REPRESENTATIONS OF SEMISIMPLE LIE GROUPS. III. CHARACTERS

By HARISH-CHANDRA

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Communicated by P. A. Smith, April 23, 1951

We shall adhere strictly to the notation of the preceding note.¹ Making use of an unpublished result of Chevalley one can prove the following theorem.

THEOREM 1. Let π be a quasissimple irreducible representation of G on a Hilbert space \mathfrak{H} . Then there exists an integer N such that

$$\dim \mathfrak{H}_{\mathfrak{D}} \leq N(d(\mathfrak{D}))^2$$

for any $\mathfrak{D} \in \Omega$.

Moreover if $\mathfrak{H}_{\mathfrak{D}} \neq \{0\}$ for some $\mathfrak{D} \in \Omega_F$ then it can be shown that we may take N equal to the order of the Weyl group W.

Let π be as above and let $C_e^{\infty}(G)$ denote the class of all complex-valued functions on G which are indefinitely differentiable everywhere and which vanish outside a compact set. Let A be a bounded operator on \mathfrak{G} . We say that A has a trace if for every complete orthonormal set² ($\psi_1, \psi_2, \ldots, \psi_n, \ldots$) in \mathfrak{G} the series $\sum_{i\geq 1} (\psi_i, A\psi_i)$ converges to a finite number independent of the choice of this orthonormal set. We denote this number by spA. Let A^* be the adjoint of A. We say that A is of the Hilbert-Schmidt class if AA^* has a trace.

THEOREM 2. Let π be a quasisimple irreducible representation of G on a Hilbert space \mathfrak{S} . Then for any $f \in C_c^{\infty}(G)$ the operator³ $\int_G f(x)\pi(x) dx$ has a trace. Put

$$T_{\pi}(f) = sp(\int_G f(x)\pi(x) \, dx)$$

and for any $a \in G$ let ${}_af_a$ denote the function ${}_af_a(x) = f(a^{-1}xa)$ $(x \in G)$. Then T_{π} is a distribution in the sense of L. Schwartz⁴ and

$$T_{\tau}(af_a) = T_{\tau}(f) \qquad (f \in C_c^{\infty}(G), a \in G).$$

We shall call the distribution T_{π} the character of the representation π .

THEOREM 3. Let π_1 and π_2 be quasisimple irreducible representations of G on two Hilbert spaces. If $T_{\pi_1} = cT_{\pi_2}(c \in C)$ then π_1 and π_2 are infinitesimally equivalent. Conversely if π_1 and π_2 are infinitesimally equivalent $T_{\pi_1} = T_{\pi_2}$.

Since for irreducible unitary representations infinitesimal equivalence is the same as ordinary equivalence, such a representation is complete'y determined within equivalence by its character. Vol. 37, 1951

THEOREM 4. Let π be a quasissimple irreducible representation of G and let f be any measurable function on G such that f vanishes outside a compact set and $\int_G |f(x)|^2 dx < \infty$. Then the operator $\int_G f(x)\pi(x) dx$ is of the Hilbert-Schmidt class.

For any $X \in \mathfrak{g}_0$ and $f \in C_c^{\infty}(G)$ put

$$(*Xf)(x) = \left\{\frac{d}{dt}f(\exp(-tX)x)\right\}_{t=0}^{t}$$

Then the mapping $X \to *X$ is a representation of \mathfrak{g}_0 on $C_{\mathfrak{c}}^{\infty}(G)$ which can be extended to a representation $b \to *b$ ($b \in \mathfrak{B}$) of \mathfrak{B} . Let φ be the antiautomorphism of \mathfrak{B} such that $\varphi(X) = -X$ ($X \in \mathfrak{g}$). If T is any distribution on G we define bT ($b \in \mathfrak{B}$) as follows:

$$bT(f) = T(*(\varphi(b))f) \qquad (f \in C_c^{\infty}(G)).$$

Moreover for any function f on G we denote by $_y f$, f_z and $_y f_z$ $(y, z, \epsilon G)$ the functions

$$yf(z) = f(y^{-1}x), f_z(x) = f(xz), yf_z(x) = f(y^{-1}xz) (z \in G).$$

Let Z denote the center of G and let π be a quasisimple irreducible representation of G on a Hilbert space. Let χ be the infinitesimal character of π and let η be the homomorphism of Z into C such that $\pi(a) = \eta(a)\pi(1)$ $(a \in Z)$. Then if T_{π} is the character of π it is easily seen that

$$zT_{\pi} = \chi(z)T_{\pi} \quad (z \in \mathcal{B})$$
$$T_{\pi}(yf_{y}) = T_{\pi}(f), \ T_{\pi}(f_{a}) = \eta(a)T_{\pi}(f) \ (f \in C_{c}^{\infty}(G), \ y \in G, \ a \in Z).$$

