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We discuss the features of nonequilibrium growth
problems, their scaling description and their differences
from equilibrium problems. The emphasis is on the
Kardar—Parisi-Zhang equation and the renormalization
group point of view. Some of the recent developments along
these lines are mentioned.

HOW to characterize the degree of roughness of a surface
as it grows and how the roughness varies in time
have evolved into an important topic due to diverse
interests in physics, biology, chemistry and in technological
applications. One crucial aspect of these nonequilibrium
growth processes is the scale invariance of surface
fluctuations similar to the scale invariance observed in
equilibrium critical point phenomena. Although different
kinds of growths may be governed by distinct natural
processes, they share a common feature that the surface,
crudely speaking, looks similar under any magnification and
at various times. This nonequilibrium generalization of
scaling involving space and time (called ‘dynamic scaling’)
makes this subject of growth problems important in
statistical mechanics.

Growth problems are both of near-equilibrium and
nonequilibrium varieties. Therefore, they provide us with a
fertile ground to study the differences and the
extra features that might emerge in a nonequilibrium
situation'”. Take for example the case of crystal growth. In
equilibrium, entropic contributions generally lead to a rough
or fluctuating surface, an effect called thermal roughening,
but, for crystals, because of the lattice periodicity a
roughening transition from a smooth to rough surface
occurs at some temperature. The nature of the growth of a
crystal close to equilibrium expectedly depends on whether
the surface is smooth or rough. One can also think of a
crystal growth process which is far away from equilibrium
by subjecting it to an external drive, for instance by random
deposition of particles on the surface. The roughening that
occurs in the nonequilibrium case is called kinetic
roughening. Is the nature of the surface any different in
kinetic roughening? Crystals are definitely not the only
example of growth processes; some other examples of such
nonequilibrium growths would be the growth of bacterial
colonies in a petri dish, sedimentation of colloids in a drop,
the formation of clouds in the upper atmosphere, and so on.
Note the large variation of length scales of these problems.
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In many such examples, it is difficult if not impossible to
think of an equilibrium counterpart.

Scale invariance in interface fluctuations implies that
fluctuations look statistically the same when viewed at
different length scales. A quantitative measure of the height
fluctuation (height measured from an arbitrary base) is
provided by the correlation function

C(x, 1) = ([h(x + Xo, £ + 1) — h(Xp, 1)), (0

where x and ¢ denote the d-dimensional coordinate on the
substrate and time, respectively. The averaging in eq. (1) is
over all x,, and, by definition, C(x, ¢) is independent of the
choice of the arbitrary base. In simple language, scale
invariance then means that when the system is, say,
amplified by a scaling x — bx and r— b%, the height
fluctuations reveal the same features as the original, up to
an overall scale factor. Quantitatively, there exists a
generalized scaling

C(x, t) = b*C(bx, br), )

where b is a scale factor, and y and z are known as the
roughening and dynamic exponents which are also
universal. As a direct consequence of eq. (2), a scaling form
for C(x, f) can be obtained by choosing b = 1/x

Clx, ) = ¥ C (t/%°), A3)

a form that also explains the origin of the name ‘dynamic
exponent’ for z. The power law behaviour (as opposed to
say exponential decay) of the correlation function implies
absence of any scale, neither in space nor in time. All the
underlying length scales required to define the problem
dropped out of the leading behaviour in eq. (3). Such a scale
invariance is one of the most important features of
equilibrium phase transitions and is observed when a
parameter, say the temperature, approaches its critical value.
However, here there is no special tuning parameter; the
scale invariance appears from the interplay of competing
processes which in the simplest case can be the surface
tension and noise present due to inherent randomness in
the growth. There can be, of course, more complex events
like a phase transition between surfaces with different
roughness but scale invariance (not only of the correlation
function but of any physical quantity) is generically
preserved in all these surfaces.

It is worth emphasizing the enormous simplification that
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occurs in the scaling description. It is only a very few
quantities that define the asymptotic behaviour of the
system. Consequently, the idea of studying the universal
aspects of growth processes is to classify and characterize
the various universality classes as determined by the
exponents, e.g. x and z, the scaling function and if
necessary certain other important universal quantities.

