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We shall adhere strictly to the notation of the preceding note.' Making
use of an unpublished result of Chevalley one can prove the following
theorem.
THEOREM 1. Let ir be a quasisimple irreducible representation of G on a

Hlbert space !. Then there exists an integer N such that

dim ts < N(d(Z)) 2

for any SE) eQ.
Moreover if &£, # { 01 for some E e QF then it can be shown that we

may take N equal to the order of the Weyl group W.
Let Xr be as above and let C. (G) denote the class of all complex-valued

functions on G which are indefinitely differentiable everywhere and which
vanish outside a compact set. Let A be a bounded operator on I. We
say that A has a trace if for every complete orthonormal set2 (4,12#62, ...

...) in the series Z (^,6s, A#2) converges to a finite number inde-
s>1

pendent of the choice of this orthonormal set. We denote this number by
spA. Let A* be the adjoint of A. We say that A is of the Hilbert-
Schmidt class if AA* has a trace.
THEOREM 2. Let Tr be a guasisimple irreducible representation of G on

a Hilbert space !D. Then for any f E C0'(G) the operator' JGf(x)lr(x) dx
has a trace. Put

T7(f) = SP(.fGf(X)T(x) dx)

and for any a e G let afa denote the function af4(x) = f(a-lxa) (x e G). Then
T, is a distribution in the sense of L. Schwartz4 and

Tw(afa) = T.(f) (f e CCW(G), a e G).

We shall call the distribution Tr the character of the representation r.
THEOREM 3. Let Ti and 7r2 be quasisimple irreducible representations of

G on two Hulbert spaces. If TX, = cT,,(c e C) then T7 and 7r2 are infinitesi-
mally equivalent. Conversely if 7r and 7r2 are infinitesimally equivalent
T.r = T12.

Since for irreducible unitary representations infinitesimal equivalence
is the same as ordinary equivalence, such a representation is complete'y
determined within equivalence by its character.
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THEOREM 4. Let 7r be a quasisimple irreducible representation of G and
let f be any measurable function on G such that f vanishes outside a compact
set and JfG If(x)12 dx < O. Then the operator fGf(x)ir(x) dx is of the
Hilbert-Schmidt class.

For any X e g0 and f e C,' (G) put

(*Xf)(x) = {d-f(exp(-tX)x)}

Then the mapping X - *X is a representation of go on C,, (G) which can
be extended to a representation b -- *b (b e Y) of Q3. Let p be the anti-
automorphism of e such that po(X) = -X (X g). If T is any dis-
tribution on G we define bT (b e f) as follows:

bT(f) = T(*(p(b))f) (f e C¢0(G)).
Moreover for any function f on G we denote by vf, f2 and 1f2 (y, z, eG) the
functions

.f(z) = f(y-lx), fz(x) = f(xz), Yf1(x) = f(y-lxz) (z e G).
Let Z denote the center of G and let ir be a quasisimple irreducible repre-
sentation of G on a Hilbert space. Let x be the infinitesimal character
of -r and let q be the homomorphism of Z into C such that w(a) = q(a)7r(1)
(a e Z). Then if T,, is the character of 7r it is easily seen that

zT, = x(z) T. (z e )

T.(yff) = T.(f), T.(fa) = rl(a)T.(f) (fe Cc(G), y e G, a e Z).
Now put" M1 = MZ and let x -- x* denote the adjoint representation

of G. Put (x)Y* = yxy-1(x, y e G) and let CQ(G) denote the class of all
continuous functions on G which vanish outside a compact set. Let a
and g be continuous functions' on A+ and M1, respectively. Put6

T(f) = ff((n-1h-1m-1)u*)a(h)g(m) dm dh dn du* (f e Cc (G))

Here dm, dh, dn, du* are the left invariant Haar measures on M1, A+,
N, K*, respectively, and the integral extends over K* X M1 X A+ X N. It
can be shown that T(f) = T(,f1) (y e G). Let a be an irreducible repre-
sentation of M1 on a finite-dimensional Hilbert space U. Let 6 be the
equivalence class of the representation ao of M defined by a. Let i6o $ 0
I e an element in U belonging to the highest weight Xa of ao and let qt be
the homomorphism of Z into C such that a(a) = vi(a)a(1) (a e Z). Put
g(m) = (0o, o(m-1)#o) (m e Mi) and a(h) = e- +2p)(log h) where v is alinear
function on t3t and log h is the unique element in fnO such that exp(log h) =
h. If we regard T as a distribution it is easily seen that

zT = XA(Z)7 (z e 3)
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where A(H, + H2) =v(Hi) + X8(H2) (H1 e hr, H2 e ki). Moreover

T(fa) = nq(a)T(f) (ae Z, f e Cc(G))
and it is easy to check that

T(f) = ,ff((,n-h-1m-1)u*)e-(+2p)(1og h) t(m-j) dm dh dn du* (f e C(G))
where

t(m) = ,1o0!2 spa(m)d(e3)

and d(6) is the degree of a. Let A_ be the analytic subgroup of M corre-
sponding to btf. Put A = A+A- and A1 = AZ. Let V be the set of all
elements in G which can be written in the form xyx-1 with x e G and
y e A,N. We shall say that an element y e V is regular if y = xhx-1 for
some x e G and h e A1 and y* has exactly5 1 eigen-values equal to 1. Let
Vo be the set of all elements in V which are regular. Then Vo is open in
G and V is the closure of Vo. Let,Wo be the subgroup of the Weyl group
W consisting of those elements s e W for which there exists an x e G such
that sH = x*H for all H e t). It is easily seen that every s e Wo leaves
both fv and fD invariant. Put

A-(H) = (et - e ia(H))A+(H) = HI (e1a" -e_-*CH))
a eP_ afP+ (He ))

and define C(s) = 1 (s e Wo) in such a way that

A-(sH) = e(s)A-(H)

for all H e tb. In particular if P_ is empty e(s) = 1 for all s e Wo. Con-
sider the function 0A, 7 on Vo defined as follows:

eE (s)es(A+p)(Hi+H2)
OA.,,(Y) A(1w A(1+~(y c- VO)eAY) 7() .-(Hi)l A\+(Hi + H2)1

where y = x(?y exp(Hi + H2))x1 for some x e G, - e Z, H1 e f)iO and H2 e
It can be shown that in spite of the ambiguity in the choice of -y, H1 and
H2, 0 A ,, is well defined on Vo. We extend A, a on G by defining it to be
zero outside Vo. Then it can be proved that6

T(f) = fGf(x) OA,, (x) dx (f e Cc(G))
provided the Haar measure dx on G is suitably normalized. Let si = 1
S2, . . . sr be a maximal set of distinct elements in the Weyl group W with
the following properties:

(I) LetAi = s(A+p) -p1<i<r. Then A + p#5s(Aj +p)if
i $j (1< i, jS r) andse Wo.

(11) For each i (1 < i < r) there exists a bie X such that Ai coincides on
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