Now put⁵ $M_1 = MZ$ and let $x \to x^*$ denote the adjoint representation of G. Put $(x)^{y^*} = yxy^{-1}(x, y \in G)$ and let $C_{\epsilon}(G)$ denote the class of all continuous functions on G which vanish outside a compact set. Let α and g be continuous functions⁵ on A_+ and M_1 , respectively. Put⁶

$$T(f) = \int f((n^{-1}h^{-1}m^{-1})^{u^*})\alpha(h)g(m) \, dm \, dh \, dn \, du^* \qquad (f \, \epsilon \, C_c(G))$$

Here dm, dn, dn, du^* are the left invariant Haar measures on M_1 , A_+ , N, K^* , respectively, and the integral extends over $K^* \times M_1 \times A_+ \times N$. It can be shown that $T(f) = T(_y f_y)(y \in G)$. Let σ be an irreducible representation of M_1 on a finite-dimensional Hilbert space U. Let δ be the equivalence class of the representation σ_0 of M defined by σ . Let $\psi_0 \neq 0$ l e an element in U belonging to the highest weight λ_δ of σ_0 and let η be the homomorphism of Z into C such that $\sigma(a) = \eta(a)\sigma(1)$ ($a \in Z$). Put $g(m) = (\psi_0, \sigma(m^{-1})\psi_0)$ ($m \in M_1$) and $\alpha(h) = e^{-(\nu+2\rho)(\log h)}$ where ν is a linear function on $\mathfrak{h}_{\mathfrak{B}}$ and log h is the unique element in $\mathfrak{h}_{\mathfrak{P}_0}$ such that $\exp(\log h) = h$. If we regard T as a distribution it is easily seen that

$$zT = \chi_{\Lambda}(z)T \qquad (z \in \mathfrak{Z})$$

where $\Lambda(H_1 + H_2) = \nu(H_1) + \lambda_{\delta}(H_2) (H_1 \epsilon \mathfrak{h}_{\mathfrak{r}}, H_2 \epsilon \mathfrak{h}_{\delta})$. Moreover

 $T(f_a) = \eta(a)T(f) \qquad (a \ \epsilon \ Z, f \ \epsilon \ C_c(G))$

and it is easy to check that

 $T(f) = \int f((n^{-1}h^{-1}m^{-1})^{u^*}) e^{-(\nu+2\rho)(\log h)} \xi(m^{-1}) \, dm \, dh \, dn \, du^* \, (f \, \epsilon \, C_{\epsilon}(G))$ where

$$\xi(m) = \frac{1}{d(\delta)} |\psi_0|^2 \, s \rho \sigma(m)$$

and $d(\delta)$ is the degree of σ . Let A_- be the analytic subgroup of M corresponding to $\mathfrak{h}_{\mathfrak{X}_0}$. Put $A = A_+A_-$ and $A_1 = AZ$. Let V be the set of all elements in G which can be written in the form xyx^{-1} with $x \in G$ and $y \in A_1N$. We shall say that an element $y \in V$ is regular if $y = xhx^{-1}$ for some $x \in G$ and $h \in A_1$ and y^* has exactly⁵ l eigen-values equal to 1. Let V_0 be the set of all elements in V which are regular. Then V_0 is open in G and V is the closure of V_0 . Let W_0 be the subgroup of the Weyl group W consisting of those elements $s \in W$ for which there exists an $x \in G$ such that $sH = x^*H$ for all $H \in \mathfrak{h}$. It is easily seen that every $s \in W_0$ leaves both $\mathfrak{h}_{\mathfrak{R}}$ and $\mathfrak{h}_{\mathfrak{B}}$ invariant. Put

$$\Delta^{-}(H) = \prod_{\alpha \in P_{-}} (e^{\frac{1}{2}\alpha(H)} - e^{-\frac{1}{2}\alpha(H)}), \ \Delta^{+}(H) = \prod_{\alpha \in P_{+}} (e^{\frac{1}{2}\alpha(H)} - e^{-\frac{1}{2}\alpha(H)})$$
(H \epsilon \mathbf{b})