At this point, it might be helpful to compare the
equilibrium and nonequilibrium cases again. In equilibrium,
thanks to thermal energy (or ‘random kicks’ from a heat
reservoir), all configurations of a system are accessible and
do occur, but no net flow of probability between any two
states is expected (called ‘detailed balance’). Consequently,
the knowledge of the states
(and the energies) of a system allows one to obtain
the thermodynamic free energy by summing over the
Boltzmann factors exp(— E/kgT ), where E is the energy of
the state, T the temperature and kg is the Boltzmann
constant. In a nonequilibrium situation, either or both of the
above two conditions may be violated, and the framework
of predicting the properties of a system from free energy is
not necessarily available. A dynamic formulation is needed.
By assigning a time-dependent probability for the system to
be in a configuration at a particular time, one may study the
time evolution of the probability. The equilibrium problem
can be viewed from a dynamical point also. This description
must give back the Boltzmann distribution in the infinite
time steady state limit. This is the Fokker—Planck approach.
The probabilistic description comes from the ensemble
picture where identical copies of the same system exchange
energy with the bath independently. An alternative
approach which finds easy generalization to the non-
equilibrium cases is the Langevin approach where one
describes the time evolution of the degrees of freedom, in
our example A(x, t), taking care of the random exchange of
energy by a noise. The dynamics we would consider is
dissipative so that the system in absence of any noise
would tend to a steady state. However, for it to reach the
equilibrium Boltzmann distribution in the presence of noise,
it is clear that the noise must satisfy certain conditions
(Einstein relation) connecting it to the system parameters.
The nonequilibrium case does not have any thermodynamic
free energy as a guiding light and therefore, there is no
requirement to reach the Boltzmann distribution. In the
Langevin approach, the noise term can be completely
independent. In the equilibrium case, the Langevin equation
will be determined by the Hamiltonian or the free energy of
the system, but for nonequilibrium cases there might be
terms which cannot be obtained from Hamiltonians. Since
for t — oo, the probability distribution for equilibrium cases
attains the Boltzmann distribution, the roughness exponent
xis determined even in dynamics by the stationary state
while the details of the dynamics is encoded in the dynamic
exponent z. In other words, the two exponents y and z are
independent quantities. In the nonequilibrium case, there is
no compulsion to reach any predetermined stationary state
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and therefore the surface roughness is related to the
growth, i.e. yand z need not be independent. We see below
that there is in fact a specific relation connecting these two
exponents.

The existence of scale invariance and universal expo-
nents implies that as far as the exponents are concerned, the
theory should be insensitive to the microscopic details, or,
in other words, one may integrate out all the small length
scale features. The universal exponents come out as an
output of this process of coarse graining of say the
Langevin equation, followed by a length rescaling that
brings the system back to its original form. The new system
will however have different values of the parameters and
one can study the flow of these parameters in the long
length and time scale limit. This is the basic idea behind the
renormalization group (RG). In this approach, the
importance of an interaction or a term is judged not by its
numerical value but by its relevance. One may start with any
physically possible process in dynamics and see how it
appears as the length scale or resolution changes. For large
length scales, one is left only with the relevant terms that
grow with length, and marginal terms that do not change;
the irrelevant terms or interactions that decay with length
scale automatically drop out from the theory. The exponents
are determined at the fixed points of the flows in the
parameter space. These fixed points, which remain invariant
under renormalization, characterize the macroscopic or
asymptotic behaviour of the system. Clearly from this
viewpoint of RG, one can explain why the microscopic
details can be ignored and how the idea of ‘universality’
emerges. All systems whose dynamical behaviour would
flow to the same fixed point under RG transformation will
have identical scaling behaviour. The various universality
classes can then be associated with the various fixed points
of RG transformations, and phase transitions or criticality
with unstable fixed points or special flows in the parameter
space. An RG approach therefore seems rather natural and
well suited for studying any scale invariant phenomena in
general, and growth problems in particular. Quite
expectedly, the modern approach to growth problems is
based on these views of RG.

For a quantitative discussion, we consider two simple
equations that, from the historical point of view, played a
crucial role in the development of the subject in the last two
decades.

A simple Langevin equation describing the dynamics of a
surface is the Edwards—Wilkinson (EW) equation’
a—h=1)72h+7;(x, 1), “4)

