AUTOMORPHIC FORMS ON A SEMISIMPLE LIE GROUP*

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by Paul A. Smith, February 19, 1959

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We denote the corresponding Lie algebras by g and f respectively. Put $B(X, Y) = tr(ad X ad Y) (X, Y \epsilon g)$ and let p denote the space of all $Y \epsilon g$ which are orthogonal to f under the bilinear form B. Then g is the direct sum of f and p. Put $\theta(X + Y) = X - Y (X \epsilon f, Y \epsilon p)$. Then θ is an automorphism of g and the quadratic form $||Z||^2 = -B(Z, \theta(Z)) (Z \epsilon g)$ is positive definite. We re-

gard g as a (real) Hilbert space under this quadratic form and put $||x||^2 = tr(Ad(x) Ad(x)^*)$ ($x \in G$) where $Ad(x)^*$ is the adjoint of the linear transformation Ad(x).

Let \mathfrak{Z} be the algebra of all differential operators on G which are invariant under both left- and right-translations of G. Fix a homomorphism χ of \mathfrak{Z} into the field of complex numbers. Let Γ be a discrete subgroup of G and σ and μ unitary representations of K and Γ respectively on a finite-dimensional complex Hilbert space U. We assume that σ is continuous and U is a left K-module (under σ) and a right Γ module (under μ). We shall denote the norm of u by |u| ($u \in U$). An automorphic form on G of type (σ, μ, χ) is a C^{∞} function f on G with values in U such that (1) $f(kx\gamma) = \sigma(k)f(x)\mu(\gamma)$ ($k \in K, x \in G, \gamma \in \Gamma$) and (2) $zf = \chi(z)f$ ($z \in \mathfrak{Z}$). It is not difficult to show that such a function is always analytic. Let $\mathfrak{F} = \mathfrak{F}(\sigma, \mu, \chi)$ denote the space of all such automorphic forms. If G/Γ is compact one proves easily that dim $\mathfrak{F} < \infty$. The main problem here is to establish a similar result under some weaker hypothesis on G/Γ .

A form $f \in \mathfrak{F}$ is called normal at infinity if there exists an integer $m \geq 0$ and a real number c > 0 such that $|f(x)| \leq c ||x||^m$ for all $x \in G$. Let $\mathfrak{F}_0 = \mathfrak{F}_0(\sigma, \mu, \chi)$ be the space of all $f \in \mathfrak{F}$ which are normal at infinity. Also let dx denote the Haar measure on G.

LEMMA 1. Let f be a function in \mathfrak{F} such that $\int_{G/\Gamma} |f(x)| dx < \infty$. Then $f \in \mathfrak{F}_0$.

Let a be a maximal abelian subspace of \mathfrak{p} . We introduce an arbitrary but fixed lexicographic order in the space a' of (real) linear functions on a. For any $\alpha \in \mathfrak{a}'$, let \mathfrak{n}_{α} denote the space of all $X \in \mathfrak{g}$ such that $[H, X] = \alpha(H)X$ for every $H \in \mathfrak{a}$. Consider the set Σ of those $\alpha > 0$ for which $\mathfrak{n}_{\alpha} \neq \{0\}$. Then Σ is a finite set. A subset Σ' of Σ is called closed if $\alpha + \beta \in \Sigma'$ whenever $\alpha, \beta \in \Sigma'$ and $\alpha + \beta \in \Sigma$. Let $\Sigma' \supset \Sigma''$ be two subsets of Σ such that Σ' is closed. We say that Σ'' is an ideal in Σ' if $\alpha + \beta \in \Sigma''$ whenever $\alpha \in \Sigma''$ and $\beta, \alpha + \beta \in \Sigma'$. For any closed Σ' put $\mathfrak{n}(\Sigma') = \sum_{\alpha \in \Sigma'} \mathfrak{n}_{\alpha}$. Then $\mathfrak{n}(\Sigma')$ is a subalgebra of the nilpotent Lie algebra $\mathfrak{n} = \mathfrak{n}(\Sigma)$. Moreover if Σ' is an ideal in $\Sigma, \mathfrak{n}(\Sigma')$ is an ideal in \mathfrak{n} . Let $N(\Sigma'), N$ and A denote the analytic subgroups of G corresponding to $\mathfrak{n}(\Sigma')$, \mathfrak{n} and a respectively.