and define $\epsilon(s) = \pm 1$ (s ϵW_0) in such a way that

$$\Delta^{-}(sH) = \epsilon(s) \Delta^{-}(H)$$

for all $H \in \mathfrak{h}_{\mathfrak{E}}$. In particular if P_{-} is empty $\epsilon(s) = 1$ for all $s \in W_0$. Consider the function $\Theta_{\Lambda, \eta}$ on V_0 defined as follows:

$$\Theta_{\Lambda, \eta}(y) = \eta(\gamma) \frac{\sum\limits_{s \in W_0} \epsilon(s) e^{s(\Lambda+\rho)(H_1+H_2)}}{\Delta^-(H_1) |\Delta^+(H_1+H_2)|} \qquad (y \in V_0)$$

where $y = x(\gamma \exp(H_1 + H_2))x^{-1}$ for some $x \in G$, $\gamma \in Z$, $H_1 \in \mathfrak{h}_{\mathfrak{H}_0}$ and $H_2 \in \mathfrak{h}_{\mathfrak{H}_0}$. It can be shown that in spite of the ambiguity in the choice of γ , H_1 and H_2 , $\Theta_{\Lambda, \eta}$ is well defined on V_0 . We extend $\Theta_{\Lambda, \eta}$ on G by defining it to be zero outside V_0 . Then it can be proved that⁶

$$T(f) = \int_G f(x) \Theta_{\Lambda, \eta}(x) dx \qquad (f \in C_c(G))$$

provided the Haar measure dx on G is suitably normalized. Let $s_1 = 1$ s_2, \ldots, s_r be a maximal set of distinct elements in the Weyl group W with the following properties:

(I) Let $\Lambda_i = s_i(\Lambda + \rho) - \rho \ 1 \le i \le r$. Then $\Lambda_i + \rho \ne s(\Lambda_j + \rho)$ if $i \ne j \ (1 \le i, j \le r)$ and $s \in W_0$.

(II) For each i $(1 \le i \le r)$ there exists a $\delta_i \epsilon \omega$ such that Λ_i coincides on

Vol. 37, 1951

 $\mathfrak{h}_{\mathfrak{g}}$ with the highest weight⁵ λ_{δ_i} of δ_i . Moreover if $\sigma \in \delta_i$ and $\gamma \in M \cap Z$

$$\sigma(\boldsymbol{\gamma}) = \eta(\boldsymbol{\gamma})\sigma(1).$$

Put $\Theta_i = \Theta_{\Lambda_{i,\eta}}$ $1 \le i \le r$ and $T_i(f) = \int_G f(x)\Theta_i(x) dx$ ($f \in C_e(G)$). Then we see that the distributions $T_i \ 1 \le i \le r$ are solutions of the equations,

$$zT = \chi_{\Lambda}(z)T \qquad (z \in \mathcal{B})$$
$$T(y, f_y) = T(f), \ T(f_a) = \eta(a)T(f) \ (f \in C_c^{\infty}(G), \ y \in G, \ a \in Z).$$

We have seen above that if π is any quasisimple irreducible representation of G such that χ_{Λ} is the infinitesimal character of π and $\pi(a) = \eta(a)\pi(1)$ $(a \in Z)$, then its character T_{π} is also a solution of the above equations. Hence one might hope that in most cases $T\pi$ would be a linear combination of T_i $1 \leq i \leq r$.

In conclusion I should like to thank Professor C. Chevalley for his help and advice on several questions connected with the results of this note.

¹ "Representations of semisimple Lie groups. II," PROC. NATL. ACAD. SCI., 37, 362 (1951), quoted hereafter as *RII*.

² Since π is irreducible it follows easily that \mathfrak{H} is separable.

* Here dx denotes the left invariant Haar measure on G.

⁴ Schwartz, L., Theorie des distributions, Hermann, Paris, 1950.

⁵ See *RII* for the meaning of the various symbols.

⁶ Compare with Gelfand I. M., and Naimark M. A., *Izvestiya Akad. Nauk SSR*, Ser. Mat., 1947, vol. 11, pp. 411–504; *Mat. Sbornik N. S.*, 1947, vol. 21 (63), pp. 405–434; *Doklady Akad. Nauk SSSR* (N. S.), 1948, vol. 61, pp. 9–11.