ot
where x represents in general the coordinate on the d-
dimensional substrate. vis the coefficient of the diffusion
term trying to smoothen the surface and 77is the Langevin
noise which tries to roughen the surface’. One may add a
constant current ¢ to the right hand side, but by going over
to a moving frame of reference (4 — s + cf) one recovers eq.
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(4). The noise here is chosen to have zero mean and short-
range correlation as (7(x, £)1(x',t')) =2D&—X') & —1t').
One of the important assumptions in this equation is that
the surface is single-valued and there are no overhangs.
One can solve eq. (4) exactly just by
taking the Fourier transform and obtain the exponents
x=(2-d)/2 and z = 2. That the dynamic exponent z is 2
follows from the simple fact that the equation involves a
first derivative in time but a second derivative in space. The
surface is logarithmically rough at d=2. For d>2,
fluctuations in the height are bounded and such a sur-
face is more or less flat, better called ‘asymptotically
flat’. From the growth equation one can also derive
the stationary probability distribution for the height
h(x) which takes the form of a Boltzmann factor
P(h(x)) < exp[— (VD)(VhYdx] resembling an equilibrium
system at a temperature given by D =kgT. This is the
Einstein relation that noise should satisfy to recover
equilibrium probability distribution. Conversely, given a
hamiltonian of the form (VA4)’d’, the equilibrium dynamics
will be given by eq. (4) with D determined by the
temperature. Nevertheless, if we do not ascribe any thermal
meaning to D, eq. (4) is good enough to describe a
nonequilibrium dynamic process as well. Such a
nonequilibrium growth will have many similarities with
equilibrium processes, differing only in the origin of the
noise, e.g. the expected symmetry 4 — — h, with (4) =0 in
equilibrium will be preserved in the nonequilibrium
case also. The gro@ing surface with a correlation C(x, 7) =
[x 9% (#/|x ') will be similar in both cases for d > 2.

A genuine nonequilibrium process will involve breaking
the up-down symmetry which in equilibrium follows from
detailed balance. It should therefore be represented by a
term involving even powers of 4. We already saw that a
constant current (zeroth power) does not add anything new.
Since the origin in space or time or the position of the basal
plane should not matter, the first possible term is (V4)’. By
looking at the geometry of a rough surface, it is easy to see
that such a term implies a lateral growth that would happen
if a deposited particle sticks to the first particle it touches
on the surface. One gets the Kardar—Parisi—-Zhang (KPZ)
equation®

Z—h=W2h+§(Vh)2+n(x,t). 5)
it

As a consequence of its mapping to the noisy Burger’s
equation, to the statistical mechanics of directed polymer in
a random medium and other equilibrium and nonequilibrium
systems, the KPZ equation has become a model of quite
widespread interest in statistical mechanics. Though we
focus on growth problems in this paper, the KPZ equation
is also applicable in erosion processes.

Taking cue from the development in understanding the
growth phenomenon through the KPZ equation, a vast
class of simulational and analytical models have evolved to
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explain different experimentally observed growth processes.
Diverse technical tools ranging from simulations with
various dynamical rules to different versions of RG
techniques, mode coupling theory, transfer matrix tech-
niques, and scaling arguments have been employed to
understand kinetic roughening. In this review we attempt to
provide an overview of this phenomenon of roughening of
a growing surface. It is almost beyond the scope of this
review to describe in detail various models and their
experimental relevance. Rather, we focus our attention on a
few examples which may broadly represent a few different
routes along which research has continued.

The plan of this article is as follows. In the next section
we focus on the KPZ equation and its RG description. We
also point out the connection of the KPZ equation to some
other problems of physics. Next, a more generalized growth
mechanism involving nonlocal interactions is presented.
Finally, the progress in understanding the roughening and
super roughening transitions which appear in a very
distinct class of models involving lattice pinning potential is
presented.

KPZ equation and more

Let us first look at the origin of the various terms in eqs (4)
and (5). In both the equations, the noise term represents
random deposition, the fluctuation around the steady value.
As already mentioned, a steady current can be removed
from the equation by going over to a moving frame. The
term involving second derivative of 4 can represent either
of the two processes. It could be a surface tension
controlled diffusion process, in which a particle comes to
the surface and then does a random walk on the surface to
settle at the minimum height position, thereby smoothening
the surface. An alternative interpretation would be that
there is desorption from the surface and the process is
proportional to the chemical potential gradient. The
chemical potential of the particles on the surface cannot
depend on % or gradient of 4 because it is independent of
the arbitrary base or its tilt. The chemical potential then is
related to the second derivative of 4. This also has a
geometric meaning that V7 is related to the local curvature.
The larger the curvature, the higher is the chance to desorb
because of a lesser number of neighbours. In the KPZ
equation, the nonlinear term represents lateral growth. The
diffusion-like term can then be thought of either (a) as an
alternative that a particle coming to the surface instead of
sticking to the first particle it touches, deposits on the
surface and then diffuses, or (b) as a random deposition
process with desorption. In either case, the noise term tends
to roughen the surface, the diffusion term, of whatever
origin, smoothens it while the nonlinear term leads to a
laterally growing surface. Even if the smoothening linear
term is not present, RG or the scaling argument indicates
that such a term is generated on a large length scale.
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The KPZ equation has a special symmetry not present in
the EW case. This is the tilt symmetry (often called Galilean
invariance — a misnomer, though, in this context). If we tilt
the surface by a small angle, then with a reparametrization
h' =h+g xand x =x+ Ag’ and 7 = ¢', the equation remains
invariant for small £ This transformation depends only on 4
the coefficient of the nonlinear term and fails for A= 0. Since
this tilt symmetry is to be maintained no matter at what
lengthscale we look at, Amust be an RG invariant.