Put $l = \dim \mathfrak{a}$. Then one can select l linearly independent elements $\alpha_1, \ldots, \alpha_l$ in Σ such that every $\alpha \in \Sigma$ is of the form $\alpha = m_1\alpha_1 + \ldots + m_l\alpha_l$ where m_1, \ldots, m_l are nonnegative integers. Let \mathfrak{a}^+ denote the set of all points $H \in \mathfrak{a}$ where $\alpha(H) > 0$ for every $\alpha \in \Sigma$ and put $A^+ = \exp \mathfrak{a}^+$.

 Γ being a discrete subgroup of G, we shall say that Γ is of the type I if $\int_{G/\Gamma} dx < \infty$. Moreover we say that Γ is of type II if the following conditions hold:

(1) For every ideal Σ' in Σ , $N(\Sigma')/N(\Sigma') \cap \Gamma$ is compact.

(2) There exists an element $a_0 \epsilon A$ such that $G = Ka_0(A^+)^{-1}N\Gamma$.

It is easy to show that if Γ is of type II then it is also of type I.

Let S be the class of all subsets of the set $(\alpha_1, \ldots, \alpha_l)$. For every $Q \in S$ let Σ_Q denote the smallest closed set in Σ containing Q and let Σ_Q' be the complement of Σ_Q in Σ . Then Σ_Q' is an ideal in Σ . Put $N_Q = N(\Sigma_Q)$ and $V_Q = N(\Sigma_Q')$. Select an element $H_0 \in \mathfrak{a}$ such that $\alpha(H_0) = 0$ ($\alpha \in \Sigma$) if and only if $\alpha \in \Sigma_Q$. This is always possible. Let \mathfrak{c}_Q denote the centralizer of H_0 in \mathfrak{g} . Then \mathfrak{c}_Q (which depends only on Q and not on the choice of H_0) is reductive in \mathfrak{g} . Put $\mathfrak{g}_Q = [\mathfrak{c}_Q, \mathfrak{c}_Q]$ and $\mathfrak{a}_Q = \mathfrak{a} \cap \mathfrak{g}_Q$. Then \mathfrak{g}_Q and \mathfrak{a}_Q respectively. Put $A_Q^+ = \exp \mathfrak{a}_Q^+$ where \mathfrak{a}_Q^+ is the

set of those $H \in \mathfrak{a}_Q$ where $\alpha(H) > 0$ for every $\alpha \in Q$. Also let $\Gamma_Q = G_Q \cap ((G_Q V_Q \cap \Gamma) V_Q)$. Then Γ_Q is a discrete subgroup of G_Q . We shall say that Γ is of type III, if Γ_Q is of type II in G_Q for every $Q \in S$.

THEOREM 1. Let Γ_{μ} denote the kernel of μ in Γ . Suppose $N \cap \Gamma/N \cap \Gamma_{\mu}$ is finite and Γ is of type III. Then dim $\mathfrak{F}_0(\sigma, \mu, \chi) < \infty$.

The proof, which proceeds by induction on l, depends on a lemma of Godement.¹ Put $\langle H, H' \rangle = B(H, H')$ $(H, H' \epsilon \mathfrak{a})$ and, for any $\lambda \epsilon \mathfrak{a}'$, define the dual element $H_{\lambda} \epsilon \mathfrak{a}$ by the condition that $\langle H, H_{\lambda} \rangle = \lambda(H)$ for every $H \epsilon \mathfrak{a}$. For any $\alpha \epsilon \Sigma$ we define the Weyl reflexion s_{α} in \mathfrak{a} by $s_{\alpha}H = H - 2\{\alpha(H)/\alpha(H_{\alpha})\}H_{\alpha}(H \epsilon \mathfrak{a})$. Then s_{α} can be "extended" to an automorphism $a \to a^{s_{\alpha}}$ of A. Also s_{α} operates on \mathfrak{a}' by duality. Select a base H_1, \ldots, H_l for \mathfrak{a} such that $\alpha_i(H_j) = \delta_{ij} \ 1 \le i, j \le l$. By a theorem of Iwasawa,² corresponding to any $x \epsilon G$, there exists a unique element $H(x) \epsilon \mathfrak{a}$ such that $x \epsilon K \exp H(x)N$.

