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We shall adhere strictly to the notation of the preceding note.! Making
use of an unpublished result of Chevalley one can prove the following
theorem.

THEOREM 1. Let w be a quasisimple irreducible representation of G on a
Hilbert space ©. Then there exists an integer N such that

dim $p < N(d(D))*

for any D e Q.

Moreover if §p = {0} for some D e Qs then it can be shown that we
may take N equal to the order of the Weyl group W.

Let = be as above and let C,”(G) denote the class of all complex-valued
functions on G which are indefinitely differentiable everywhere and which
vanish outside a compact set. Let 4 be a bounded operator on . We
say that A has a trace if for every complete orthonormal set? (¢1, s, .. .,

..) in O the series '221 (¢1, A¢:) converges to a finite number inde-
3

pendent of the choice of this orthonormal set. We denote this number by
spA. Let A* be the adjoint of 4. We say that A4 is of the Hilbert-
Schmidt class if AA4* has a trace. ,

THEOREM 2. Let = be a gquasistimple irreducible represeniation of G on
a Hilbert space ©. Then for any f € C.”(G) the operator® JG f(x)x(x) dx
has a trace. Put

Tf) = sp(Sef(x)x(x) dx)

and for any a € G let .f, denote the function ,f,(x) = f(a—'xa) (x €eG). Then
T, is a distribution in the sense of L. Schwartz* and

T.(fd) = T.(f) (feC7(G), aeG).

We shall call the distribution T, the character of the representation .

THEOREM 3. Let m and m be quasisimple irreducible representations of
G on two Hilbert spaces. If T,, = cT(c e C) then m and ms are infinitesi-
mally equivalent. Conversely if m and w are infinitesimally equivalent
T, =T,,.

Since for irreducible unitary representations infinitesimal equivalence
is the same as ordinary equivalence, such a representation is complete'y
determined within equivalence by its character.
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THEOREM 4. Let n be a quasisimple irreducible representation of G and
let f be any measurable function on G such that f vanishes outside a compact
set and J&|f(x)|? dx < o. Then the operator Jif(x)x(x) dx is of the
Hilbert-Schmidt class.

For any X ¢ go and f ¢ C.”(G) put

(*Xf)E) = {Z“tf(e"P‘“‘X)")},,o'

Then the mapping X — *X is a representation of go on C.”(G) which can
be extended to a representation b — *b (b € B) of B. Let ¢ be the anti-
automorphism of 8B such that o(X) = —X (X e g). If T is any dis-
tribution on G we define 4T (b ¢ B) as follows:

bT(f) = T(*(e®)f)  (feC7(G)).

Moreover for any function f on G we denote by ,f, f. and , f. (3, 3, ¢ G) the
functions :

of(2) = fy7'%), fulx) = f(x2), ,fo(x) = f~'x2) (z¢G).

Let Z denote the center of G and let = be a quasisimple irreducible repre-
sentation of G on a Hilbert space. Let x be the infinitesimal character
of 7 and let n be the homomorphism of Z into C such that x(a) = n(a)x(1)
(a €Z). Then if T, is the character of = it is easily seen that

Ty = x(@)T.  (2¢3)
T.Gfy) = T, Te(fa) = 2@)T(f) (feC7(G), yeG, aeZ).

Now put® M; = MZ and let x — x* denote the adjoint representation
of G. Put (x)”* = yxy~(x, ¥ € G) and let C.(G) denote the class of all
continuous functions on G which vanish outside a compact set. Let «
and g be continuous functions® on A and M), respectively. Put®

T(f) = SH((n=h=im=)*")a(h)g(m) dm dh dn du*  (f € C(G))