Let us now perform a length rescaling analysis. Under a
change of scale as x — bx, t— bt and h — b*h, KPZ
equation transforms as

e % — WV +&b2772(Vh)2 +b~d/272/2n 6)
ot 2

where the noise correlation has been used to obtain the
scaling of the noise term. Therefore under this scale
transformation different parameters scale as v— b" v
D— b D and A—> b*?A For A=0, the equation
remains invariant provided z =2 and y=(2—d)/2. These
are just the exponents one expects from the EW model.
(Such surfaces with anisotropic scaling in different
directions like x and 4 are called self-affine.) Though we
cannot predict the exponents from eq. (6) when A= 0, it
does tell us that a small nonlinearity added to the EW
equation scales with a scaling dimension y+z — 2. This term
is always relevant in one-dimension, because it scales like
b". This type of scaling argument also shows that no other
integral powers of derivatives of # need be considered in
eq. (5) as they are all irrelevant, except (dh/dx)’ at d =1,
which, however, detailed analysis shows to be marginally
irrelevant. Based on this analysis, we reach an important
conclusion that the nonequilibrium behaviour in one-
dimension, and in fact for any dimension below two, would
be distinctly different from the equilibrium behaviour. For
dimensions greater than two, EW or equilibrium surfaces, as
already mentioned, are asymptotically flat with =0, z = 2,
and so, a small nonlinearity is irrelevant because it will
decay with b. In other words, the growth in higher
dimensions for small Awould be very similar to equilibrium
problems because the EW model is stable with respect to a
small perturbation with nonlinearity. The simple scaling
argument does not tell us if the nature of the surface
changes for large Afor d > 2, but an RG analysis shows that
it does change. That the nonequilibrium growth is always
different in lower dimensions and in higher dimensions
(greater than two), and that there will be a dynamic phase
transition from an equilibrium-like to a genuine
nonequilibrium behaviour, explains the source of excitement
in this minimal KPZ equation, in the last two decades.

If the nonlinear parameter Ais to remain an invariant, i.e.
independent of b in eq. (6), then )+ z = 2, a relation which
need not be satisfied by the equilibrium growth. It is this
relation connecting the two exponents of the scaling
function of eq. (2) that distinguishes nonequilibrium growth
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from equilibrium, the former requiring one less exponent
than the latter. We wonder if such an exponent relation is
generally true for all nonequilibrium systems.

Though we are far away from a complete understanding
of all the nuances and details of the KPZ equation, the RG
analysis has been very successful in identifying different
phases, nature of phase transitions, and, in certain cases,
relevant exponents. In brief, the various results obtained
from RG analysis are as follows. In one-dimension and for
d <2, even a small nonlinearity, as already mentioned, being
relevant in the RG sense, leads to new values of roughening
and dynamic exponents, and is characterized by a RG fixed
point. Beyond d = 2, there is a phase transition demarcating
two different types of surfaces. A small nonlinearity is
irrelevant around EW model and the surface is almost flat
with y=0 and z = 2. A strong nonlinear growth, however,
drives the system to a different phase with rougher surface
where y# 0. Several aspects of this phase transition can be
studied from RG but the strong Aregime is still out of reach,
because of the absence of any RG fixed point.

The KPZ equation in d =1 has distinct nonequilibrium
behaviour, and the scaling behaviour is the same no matter
how small or large Ais. More peculiar is the existence of a
stationary probability distribution of the height in one-
dimension which is the same as for the linear EW model.
This is not just an accident but a consequence of certain
subtle relations valid only in one-dimension. We do not go
into those issues here. The same stationary distribution
implies that the nonlinearity does not affect the stationary
state solution, and y= 1/2. The two models, however, differ
in the dynamic exponent which, in the case of KPZ growth,
has to satisfy y + z=2. This leads to an exact answer
z=73/2. Its significance can be grasped if we compare
various known cases. For ballistic motion, distance goes
linearly with time so that the dynamic exponent is z =1
while for diffusive motion or in quantum mechanics (e.g. a
nonrelativistic free quantum particle), z=2 as is also the
case for EW. Here is an example where the nonequilibrium
nature of the problem leads to a completely new exponent
connecting the scaling of space and that of time.

