being the average ground-state dipole
moment. Equations in (11) have been integrated with fourth-order Runge—Kutta
integrator on a grid of 99 points (Ax =0-1111 a.u.). '

Figure 1 shows the computed dissociation probability P,4(t) as a function of time
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Figure 1. The dissociation probability P,(t) of O~H™ modelled by an appropriate Morse
oscillator as a function of time, for g, =017 a.u. One time step = 0-006fs, hiw =0-3eV.
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Figure 2. The dissociation probability P,(t) of O-H™ up to a given time () shown as a
function of &,. Note the existence of a critical field strength for the onset of noticeable
dissociation.

for ;=017 a.u. It is interesting to note that the dissociation probability shows a
definite induction period of approximately 15 femtoseconds. From our previous
experience (Adhikari and Bhattacharyya 1992) with LiH and HF, we tend to conclude
that the time threshold is sensitive to the detailed features of the Morse oscillator
(i.e. shallow or deep well, high or low curvature). Figure 2, on the other hand, shows
the computed dissociation probability up to a given time as a function of ¢,. Here
also, the dissociation probability shows the existence of a definite intensity threshold
only beyond which P, is appreciably large. The threshold value of ¢, (= &) for O-H™
turns out to be equal to 0-12 a.u. Thus, the laser-induced dissociation of a diatom is
seen to be characterized by the existence of a definite bottlenecking problem which
can be overcome only by increasing the intensity of the radiation to very high values.
The other alternative is to use chirped pulses with lower intensity (Chelkowski and
Bandrauk 1990; Chelkowski et al 1990). Figure 3a shows the energy absorbed by
OH ™ as a function of time for ¢, = 0-17 a.u. while figure 3b depicts the average number
of photons (of energy hw) absorbed which shows a staircase-like structure signifying

the onset of progressively higher-order processes at different stages of the time
evolution.

3.2 Ionization of 1-d hydrogenic atoms in a high-intensity laser field

The model Hamiltonian for this system is represented as

H=Hy+exegcosot, ho=100eV (37)
and N
P* 2 /
H =—— h 38
°= 2m i (38)

f
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Figure 3. (a) The energy absorbed by O-H ™ shown as a function of time for g, =017 a.u,, .
hw =0-3eV, At =0006fs. (b) The number of photons absorbed under the same conditions
shown as a function of time for g5=0-17 a.u.
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Figure 4. (a) The computed ionization probability of one-dimensional H atom Py(z),
displayed as a function of time for g, =0-10 a.u, hw =100eV and At=001fs. (b) The
dependence of the time-averaged ionization rate P}" on the strength (g,) of the electric field
of radiation is shown. Note the suppression of the rate at high field strength. (c) The existence

of an intensity threshold for the laser-induced ionization of H atom displayed by the Py—¢,
profile.
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For our problem, we have taken 4 = 1-0 a.u. (H atom). Figure 4a shows the computed
ionization probability Py(z) as a function of time while figure 4b displays the dependence
of the time-averaged ionization rate P}’ on the strength (¢,) of the electric field of the

laser (P,(z) =1— Y [{Y(x,0)|¢7> 1% ny being the number of bound levels of Ho).
i=1

The profile of P*(e,) shows the existence of a threshold field (ef), and more
interestingly it clearly exhibits an abrupt suppression of ionization rate at high fields,
a phenomenon that has been hotly pursued in recent times (Burnett et al 1991;
Grochmalicki et al 1991). Figure 4c exhibits the dependence of the ionization
probability (P,(t)) on &. The existence of a threshold intensity of ionization can be
clearly seen from figure 4c.

3.3 Chemical dynamics in two dimensions

As a model we consider a H-atom transfer reaction, say in malonaldehyde (figure 5).
It can be visualized as an effectively two-dimensional problem and then modelled by
a 2-D Hamiltonian H(Q,q) (Bosch et al 1990) .

11 . 1 1 : C\?
H@Q,9=V -—Q".’+——42+Q4—2Q2“CQ24+—0>2(¢1+‘“2'>
2m 2m 2 w

2
+1 —i], (39)
2w ,

2

where all the parameters except V, are dimensionless (C = 0-86, w = 0-71, scaled time
1=001,Q=1x10'5s7%, ¥, =180kcal/mol, m= 53673 a.u,, the adiabatic barrier
height V# = V,(1 — C*/2w?) = 498 kcal/mol, g and Q are mass-weighted coordinates
which may be approximately identified with the O-O stretching motion (figure 5)
and the motion of H with respect to the O—O centre, respectively. The potential part
of H(Q,q) is displayed in figure 6a. At t=0, the system has been described by a
wavefunction () localized in the left well (figure 6b). The localized wavefunction
Y, at E=117235 x10~2eV has been constructed by superposing the two lowest
eigenfunctions of H(Q, q) which are practically degenerate energetically. The probability
of the initially localized state (y;) leaking through the barrier into the right well can
be given by - ‘

P(t)=1~J ,f (2, 4,1)1>dQdg, ' (40)
qvQ

0—H---0  0---H—0

c \\C T C// | | \C
H/\c/ Y H/\c/\H.
/ /

H H
I B

Figure 5. The two forms of malonaldehyde (MA) between which H-atom transfer takes
place. '

3
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where the integration limits are so chosen as to define the left well perimeters correctly.
In the FGH representation used by us the integration is replaced by summation over

discrete grid points in the g and Q dimensions:

PO=1- Y Y |o%*wsl? (41)

where (m;,m,) are the left- and rightmost points on g-axis defining the left well
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<q(t), (b) {Q(2)), during the H-atom transfer in malonaldehyde (MA). Note the essentially
two-dimensional nature of the tunnelling path (At = 0-005 fs).
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perimeters while (n;,n,) define an identical pair on the Q axis. dP(t)/dt then gives
the instantaneous rate of H-atom leaking through the barrier. Thus, by fitting P(z)
to a form Aet (figure 7) we get an estimate of the zero temperature H-atom tunnelling
rate constant (k=6-97 x 10'2s™"). From the energy splitting of the 0* and 0~

2AE
states, the estimated k’:w};w: 1-5 x 101°s~!. The tunnelling rate constant (k)

obtained from the dynamical method proposed by us agrees well with the available
experimental and theoretical rate (Benderskii et al 1993; Bosch et al 1990). To obtain
a clear idea of the nature of the path of H-atom trnsfer, we have plotted in figures 8a
and b <{g(t)> and <Q(t)) as functions of time. It is clear from the figures that the
trajectory is-two-dimensional. This feature also agrees with the result of a recent
calculation by the instanton method (Benderskii et al 1993). Finite temperature rates
can be similarly calculated by averaging k over the accessible states at the given
temperature (T). However, we have restricted ourselves to the zero temperature limit
in the present communication.

4. Conclusions

The TDFGH technique appears to be a quite valuable tool for studying real-time
quantum dynamics in one and many dimensions. For the multidimensional cases,
the Hartree type of mean-field approximation frequently works well in the TDFGH
framework. But for problems where such simple product wave function is incapable
of describing the state at ¢t =0, one must take linear combination of degenerate or
quasi-degenerate Hartree product states and invoke a multiconfiguration time-
dependent Hartree model in the FGH representation. We hope to return to this
‘problem in a future communication.
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