Here dm, dh, dn, du* are the left invariant Haar measures on M, 4.,
N, K*, respectively, and the integral extendsover K* X M; X AL X N. It
can be shown that T(f) = T(,f,)(y € G). Let ¢ be an irreducible repre-
sentation of M; on a finite-dimensional Hilbert space U. Let 6 be the
equivalence class of the representation go of M defined by . Let o # 0
1 e an element in U belonging to the highest weight A; of oo and let 5 be
the homomorphism of Z into C such that (@) = 5(a)e(1l) (a € Z). Put
g(m) = (Yo, s(m—")gs) (m € My) and a(h) = e~ 2R whereyisalinear
function on by and log % is the unique element in §yp, such that exp(log &) =
h. 1f we regard T as a distribution it is easily seen that

2T = xa(2)T (ze3)
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where A(H, + H,) = v(Hy) + M\(H:) (Hi € by, Hy € h:). Moreover

I(fo) = n@)T(f) (aeZ feC(G))

and it is easy to check that

T(f) = Sf(n"h~tm=1)*")e™ " +2008 D £(3y—1) dm dh dn du* (f e C(G))
where

L

d(&) “I’O‘2 spa(m)

g(m) =
and d(3) is the degree of 0. Let A_ be the analytic subgroup of M corre-
sponding to by, Put A = A+A- and 4, = AZ. Let V be the set of all
elements in G which can be written in the form xyx~! with x ¢ G and
y e AyN. We shall say that an element y ¢ V is regular if y = xhx~! for
some x € G and & € 4; and y* has exactly® [ eigen-values equal to 1. Let
Vo be the set of all elements in V which are regular. Then V; is open in
G and V is the closure of V,. Let W, be the subgroup of the Weyl group
W consisting of those elements s ¢ W for which there exists an x ¢ G such
that sH = x*H for all H ¢ . It is easily seen that every s ¢ W, leaves
both b and b invariant. Put

A_(H) = I (eia(H) - e—}a(H))’ A+(H) = 1II (e}a(H) — e—ba(H))
aeP_ ae Py (HC b)

and define e(s) = =1 (s ¢ W) in such a way that

AT(sH) = e(s)A~(H)

for all H € hy. In particular if P_ is empty e(s) = 1 for all s ¢ W,. Con-

sider the function 6, , on V, defined as follows:
3 € (s)eS(A+p)(Hx+He)

s e Wo

A-(Hy)| A*(Hy + Hy)

where y = x(y exp(H; + Hy))x~'for some x ¢ G, v e Z, Hy € b, and Hs € by,.
It can be shown that in spite of the ambiguity in the choice of v, H; and
H,, © 4, , is well defined on Vy,. We extend 8,, , on G by defining it to be
zero outside Vo Then it can be proved that®

T(f) = Jof@) s, @) dx  (fe CAG))

provided the Haar measure dx on G is suitably normalized. Let s; = 1
S2, ..., S, be a maximal set of distinct elements in the Weyl group W with
the following properties:

(I) LetA; =siA+p) —p1<i<r. ThenA,+ p# s(A; + p)if
1#j(1<4,j<ryandseW,

(IT) Foreacht (1 < 7 < r) there exists a §; e w such that A; coincides on

01,3 = n(v) (y e Vo)
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bhe with the highest weight® As; of §,, Moreoverif ¢ ed;and ye M N Z
a(y) = n(y)a(1).
Put 0, = Ox,, 1 £ i< rand Tu(f) = Jef®)Oix) dx  (f e CG)).

Then we see that the distributions T; 1 < 2 < 7 are solutions of the equations,

2T = XA(Z)T (268)
TGf) = T(f), T(fo) = n@)T(f) (fe C7(G), y e G, a e Z).

We have seen above that if 7 is any quasisimple irreducible representation
of G such that x, is the infinitesimal character of = and =(a¢) = n(a)w(1)
(e € Z), then its character T, is also a solution of the above equations.
Hence one might hope that in most cases 7= would be a linear combination
of T, 1< 1< r.

In conclusion I should like to thank Professor C. Chevalley for his help
and advice on several questions connected with the results of this note.
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