Dynamic renormalization group analysis

A dynamic RG analysis is a more general approach
applicable for dynamics which e.g. may be governed by the
Langevin equation for the appropriate dynamical variable.
For our problem, it is easier to work in Fourier coordinates q,
and cconjugate to space and time. Long distance, long time
implies q — 0 and co— 0, and ¢ can be taken as the inverse
wavelength at which the height variable is probed. The
magnitude of wave vector q varies from 0 to A, where the
upper cutoff is determined by the underlying microscopic
length scale like lattice spacing or size of particles, etc. In
the Fourier space, different Fourier modes in the linear EW
model get decoupled so that each /(q, @ for each (q, @
behaves independently. It is this decoupling that allows the
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simple rescaling analysis of eq. (6) or dimensional analysis
to give the correct exponents. For the KPZ equation, the
nonlinear term couples heights of various wavelengths and
therefore any attempt to integrate out the large (q, @ modes
will affect 4 with low values of (q, @. This mixing is taken
into account in the RG analysis which is implemented in a
perturbative way. One thinks of the noise and the nonlinear
term as disturbances affecting the EW-like surface. If we
know the response of such a surface to a localized
disturbance we may recover the full response by summing
over the disturbances at all the points and times. However,
this disturbance from the nonlinear term itself depends on
the height, requiring an iterative approach that generates
successively a series of terms. By averaging over the noise,
one then can compute any physical quantity. At this stage
only degrees of freedom with q in a small shell e’A <g <A
is integrated out. In real space this corresponds to
integrating out the small scale fluctuation. The contribution
from this integration over the shell is absorbed by
redefining the various parameters v Aand D. These are the
coupling constants for a similar equation as eq. (5) but with
a smaller cutoff Ae”. A subsequent rescaling then restores
the original cutoff to A. Following this procedure, the flow
equations for different parameters v D, and A can be
obtained’. Using the exponent relation predicted from the
Galilean invariance and the RG invariance of v the flow
equations for all the parameters can be combined into a
single flow equation for A* = ZD/V (with A = 1). This is
the only dimensionless parameter that can be constructed
from A v D, and A, and it is always easier to work with
dimensionless quantities. Its recursion relation is

dA 2-d = 2d -3 =5
dl 2 4d

where K, is the surface area of a d-dimensional sphere
divided by (27. The invariance of v under the RG
transformation implies z =2— K, 1 * %, and the Galilean
invariance provides the value of y=2 -z once the value of
z is known. To be noted here is that the dynamic exponent
is different from 2 by a term that depends on Acoming from
the renormalization effects.

A few very important features are apparent from eq. (7).
From the fixed point requirement dA/dl = 0, we find that at
d =1, there is a stable fixed point A* =2/K,. At this fixed
point z = 3/2 and y= 1/2 supporting the results predicted
from the symmetry analysis. At d =2, the coupling is
marginally relevant, indicating a strong coupling phase not
accessible in a perturbation scheme. At d> 2, the flow
equation indicates two different regimes, namely a weak
coupling regime where A asymptotically vanishes leading
to a flat EW phase with =0, z = 2, and a strong coupling
rough phase, the fixed point of which cannot be reached by
perturbation analysis.

Owing to this limitation of the RG analysis based on the
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perturbation expansion, the scaling exponents in this strong
coupling phase cannot be determined by this RG scheme.
Different numerical methods yield z=1.6 at d =2. The
phase transition governed by the unstable fixed point of A

is well under control with z =2 for all d> 2. To explore the
strong coupling phase, techniques like self-consistent mode
coupling approach, functional RG, etc. have been employed,
but even a basic question whether there is an upper critical
dimension at which z will again become 2 remains
controversial.

Relation with other systems

The relation of the KPZ equation with other quite unrelated
topics in equilibrium and nonequilibrium statistical
mechanics is impressive. Here, we provide a very brief
account of these systems.