Let π be a representation of G on a finite-dimensional complex vector space $U \neq \{0\}$. We denote the corresponding representation of \mathfrak{g} also by π . One can always introduce a Hilbert-space structure in U in such a way that the adjoint of $\pi(X)$ is $-\pi(\theta(X))$ ($X \in \mathfrak{g}$). We shall always tacitly assume that such a structure on U is given. For any $\lambda \in \mathfrak{a}'$, let U_{λ} denote the set of all $u \in U$ such that $\pi(H)u = \lambda(H)u$ for every $H \in \mathfrak{a}$. λ is called a weight of π if $U_{\lambda} \neq \{0\}$. Λ being the highest weight of π , we denote the orthogonal projection of U on U_{Λ} by E_{Λ} . A vector $u \in U$ is said to belong to a weight λ if $u \in U_{\lambda}$.

Put $G_i = G_Q$ where $Q = \{\alpha_i\}$ and let $s_i = s_{\alpha_i}$ $(1 \le i \le l)$. We shall say that Γ is of type IV if the following conditions hold:

- (1) $N(\Sigma')/N(\Sigma') \cap \Gamma$ is compact for every ideal Σ' in Σ .
- (2) $\inf_{\gamma \in \Gamma} \langle H_i, H(\gamma) \rangle > -\infty$ $(1 \le i \le l).^3$

(3) We can choose a compact set N_0 in N, elements $\gamma_i \in \Gamma \cap G_i$ $(1 \leq i \leq l)$, a representation π of G on a finite-dimensional complex vector space $U \neq \{0\}$ and a unit vector ψ belonging to the highest weight Λ of π such that:

- (a) $N_0(N \cap \Gamma) = N$,
- (b) $\gamma_i a \gamma_i^{-1} = a^{s_i} (a \epsilon A, 1 \leq i \leq l),$
- (c) $s_i \Lambda < \Lambda \ (1 \leq i \leq l),$

(d) $|E_{\Lambda}\pi(n\gamma_i)\psi| < 1$ for $n \in N_0$ $(1 \le i \le l)$.

One can prove that if Γ is of type IV then it is also of type III.

Let R and C be the fields of real and complex numbers respectively, Z the ring of rational integers and $Z' = Z[(-1)^{1/2}]$ the ring of Gaussian integers. Then it is easy to check that Γ is of type IV in G in the following cases: (1) G = SL(n, R), $\Gamma = SL(n, Z)$, (2) G = Sp(n, R), $\Gamma = Sp(n, Z)$, (3) G = SL(n, C), $\Gamma = SL(n, Z')$, (4) G = Sp(n, C), $\Gamma = Sp(n, Z')$. (Here n is any positive integer.) Hence our results are applicable to these four cases.

Now Γ' being any subgroup of Γ , the Haar measure dx on G defines an invariant measure on G/Γ' . Consider the Hilbert space $\mathfrak{H} = L_2(G/\Gamma')$ corresponding to this measure. Since G operates on G/Γ' on the left in the obvious way, we get a unitary representation λ of G on \mathfrak{H} . Let π be an irreducible unitary representation of G on some Hilbert space. Given an integer $m \geq 0$, we say that π occurs as a discrete component of λ at least m times, if we can find m mutually orthogonal closed invariant subspaces \mathfrak{F}_i $(1 \leq i \leq m)$ of \mathfrak{F} such that the representation of G defined on \mathfrak{F}_i

Vol. 45, 1959

under λ is equivalent to π . If π occurs at least once we say π is a discrete component of λ . Moreover we say that π occurs only a finite number of times if there exists an integer $m \geq 1$ such that it is impossible to choose \mathfrak{H}_i $(1 \leq i \leq m)$ with the above properties.

The following result is an immediate consequence of Lemma 1 and Theorem 1.

THEOREM 2. Let Γ be a discrete subgroup of G of type III and Γ' a subgroup of finite index in Γ . Put $\Gamma_0 = \bigcap_{\gamma \in \Gamma} \gamma \Gamma' \gamma^{-1}$ and suppose that $N \cap \Gamma/N \cap \Gamma_0$ is finite.

Then every discrete irreducible component of the representation λ of G on $L_2(G/\Gamma')$ occurs only a finite number of times in λ .

* This work was supported in part by a grant from the National Science Foundation.

¹ See Séminaire H. Cartan, 1957/58, Exposé 8, pp. 8-10.

² Ann. of Math., 50, 525 (1949)

³ This condition was suggested by Godement.