Noisy Burgers equation: By defining a new variable
v = Vh, we obtain an equation

% = DVvt - VvHf(x, 1), ®)
where the noise term f =Vn The above equation
represents the noisy Burgers equation for vortex free
(V xv=0) fluid flow with a random force. This equation is
very important in studies of turbulence. The tilt invariance
of the KPZ equation turns out to be the conventional
Galilean invariance for the Burgers equation (for A= 1), and
that is how the name stayed on.

Directed polymer in a random medium: A directed
polymer, very frequently encountered in different problems
in statistical mechanics, is a string-like object which has a
preferred longitudinal direction along which it is oriented,
with fluctuations in the transverse direction. The flux lines
in type II or high 7, superconductors are examples of such
directed polymers in 3-dimensions, while the steps on a
vicinal or miscut crystal surface or the domain walls in a
uniaxial two-dimensional system are examples in two-
dimensions. The formal mathematical mapping to such
objects follows from a simple (Cole-
Hopf) transformation of the KPZ equation  using
WX, t) = exp The Cole-Hopf transformation linearizes
the nonlinear KPZ equation and the resulting linear
diffusion equation (or imaginary time Schrddinger equation)
is identical to that satisfied by the partition function of a
directed polymer in a random potential. For such random
problems, one is generally interested in the averages of
thermodynamic quantities like the free energy and we see
that the noise averaged height (A(x, f)) gives the average
free energy of a directed polymer of length 7 with one end at
the origin and the other end at x. This is a unique example of
a system where the effect of such quenched averaging of
free energy can be studied without invoking any tricks (like
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the replica method). This has led to many important results
and enriched our understanding of equilibrium statistical
mechanics. Recently, this formulation has been extended to
study details of the properties of the random system near
the phase transition point and overlaps in lower
dimensions®’. It turns out that one needs an infinite number
of exponents to describe the statistical behaviour of the
configurations of the polymer in the random medium®. We
do not go into this issue as this is beyond the scope of this
article.

An interesting connection between the 1+ 1-
dimensional KPZ equation and the equilibrium statistical
mechanics of a two-dimensional smectic-A liquid crystal
has been recently established by Golubovich and Wang’.
This relationship further provides exact approach to study
the anomalous elasticity of smectic-A liquid crystals.

Apart from these, there are a number of other relations
between KPZ equation and kinetics of annihilation
processes with driven diffusion, the sine-Gordon chain, the
driven diffusion equation and so on.

Beyond KPZ

Conservation condition: The situation encountered in
molecular-beam epitaxy (MBE) for growth of thin films is
quite different from the mechanism prescribed by the KPZ
equation”. In MBE, surface diffusion takes place according
to the chemical potential gradient on the surface, respecting
the conservation of particles. If the particle concentration
does not vary during growth, then a mass conservation
leads to a volume conservation and the film thickness is
governed by an underlying continuity equation

oh .

PR ©
where j is the surface diffusion current which states that the
change of height at one point is due to flow into or out from
that point. The current is then determined by the gradient of
the chemical potential, and since the chemical potential has
already been argued to be proportional to the curvature
V’h, the growth equation thus becomes a simple linear
equation involving V*A which, like the EW model, is exactly
solvable. Taking into account the effect of nonlinearity the
full equation can be written as

% = _V? {W2h+§(v}z)2}+1{x, 0, (10)

where the noise correlation is (7fx, )7(x/, ")) = 2DV’
Ax—x' )& —t'), if the noise also maintains conservation (if
it originates from the stochasticity of diffusion) or would be
the same white noise as in the KPZ equation, if the noise is
from random deposition. It goes without saying that the
exponents are different from the EW model even for the
linear theory. The invariance of Ain this case leads to a
different relation between x and z. At the dimension of
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physical interest d =2, this growth equation leads to an
enhanced roughness than the KPZ case and may explain
the results of experiments of high temperature MBE.

Quenched noise: A different type of generalization of the
KPZ equation was to explore the motion of domain walls or
interfaces in a random medium. In this case, the noise is not
explicitly dependent on time but on the spatial position and
the height variable. Such a noise has been called quenched
noise because the noise is predetermined and the interface
or the surface moves in this random system. The simple
features of the KPZ equation and the EW model are lost.
Functional RG analysis and numerical studies are attempted
to clarify the question of universality classes and details of
dynamics in such cases. The important concept that
emerged in this context is the depinning transition so that
the surface remains pinned by the randomness until the
drive exceeds a certain critical value. Interface depinning is
an example of a nonequilibrium phase transition. The
velocity of the surface near this depinning transition also
has critical-like behaviour with long-range correlations.
Below the threshold, the dynamics is sluggish, while just
above the threshold, the velocity is in general not
proportional to the drive but obeys a power law with a
universal exponent. For a very strong drive (or large
velocity of the interface) the moving surface encounters
each site only once, and therefore the noise is effectively
like a space—time dependent noise rather than the quenched
one. The nature of the surface would then be like KPZ.

Coloured noise: In the previous section we discussed the
KPZ equation with white noise. If the noise is coloured in
the sense that there is correlation in space or time or both,
the universal behaviour, the phase transitions and the
properties are different but still can be studied by the same
RG technique. Several aspects of the problem, especially the
role of noise correlation, have been explored'.

All of the above seem to suggest that if there is no
conservation law, then the KPZ equation is the equation to
describe any nonlinear or nonequilibrium growth process
and all phenomena can be put in one of the known
universality classes. However, experimentally KPZ
exponents seem to elude us so far'>'". Since results are
known exactly in one-dimension, special one-dimensional
experiments were conducted like paper burning, interface
motion in paper, colloid suspension, etc., but KPZ
exponents have not been seen. In the colloid experiment'’,
the surface formed by the depositing colloids on the
contact line (d = 1) between the colloid latex film and a glass
slide was measured from video images. This method yields
x=0.71 but cannot determine the dynamic exponent. A
recent analysis'® of tropical cumulus clouds in the upper
atmosphere, from satellite and space shuttle data from 0.1 to
1000 km, seems to agree with the KPZ results in d = 2.

Kinetic roughening with nonlocality
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SPECIAL SECTION:

In spite of a tremendous conceptual and quantitative
success of the KPZ equation in describing the
nonequilibrium growth mechanism, the agreement with
experimentally observed exponents is rather unsatisfactory.
One wonders whether there is any relevant perturbation
that drives the systems away from the KPZ strong coupling
perturbation. One goal of this section is to point out that
indeed there can be long-range interactions that may give
rise to non-KPZ fixed points.

In many recently studied systems involving proteins,
colloids, or latex particles the medium-induced interactions
are found to play an important role". This nonlocal
interaction can be introduced by making a modification of
the nonlinear term in the KPZ equation. Taking the gradient
term as the measure of the local density of deposited
particles, the long-range effect is incorporated by coupling
these gradients at two different points. The resulting
growth equation is a KPZ-like equation with the nonlinear
term modified as'
% [dr" V(@&)Vh@r+r',t)- Vh(r—r',t). For generality, we
take V(r") to have both short- and long-range parts with a
specific form in Fourier space as V(k) = A4 + Ak ” such that
in the limit 4,— 0, KPZ results are retrieved. The aim is to
observe whether the macroscopic properties are governed
by only A4 and hence KPZ-like or the behaviour is
completely different from KPZ due to the relevance of 4,
around the KPZ fixed points.

A scaling analysis as done in eq. (6) clearly indicates
different scaling regimes and the relevance of 4 and A, for
d>2 at the EW fixed point. For any A(# 0) with o> 0, the
local KPZ theory (i.e. 4,= 0 and x+z = 2) is unstable under
renormalization and a non-KPZ behaviour is expected. For
2<d<2+2p only Ais relevant at the EW fixed point. The
exponents of the non-KPZ phases can be obtained by
performing a dynamic RG calculation'. By identifying the
phases with the stable fixed points, we then see the
emergence of a new fixed point where the long-range
features dominate (x+z =2+ ). Most importantly, at
d =2, the marginal relevance of A is lost and there is a
stable fixed point (LR) for p>0.0194.

On the experimental side, there are experiments on
colloids with = 0.71 which is the value also obtained from
paper burning exponents. For colloids, hydrodynamic
interactions are important. Similar long-range interactions
could also play a role in paper burning experiment due to
the microstructure of paper. With this y our exponents
suggest p=—0.12 at d =1 at the long-range fixed point.
Further experiments on deposition of latex particles or
proteins yielding the roughness of growing surface have
not been performed. Probably such experiments may reveal
more insights on this growth mechanism.

More recently, the effect of coloured noise in presence of
nonlocality has been studied"’ and the nature of the phases
and the various phase transitions clarified. A conserved
version of the nonlocal equation has also been considered
and it shows rich behaviour'.
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Roughening transition in nonequilibrium

It is interesting to study the impact of equilibrium phase
transitions on the nonequilibrium growth of a surface. This
is the situation observed experimentally in growth of solid
*He in contact with the superfluid phase'’. There is an
equilibrium roughening transition at 7z = 1.28 K. For T > Ty
the growth velocity is linear in the driving force F (chemical
potential difference), but for T7T<T7; the velocity is
exponentially small in the inverse of the driving force. For
infinitesimal drive, the mobility which is the ratio of the
growth velocity and F vanishes with a jump from a finite
value at the transition. With a finite force the transition is
blurred and the flat phase below Ty in equilibrium becomes
rougher over large length scale.

The equilibrium roughening transition is an effect of
discrete translational symmetry of the lattice. The
equilibrium dynamics in this case is essentially governed by
the Langevin equation

h_ KV >2h(r,1)—V sin {2—” h(r, t)} +&r, ), (1)

ot a
where the sine term favours a periodic structure of spacing
a. Extensive investigations have been done on this
equilibrium model. At low temperature, this periodic
potential is relevant and it ensures that minimum energy
configuration is achieved when ¢is an integer multiple of
lattice periodicity. In this phase, the surface is smooth and
the roughness is independent of length. In the high
temperature phase the equilibrium surface is thermally
rough and the roughness is logarithmic

C(L, 9~ In[LAZL)]. (12)

The critical point is rather complicated and goes by the
name of Kosterlitz-Thouless transition, first discussed in
the context of defect mediated transitions in two-
dimensional XY magnets'®.

For a nonequilibrium crystal growth problem, one needs
to introduce the KPZ nonlinear term in eq. (11). There is no
longer any roughening transition. The fact that away from
equilibrium the roughening transition is blurred is
manifested by the domination of the nonlinear term and the
suppression of the pinning potential in the asymptotic
regime".

A very nontrivial situation arises when the surface
contains quenched disorder which shifts the position of the
minima of the pinning potential in an arbitrary random
fashion®™”'. In this case, there is a new phase transition
which is drastically different from the equilibrium
roughening transition. This transition is called super
roughening. Above the transition temperature, i.e. for
T> T, the surface is logarithmically rough as it is in the
high temperature phase of the pure problem. However in the
low temperature phase, i.e. for T< T, the surface is no
longer flat and is even rougher than the high temperature
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phase. Recent numerical treatments suggest that the surface
roughness behaves as (InL)y. In the nonequilibrium
situation, the linear response mobility vanishes
continuously at the transition temperature unlike the jump
discontinuity in the pure case. A general treatment with a
correlated disorder elucidates the connection between the
roughening and super roughening transition and one
observes that the roughening turns into a super roughening
transition if the disorder correlation decays sufficiently fast.
Away from equilibrium, the super roughening transition is
essentially dominated by the KPZ nonlinearity and instead
of the logarithmic roughness, an asymptotic power law
behaviour of the roughness is found over all temperature
ranges.

In a similar situation in the nonequilibrium case, one
needs to study the role of the KPZ nonlinearity with long-
range disorder correlation”. A functional renormalization
scheme with an arbitrary form of the disorder correlation
turns out to be useful, though a detailed solution is not
available. It is found that the flow of the KPZ nonlinearity
under renormalization, with power law form of the disorder
correlation, is such that it decays with length. This implies
that nonequilibrium feature does not set in over a certain
length scale. Over this scale one would then expect usual
roughening transition. However, there is generation of a
driving force due to the nonlinearity, and the growth of this
force with length scale would invalidate use of perturbative
analysis. For large length scales, one expects a KPZ-type
power law roughness of the surface. Nevertheless, the
initial decay of the nonlinearity with the length scale due to
the long-range correlation of the disorder is an interesting
conclusion that seems to be experimentally detectable.

Remarks

In this brief overview, we attempted to focus on the
difference between equilibrium and nonequilibrium growth
problems with an emphasis on the scaling behaviour and
RG approach. Many details with references to pre-1995
papers can be found in Halpin-Healy and Zhang', and
Barbasi and Stanley®, which should be consulted for more
detailed analysis. Though the success story of the KPZ
equation is rather impressive, there are still many
unresolved, controversial issues. In fact for higher
dimensions, the behaviour is not known with as much
confidence as for lower dimensions. Developments in this

direction are awaited.

Note added in proof:

1. The growth mechanism of metal-organic films deposited
by the Langmuir—Blodgett technique has been studied in
ref. 23 by X-ray scattering and atomic force microscopy.
The results have been interpreted by a combination of 1-
dimensional EW equation (eq. (4)) and 2-dimensional linear
conserved equation (eq. (10)) with conserved noise.

2. For effects of nonlocality in equilibrium critical dynamics,
see ref. 24.
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